Testing for IID Noise/White Noise: I

Size: px
Start display at page:

Download "Testing for IID Noise/White Noise: I"

Transcription

1 Testing for IID Noise/White Noise: I want to be able to test null hypothesis time series {x t } or set of residuals {r t } is IID(0, 2 ) or WN(0, 2 ) there are many such tests, including informal test based on sample ACF (see overhead II 64) portmanteau test turning point test di erence-sign test rank test runs test will illustrate tests using all-star game time series {x t } & residuals {z t } from AR(1) model for detrended Lake Huron levels BD 35, CC 46, SS-149 IV 1

2 outcome of game NL win tie AL win First All-Star Baseball Game in Each Year (I 22) year IV 2

3 ACF Sample ACF for All-Star Game x t h (lag) IV 3

4 AR(1) Residuals z t = r t ˆrt 1 (III 15) z t year IV 4

5 Unit Lag Scatter Plot of AR(1) Residuals z t (III 16) z t IV 5 z t

6 ACF Sample ACF for AR(1) Residuals z t (III 17) h (lag) IV 6

7 Portmanteau Test: I can regard as formal version of informal test based on sample ACF, which makes use of fact that, when {X t } IID(µ, 2 ), then corresponding ˆ X (1),..., ˆ X (h) are approximately IID N (0, 1/n) for large sample sizes n (but: h/n must be small!) hence ˆ X (j) p 1/n = n 1/2ˆ X (j), j = 1,..., h, are approximately IID standard normal RVs (i.e., N (0, 1)) recall that, if Z 1, Z 2,..., Z are IID N (0, 1), then Z Z Z2 2 obeys a chi-square distribution with degrees of freedom BD 36; CC 183; SS 150 IV 7

8 Portmanteau Test: II hence, under null hypothesis {X t } IID(µ, 2 ), hx Q(h) n 1/2ˆ 2 hx X (j) = n ˆ 2 X (j) should obey a j=1 2 h distribution j=1 Q(h) will be large under alternative hypotheses, so can reject null hypothesis at level of significance if Q(h) > 2 1 (h), where 2 1 (h) is (1 )th quantile of 2 h distribution refinement is Ljung Box version of portmanteau test: hx ˆ 2 Q LB (h) = n(n + 2) X (j) n j (obeys j=1 2 h distribution to better approximation than Q(h) does) BD 36; CC 183; SS 150 IV 8

9 Portmanteau Test: III if we want to test residuals {r t } rather than a time series {x t }, then hx ˆ 2 Q LB (h) = n(n + 2) R (j) n j j=1 has the same form as before, but now obeys a 2 h p distribution, where p is the number of parameters estimated in forming {r t } as examples, let s look at Q LB (h) for all-star game time series {x t } and Lake Huron residuals {z t }, for which p = 3 arguably (have estimated intercept, slope and the AR(1) parameter ) will focus on tests with level = 0.05 red horizontal lines show (h p) blue dots show Q LB (h) CC 183, SS 150 IV 9

10 Q LB (h) and 95% quantile Portmanteau Tests of All-Star Game {x t } h (lag) IV 10

11 p values p-values for Portmanteau Tests of All-Star Game {x t } h (lag) IV 11

12 Q LB (h) and 95% quantile Portmanteau Tests of Lake Huron {z t } h (lag) IV 12

13 p values p-values for Portmanteau Tests of Lake Huron {z t } h (lag) IV 13

14 Turning Point Test: I time series {x t } is said to have a turning point at t if one of the following two patterns exist: 1. x t > x t 1 and x t > x t+1 2. x t < x t 1 and x t < x t+1 if X t 1, X t and X t+1 are IID RVs with a continuous distribution, the following six events are equally likely: X t 1 < X t < X t+1 (no turning point) X t 1 < X t+1 < X t (turning point) X t < X t 1 < X t+1 (turning point) X t < X t+1 < X t 1 (turning point) X t+1 < X t 1 < X t (turning point) X t+1 < X t < X t 1 (no turning point) BD 36, 37 IV 14

15 Turning Point Test: II let T be number of turning points in IID sequence of length n since probability of a turning point is 2/3 under IID hypothesis, µ T E{T } = 2(n 2)/3 can show that, under IID hypothesis, 2 16n 29 T var {T } = 90 large T µ T indicates time series is either fluctuating more rapidly than what would be expected from an IID sequence or there are fewer fluctuations than expected under IID hypothesis, T is approximately N (µ T, 2 T ), so can reject null at level if T µ T / T > 1 /2, where 1 /2 is 1 /2 quantile for standard normal distribution BD 36, 37 IV 15

16 Turning Point Test: III note: cannot apply to all-star {x t } (has a discrete distribution) as example, T = 60 for Lake Huron {z t } (see next overhead) since n = 97, get µ T. = 63.3 and 2 T. = 16.9 ( T. = 4.1), so T µ T T. = 0.81 p-value is 0.42, so fail to reject null hypothesis BD 36, 37 IV 16

17 AR(1) Residuals z t = r t ˆrt 1 z t year IV 17

18 Di erence-sign Test: I let S be the number of times X t > X t 1, t = 2,..., n (equivalent to number of times X t X t 1 is positive) if {X t } is IID, then µ S E{S} = (n 1)/2 can shown that 2 S var {S} = (n + 1)/12 S is approximately equal in distribution to a N (µ S, for large n 2 S ) RV large positive (negative) value of S µ S indicates presence of increasing (decreasing) trend (doesn t have power against alternative of cyclic variations) reject null hypothesis at level if S µ S / S > 1 /2 BD 37 IV 18

19 Di erence-sign Test: II note: cannot apply to all-star {x t } (has a discrete distribution) as example, S = 48 for Lake Huron {z t } (see next overhead).. since n = 97, get µ S = 48 and = 8.2 ( S = 2.9), so 2 S S µ S S = 0 p-value is 1, so totally fail to reject null hypothesis!!! BD 37 IV 19

20 AR(1) Residuals z t = r t ˆrt 1 z t year IV 20

21 Rank Test: I given time series of length n, let P be the pairs (r, s) such that X r > X s and r > s total number of pairs such that r > s is n n(n 1) = 2 2 if {X t } is IID, each event of form X r > X s has probability of 1/2, so µ P E{P } = n(n 1)/4 can shown that 2 P var {P } = n(n 1)(2n + 5)/72 P is approximately equal in distribution to a N (µ P, for large n large positive (negative) value of P increasing (decreasing) trend 2 P ) RV µ P indicates presence of BD 37, 38 IV 21

22 Rank Test: II reject null hypothesis at level if P µ P / P > 1 /2 note: cannot apply to all-star {x t } (has a discrete distribution) as example, P = 2351 for Lake Huron {z t } since n = 97, get µ P = 2328 and P 2.. = ( P = 160.4), so P µ P. = 0.14 p-value is 0.89, so again fail to reject null hypothesis P BD 37 IV 22

23 test designed for Runs Test: I binary-valued {x t } (will assume x t is either 1 or 1) continuous-valued {x t }, with centering allowed; i.e., {x t where, e.g., c = x is sample mean of x t s residuals {r t } (sample mean r should be close to 0) run is defined to be set of consecutive values in series, all of which are above or below zero as an example, here is pattern of American League and National League victories over 78 years in all-star {x t }: c}, AAANANANAAANAAAANNNNANNAANNNNNNNNNNNNANNNNNNNNNNNANNANAAAAAANNNAAAAAAAAAAAANNN above has a total of 24 runs (12 each for both leagues) CC 46; SS 149 IV 23

24 Runs Test: II runs test is based on number of runs in series, conditional on number of observed values above and below zero (test does not require underlying probability of value being greater than zero to be 50%) let n + and n denote number of, respectively, positive and negative values in series (thus n + + n = n) let n r be number of runs under null hypothesis of IID, n r is approximately normally distributed with mean µ and variance 2 given by µ = 2n +n n + 1 and 2 = (µ 1)(µ 2) n 1 CC 46; SS 149 IV 24

25 Runs Test: III large positive (negative) value of n r µ indicates excessive choppiness (too much clumpiness) compared to what is reasonable under null hypothesis of IID reject null hypothesis at level if n r µ / > 1 /2 using all-star {x t } as example, n r = 24, n + = 36 & n = 42 get µ. = 39.8 and 2. = 19.0 (. = 4.4), so n r µ. = 3.6 p-value is , so null hypothesis is not tenable CC 46; SS 149 IV 25

26 Runs Test: IV for Lake Huron {z t }, have n r = 37, n + = 51 & n = 46 get µ = and 2.. = 23.9 ( = 4.9), so n r µ. = 2.5 p-value is 0.011, so would reject null hypothesis at = 0.05 level of significance, but would fail to reject (just barely!) at more stringent = 0.01 level number of runs smaller than to be expected, suggesting clumpiness in data (agrees with positive correlation at unit lag) CC 46; SS 149 IV 26

27 Testing for IID Noise/White Noise: III summary of IID tests for all-star {x t } informal test based on sample ACF: IID hypothesis untenable both ˆ X (1) & ˆ X (2) well outside bounds reasonable for IID noise portmanteau test: reject resoundingly for h = 1,..., 10 turning point test: inapplicable di erence-sign test: inapplicable rank test: inapplicable runs test: reject (p-value is ) conclusion: IID hypothesis for all-star {z t } untenable action item: bet on National League in 2013! IV 27

28 Testing for IID Noise/White Noise: IV summary of IID tests for Lake Huron {z t } informal test based on sample ACF: IID hypothesis seems tenable, but ˆ (1) outside of 95% CI portmanteau test: fail to reject at level = 0.5 for h 4 turning point test: fail to reject (p-value is 0.42) di erence-sign test: fail to reject (p-value is 1(!)) rank test: fail to reject (p-value is 0.89) runs test: reject (p-value is 0.011) IID hypothesis for Lake Huron z t s thus tenable, but some evidence for small but significant autocorrelation at least at lag h = 1 IV 28

29 Testing for IID Noise/White Noise: V not clear how to combine results of tests together (multiple comparison problem) need to keep in mind various tests have di ering strengths and weaknesses against particular alternative hypotheses two other tests: informal test based on fitting AR models (will discuss later) cumulative periodogram test (will discuss in Stat/EE 520) IV 29

Testing for IID Noise/White Noise: I

Testing for IID Noise/White Noise: I Testing for IID Noise/White Noise: I want to be able to test null hypothesis that time series {x t } or set of residuals {r t } is IID(0, σ 2 ) or WN(0, σ 2 ) many such tests exist, including informal

More information

DATA IN SERIES AND TIME I. Several different techniques depending on data and what one wants to do

DATA IN SERIES AND TIME I. Several different techniques depending on data and what one wants to do DATA IN SERIES AND TIME I Several different techniques depending on data and what one wants to do Data can be a series of events scaled to time or not scaled to time (scaled to space or just occurrence)

More information

Lesson 8: Testing for IID Hypothesis with the correlogram

Lesson 8: Testing for IID Hypothesis with the correlogram Lesson 8: Testing for IID Hypothesis with the correlogram Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Testing for i.i.d. Hypothesis

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis

CHAPTER 8 MODEL DIAGNOSTICS. 8.1 Residual Analysis CHAPTER 8 MODEL DIAGNOSTICS We have now discussed methods for specifying models and for efficiently estimating the parameters in those models. Model diagnostics, or model criticism, is concerned with testing

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

Part II. Time Series

Part II. Time Series Part II Time Series 12 Introduction This Part is mainly a summary of the book of Brockwell and Davis (2002). Additionally the textbook Shumway and Stoffer (2010) can be recommended. 1 Our purpose is to

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Chapter 8: Model Diagnostics

Chapter 8: Model Diagnostics Chapter 8: Model Diagnostics Model diagnostics involve checking how well the model fits. If the model fits poorly, we consider changing the specification of the model. A major tool of model diagnostics

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Classical Decomposition Model Revisited: I

Classical Decomposition Model Revisited: I Classical Decomposition Model Revisited: I recall classical decomposition model for time series Y t, namely, Y t = m t + s t + W t, where m t is trend; s t is periodic with known period s (i.e., s t s

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION FOR SAMPLE OF RAW DATA (E.G. 4, 1, 7, 5, 11, 6, 9, 7, 11, 5, 4, 7) BE ABLE TO COMPUTE MEAN G / STANDARD DEVIATION MEDIAN AND QUARTILES Σ ( Σ) / 1 GROUPED DATA E.G. AGE FREQ. 0-9 53 10-19 4...... 80-89

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Comment about AR spectral estimation Usually an estimate is produced by computing the AR theoretical spectrum at (ˆφ, ˆσ 2 ). With our Monte Carlo

Comment about AR spectral estimation Usually an estimate is produced by computing the AR theoretical spectrum at (ˆφ, ˆσ 2 ). With our Monte Carlo Comment aout AR spectral estimation Usually an estimate is produced y computing the AR theoretical spectrum at (ˆφ, ˆσ 2 ). With our Monte Carlo simulation approach, for every draw (φ,σ 2 ), we can compute

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

Problem set 1 - Solutions

Problem set 1 - Solutions EMPIRICAL FINANCE AND FINANCIAL ECONOMETRICS - MODULE (8448) Problem set 1 - Solutions Exercise 1 -Solutions 1. The correct answer is (a). In fact, the process generating daily prices is usually assumed

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS THE ROYAL STATISTICAL SOCIETY 008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

Ch. 1: Data and Distributions

Ch. 1: Data and Distributions Ch. 1: Data and Distributions Populations vs. Samples How to graphically display data Histograms, dot plots, stem plots, etc Helps to show how samples are distributed Distributions of both continuous and

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Chapter 10: Inferences based on two samples

Chapter 10: Inferences based on two samples November 16 th, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba B.N.Bandodkar College of Science, Thane Random-Number Generation Mrs M.J.Gholba Properties of Random Numbers A sequence of random numbers, R, R,., must have two important statistical properties, uniformity

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Can you tell the relationship between students SAT scores and their college grades?

Can you tell the relationship between students SAT scores and their college grades? Correlation One Challenge Can you tell the relationship between students SAT scores and their college grades? A: The higher SAT scores are, the better GPA may be. B: The higher SAT scores are, the lower

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Financial Econometrics and Quantitative Risk Managenent Return Properties

Financial Econometrics and Quantitative Risk Managenent Return Properties Financial Econometrics and Quantitative Risk Managenent Return Properties Eric Zivot Updated: April 1, 2013 Lecture Outline Course introduction Return definitions Empirical properties of returns Reading

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

Analysis of Violent Crime in Los Angeles County

Analysis of Violent Crime in Los Angeles County Analysis of Violent Crime in Los Angeles County Xiaohong Huang UID: 004693375 March 20, 2017 Abstract Violent crime can have a negative impact to the victims and the neighborhoods. It can affect people

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8]

Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] 1 Multivariate Time Series Analysis and Its Applications [Tsay (2005), chapter 8] Insights: Price movements in one market can spread easily and instantly to another market [economic globalization and internet

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Systems Simulation Chapter 7: Random-Number Generation

Systems Simulation Chapter 7: Random-Number Generation Systems Simulation Chapter 7: Random-Number Generation Fatih Cavdur fatihcavdur@uludag.edu.tr April 22, 2014 Introduction Introduction Random Numbers (RNs) are a necessary basic ingredient in the simulation

More information

Swarthmore Honors Exam 2012: Statistics

Swarthmore Honors Exam 2012: Statistics Swarthmore Honors Exam 2012: Statistics 1 Swarthmore Honors Exam 2012: Statistics John W. Emerson, Yale University NAME: Instructions: This is a closed-book three-hour exam having six questions. You may

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

Lecture 7: Hypothesis Testing and ANOVA

Lecture 7: Hypothesis Testing and ANOVA Lecture 7: Hypothesis Testing and ANOVA Goals Overview of key elements of hypothesis testing Review of common one and two sample tests Introduction to ANOVA Hypothesis Testing The intent of hypothesis

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

4/22/2010. Test 3 Review ANOVA

4/22/2010. Test 3 Review ANOVA Test 3 Review ANOVA 1 School recruiter wants to examine if there are difference between students at different class ranks in their reported intensity of school spirit. What is the factor? How many levels

More information

White Noise Processes (Section 6.2)

White Noise Processes (Section 6.2) White Noise Processes (Section 6.) Recall that covariance stationary processes are time series, y t, such. E(y t ) = µ for all t. Var(y t ) = σ for all t, σ < 3. Cov(y t,y t-τ ) = γ(τ) for all t and τ

More information

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments The hypothesis testing framework The two-sample t-test Checking assumptions, validity Comparing more that

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Wavelet Methods for Time Series Analysis. Part IX: Wavelet-Based Bootstrapping

Wavelet Methods for Time Series Analysis. Part IX: Wavelet-Based Bootstrapping Wavelet Methods for Time Series Analysis Part IX: Wavelet-Based Bootstrapping start with some background on bootstrapping and its rationale describe adjustments to the bootstrap that allow it to work with

More information

Multivariate Time Series: Part 4

Multivariate Time Series: Part 4 Multivariate Time Series: Part 4 Cointegration Gerald P. Dwyer Clemson University March 2016 Outline 1 Multivariate Time Series: Part 4 Cointegration Engle-Granger Test for Cointegration Johansen Test

More information

Wavelet Methods for Time Series Analysis. Motivating Question

Wavelet Methods for Time Series Analysis. Motivating Question Wavelet Methods for Time Series Analysis Part VII: Wavelet-Based Bootstrapping start with some background on bootstrapping and its rationale describe adjustments to the bootstrap that allow it to work

More information

Differencing Revisited: I ARIMA(p,d,q) processes predicated on notion of dth order differencing of a time series {X t }: for d = 1 and 2, have X t

Differencing Revisited: I ARIMA(p,d,q) processes predicated on notion of dth order differencing of a time series {X t }: for d = 1 and 2, have X t Differencing Revisited: I ARIMA(p,d,q) processes predicated on notion of dth order differencing of a time series {X t }: for d = 1 and 2, have X t 2 X t def in general = (1 B)X t = X t X t 1 def = ( X

More information

UNIT 5:Random number generation And Variation Generation

UNIT 5:Random number generation And Variation Generation UNIT 5:Random number generation And Variation Generation RANDOM-NUMBER GENERATION Random numbers are a necessary basic ingredient in the simulation of almost all discrete systems. Most computer languages

More information

Leftovers. Morris. University Farm. University Farm. Morris. yield

Leftovers. Morris. University Farm. University Farm. Morris. yield Leftovers SI 544 Lada Adamic 1 Trellis graphics Trebi Wisconsin No. 38 No. 457 Glabron Peatland Velvet No. 475 Manchuria No. 462 Svansota Trebi Wisconsin No. 38 No. 457 Glabron Peatland Velvet No. 475

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 1. ibm data: The random walk model of first differences is chosen to be the suggest model of ibm data. That is (1 B)Y t = e t where e t is a mean

More information

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay Solutions to Homework Assignment #4 May 9, 2003 Each HW problem is 10 points throughout this

More information

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2 Review 6 Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected ) A researcher finds that of,000 people who said that

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

Practical Meta-Analysis -- Lipsey & Wilson

Practical Meta-Analysis -- Lipsey & Wilson Overview of Meta-Analytic Data Analysis Transformations, Adjustments and Outliers The Inverse Variance Weight The Mean Effect Size and Associated Statistics Homogeneity Analysis Fixed Effects Analysis

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulation Modeling and Performance Analysis with Discrete-Event Simulation Chapter 9 Input Modeling Contents Data Collection Identifying the Distribution with Data Parameter Estimation Goodness-of-Fit

More information

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests PSY 307 Statistics for the Behavioral Sciences Chapter 20 Tests for Ranked Data, Choosing Statistical Tests What To Do with Non-normal Distributions Tranformations (pg 382): The shape of the distribution

More information

Simple linear regression

Simple linear regression Simple linear regression Biometry 755 Spring 2008 Simple linear regression p. 1/40 Overview of regression analysis Evaluate relationship between one or more independent variables (X 1,...,X k ) and a single

More information

1 Introduction to One-way ANOVA

1 Introduction to One-way ANOVA Review Source: Chapter 10 - Analysis of Variance (ANOVA). Example Data Source: Example problem 10.1 (dataset: exp10-1.mtw) Link to Data: http://www.auburn.edu/~carpedm/courses/stat3610/textbookdata/minitab/

More information

Exam details. Final Review Session. Things to Review

Exam details. Final Review Session. Things to Review Exam details Final Review Session Short answer, similar to book problems Formulae and tables will be given You CAN use a calculator Date and Time: Dec. 7, 006, 1-1:30 pm Location: Osborne Centre, Unit

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 8 Input Modeling Purpose & Overview Input models provide the driving force for a simulation model. The quality of the output is no better than the quality

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

Chapter 8 Heteroskedasticity

Chapter 8 Heteroskedasticity Chapter 8 Walter R. Paczkowski Rutgers University Page 1 Chapter Contents 8.1 The Nature of 8. Detecting 8.3 -Consistent Standard Errors 8.4 Generalized Least Squares: Known Form of Variance 8.5 Generalized

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 28. SIMPLE LINEAR REGRESSION III Fitted Values and Residuals To each observed x i, there corresponds a y-value on the fitted line, y = βˆ + βˆ x. The are called fitted values. ŷ i They are the values of

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Collection of Formulae and Statistical Tables for the B2-Econometrics and B3-Time Series Analysis courses and exams

Collection of Formulae and Statistical Tables for the B2-Econometrics and B3-Time Series Analysis courses and exams Collection of Formulae and Statistical Tables for the B2-Econometrics and B3-Time Series Analysis courses and exams Lars Forsberg Uppsala University Spring 2015 Abstract This collection of formulae is

More information