Facial reduction for Euclidean distance matrix problems

Size: px
Start display at page:

Download "Facial reduction for Euclidean distance matrix problems"

Transcription

1 Facial reduction for Euclidean distance matrix problems Nathan Krislock Department of Mathematical Sciences Northern Illinois University, USA Distance Geometry: Theory and Applications DIMACS Center, Rutgers University, USA July 26, 2016 Joint work with Dmitriy Drusvyatskiy (University of Washington), Yuen-Lam Voronin (University of Colorado), and Henry Wolkowicz (University of Waterloo) Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

2 Outline 1 Euclidean Distance Matrices 2 Facial Reduction 3 Facial Reduction for EDM Completion 4 Noisy EDM Completion Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

3 Outline 1 Euclidean Distance Matrices 2 Facial Reduction 3 Facial Reduction for EDM Completion 4 Noisy EDM Completion Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

4 Sensor Network Localization n = 100, m = 9, R = 2 Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

5 Protein Structure Determination Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

6 Euclidean Distance Matrices Euclidean distance matrices (EDMs) An n n matrix D is an EDM if The embedding dimension of D: E n = the set of all n n EDMs EDM completion p 1,..., p n R k : D ij = p i p j 2 2 (1) dim(d) = min{k : (1) holds} find D E n such that D ij = D ij, ij E dim(d) k Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

7 Euclidean Distance Matrices EDMs and semidefinite matrices Let p 1,..., p n R k and D be their EDM Let Y S n be the Gram matrix: Y ij = p i, p j, ij Then Y is a semidefinite matrix: Y S n + Therefore: K(S n +) = E n D ij = p i p j 2 2 = p i, p i 2 p i, p j + p j, p j = Y ii 2Y ij + Y jj =: K(Y ) ij Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

8 Euclidean Distance Matrices Translation invariant: D = D but Y Y D = K(Y ) D = K(Y ) Centered matrices: S n c := {Y S n : Ye = 0}, e = [ 1 1 ] T K : S n + S n c E n is a linear bijection whose inverse is given by K (D) = 1 2 J offdiag(d)j, J = I 1 n eet If D E n, then dim(d) = rank(k (D)) Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

9 Euclidean Distance Matrices EDM completion find Y S+ n Sc n such that K(Y ) ij = D ij, ij E rank(y ) k non-convex and NP-hard Semidefinite relaxation find Y S+ n Sc n such that K(Y ) ij = D ij, ij E convex and solvable in polynomial-time by an interior-point method only problems of small size can be solved efficiently highly degenerate: not strictly feasible facial reduction a much smaller equivalent problem Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

10 Outline 1 Euclidean Distance Matrices 2 Facial Reduction 3 Facial Reduction for EDM Completion 4 Noisy EDM Completion Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

11 Facial Reduction Face of a convex cone K We say a convex cone F K is a face of K (denoted F K) if x, y F whenever x, y K and 1 (x + y) F 2 The minimal face of K containing S K is face(s) := F S F K We say that F K is exposed if there exists φ such that F = K {φ} Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

12 Facial Reduction A simple example minimize 2x 1 + 6x 2 x 3 2x 4 subject to x 1 + x 2 + x 3 + x 4 = 1 x 1 x 2 x 3 = -1 x 1, x 2, x 3, x 4 0 Summing the constraints: 2x 1 + x 4 = 0 x 1 = x 4 = 0 Restrict problem to the face { x R 4 + : x 1 = x 4 = 0 } minimize 6x 2 x 3 subject to x 2 + x 3 = 1 x 2, x 3 0 Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

13 Facial Reduction Linear programming (LP) minimize subject to c T x Ax = b x R n + Certificate of non-strict feasibility Suppose y R m such that 0 A T y 0 and b T y = 0 If Ax = b and x 0, then y T Ax = y T b = (A T y) T x = 0 = x i = 0, i supp(a T y) Therefore, the feasible set of (LP) is contained in the face { } R n + {A T y} = x R n + : x i = 0, i supp(a T y) Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

14 Facial Reduction Semidefinite programming (SDP) minimize C, X subject to AX = b X S+ n Certificate of non-strict feasibility Suppose y R m such that 0 A y 0 and b T y = 0 If AX = b and X 0, then y T AX = y T b = A y, X = 0 = X (A y) = (A y)x = 0 Therefore, the feasible set of (SDP) is contained in the face S+ n {A y} = { X S+ n : range(x ) null(a y) } Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

15 Facial Reduction Faces of the semidefinite cone Let Q = [ U V ] R n n be orthogonal and F := { X S+ n : range(x ) range(u) } S+. n Then F = US k +U T. Semidefinite facial reduction [Borwein & Wolkowicz (1981)] { X S n + : A i, X = b i, i } US k +U T Then substituting X = UZU T, (SDP) is equivalent to: minimize C, UZU T subject to A i, UZU T = b i, i Z S+ k Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

16 Facial Reduction Faces of the semidefinite cone Let Q = [ U V ] R n n be orthogonal and F := { X S+ n : range(x ) range(u) } S+. n Then F = US k +U T. Semidefinite facial reduction [Borwein & Wolkowicz (1981)] { X S n + : A i, X = b i, i } US k +U T Then substituting X = UZU T, (SDP) is equivalent to: minimize U T CU, Z subject to U T A i U, Z = b i, i Z S+ k Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

17 Outline 1 Euclidean Distance Matrices 2 Facial Reduction 3 Facial Reduction for EDM Completion 4 Noisy EDM Completion Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

18 Facial Reduction for EDM Completion Theorem: Facial reduction for EDM [K. & Wolkowicz (2010)] Let D E p with dim(d) = k, F := { Y S n + S n c : K(Y ) ij = D ij, i, j = 1,..., p }, the columns of Ū Rp (k+1) form a basis for range ([ K (D) [Ū ] 0 U :=. 0 I n p e ]), and Then face(f) = ( US n p+k+1 + U T ) S n c. Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

19 Facial Reduction for EDM Completion Theorem: Constraint reduction [K. & Wolkowicz (2010)] Let D E p with dim(d) = k, F := { Y S n + S n c : K(Y ) ij = D ij, i, j = 1,..., p }, and U be defined as in the previous theorem. Let β {1,..., p} such that dim(d[β, β]) = k. Then F = { ( ) } Y US n p+k+1 + U T Sc n : K(Y ) ij = D ij, i, j β. Example : n = 1000, p = 100, β = 3 variables : , constraints : Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

20 Facial Reduction for EDM Completion Algorithm for computing the face F := { Y S n + S n c : K(Y ) ij = D ij, ij E } Find some cliques α i in the graph ( ) Let F i := U i S n α i +t i +1 + Ui T Sc n be the corresponding faces Compute U R n (t+1) full column rank such that range(u) = i range(u i ) Then: F ( US t+1 + UT ) S n c Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

21 Facial Reduction for EDM Completion Protein structure determination Protein 2L30 from the PDB 393 cliques: 269 2D D SDP size: equality constraints: Babak Alipanahi, Nathan Krislock, Ali Ghodsi, Henry Wolkowicz, Logan Donaldson, and Ming Li. (2012) Determining protein structures from NOESY distance constraints by semidefinite programming. Journal of Computational Biology. Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

22 Facial Reduction for EDM Completion Theorem: EDM completion [K. & Wolkowicz (2010)] Let D be a partial EDM and F := { Y S n + S n c : K(Y ) ij = D ij, ij E } F ( US t+1 + UT ) S n c = (UV )S t +(UV ) T If Ȳ F and β is a clique with dim(d[β, β]) = t, then: Ȳ = (UV ) Z(UV ) T, where Z is the unique solution of (JU[β, :]V )Z(JU[β, :]V ) T = K (D[β]) D := K( P P T ) E n is the unique completion of D, where P := UV Z 1/2 R n t Note: In this case, an SDP solver is not required. Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

23 Facial Reduction for EDM Completion Face representation approach n R Time RMSD (%R) s 2e s 7e m 53 s 5e m 46 s 8e-7 Point representation approach n R Time RMSD (%R) s 1e s 3e m 27 s 6e m 55 s 9e-12 Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

24 Outline 1 Euclidean Distance Matrices 2 Facial Reduction 3 Facial Reduction for EDM Completion 4 Noisy EDM Completion Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

25 Noisy EDM Completion Multiplicative noise model d ij = p i p j 2 (1 + σε ij ), for all ij E ε ij is normally distributed with mean 0 and standard deviation 1 σ 0 is the noise factor D ij = d 2 ij Point representation approach (no refinement used) n σ R Time RMSD (%R) e s e s e s 500 Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

26 Noisy EDM Completion Exposing vector representation of faces Recall we had faces in primal form: ( F i = U i S n α i +t i +1 + Ui T ) S n c The exposing vector Φ i for the face F i gives a dual representation: F i = S n + {Φ i } The intersection of the faces can be easily computed by F := i { } F i = S+ n Φ i i Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

27 Noisy EDM Completion Exposing Vector Algorithm For each clique α Y α := nearest pos. semidef. rank-r matrix to K (D[α, α]) Φ α := exposing vector of face({y α }) extended to S n by adding zeros Φ := nearest pos. semidef. rank-(n r 1) matrix to α Φ α Let U R n r, such that U T e = 0, be eigenvectors of Φ for the smallest r eigenvalues { } Solve min ij E K(UZUT ) ij D ij 2 : Z S+ r Return P = UZ 1/2 Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

28 Noisy EDM Completion Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

29 Noisy EDM Completion Exposing Vector Algorithm + Refinement (10% anchors) Specifications Time RMSD (%R) n σ R initial refine initial refine s 0.1 s s 2 s s 2 s s 2 s s 0.3 s s 6 s s 6 s s 6 s s 14 s s 20 s s 44 s Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

30 Summary EDM problems are highly degenerate due to non-strict-feasibility Facial reduction is a powerful technique for taking advantage of this degeneracy The exposing vector approach is a very effective approach for noisy EDM problems Nathan Krislock (NIU) Facial reduction for EDM problems DGTA / 29

Semidefinite Facial Reduction for Euclidean Distance Matrix Completion

Semidefinite Facial Reduction for Euclidean Distance Matrix Completion Semidefinite Facial Reduction for Euclidean Distance Matrix Completion Nathan Krislock, Henry Wolkowicz Department of Combinatorics & Optimization University of Waterloo First Alpen-Adria Workshop on Optimization

More information

Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions

Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions Explicit Sensor Network Localization using Semidefinite Programming and Clique Reductions Nathan Krislock and Henry Wolkowicz Dept. of Combinatorics and Optimization University of Waterloo Haifa Matrix

More information

Facial Reduction for Cone Optimization

Facial Reduction for Cone Optimization Facial Reduction for Cone Optimization Henry Wolkowicz Dept. Combinatorics and Optimization University of Waterloo Tuesday Apr. 21, 2015 (with: Drusvyatskiy, Krislock, (Cheung) Voronin) Motivation: Loss

More information

c 2017 Society for Industrial and Applied Mathematics

c 2017 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 27, No. 4, pp. 2301 2331 c 2017 Society for Industrial and Applied Mathematics NOISY EUCLIDEAN DISTANCE REALIZATION: ROBUST FACIAL REDUCTION AND THE PARETO FRONTIER D. DRUSVYATSKIY,

More information

Explicit Sensor Network Localization using Semidefinite Programming and Facial Reduction

Explicit Sensor Network Localization using Semidefinite Programming and Facial Reduction Explicit Sensor Network Localization using Semidefinite Programming and Facial Reduction Nathan Krislock and Henry Wolkowicz Dept. of Combinatorics and Optimization University of Waterloo INFORMS, San

More information

The Graph Realization Problem

The Graph Realization Problem The Graph Realization Problem via Semi-Definite Programming A. Y. Alfakih alfakih@uwindsor.ca Mathematics and Statistics University of Windsor The Graph Realization Problem p.1/21 The Graph Realization

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

Facial Reduction in Cone Optimization with Applications to Matrix Completions

Facial Reduction in Cone Optimization with Applications to Matrix Completions 1 Facial Reduction in Cone Optimization with Applications to Matrix Completions Henry Wolkowicz Dept. Combinatorics and Optimization, University of Waterloo, Canada Wed. July 27, 2016, 2-3:20 PM at: DIMACS

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization Yichuan Ding Nathan Krislock Jiawei Qian Henry Wolkowicz October 27, 2008 University of Waterloo Department of

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Theory and Applications of Degeneracy in Cone Optimization

Theory and Applications of Degeneracy in Cone Optimization Theory and Applications of Degeneracy in Cone Optimization Henry Wolkowicz Dept. of Combinatorics and Optimization University of Waterloo Colloquium at: Dept. of Math. & Stats, Sept. 24 Outline Part I:

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Singularity Degree of the Positive Semidefinite Matrix Completion Problem

Singularity Degree of the Positive Semidefinite Matrix Completion Problem Singularity Degree of the Positive Semidefinite Matrix Completion Problem Shin-ichi Tanigawa November 8, 2016 arxiv:1603.09586v2 [math.oc] 4 Nov 2016 Abstract The singularity degree of a semidefinite programming

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Positive semidefinite rank

Positive semidefinite rank 1/15 Positive semidefinite rank Hamza Fawzi (MIT, LIDS) Joint work with João Gouveia (Coimbra), Pablo Parrilo (MIT), Richard Robinson (Microsoft), James Saunderson (Monash), Rekha Thomas (UW) DIMACS Workshop

More information

A Unified Theorem on SDP Rank Reduction. yyye

A Unified Theorem on SDP Rank Reduction.   yyye SDP Rank Reduction Yinyu Ye, EURO XXII 1 A Unified Theorem on SDP Rank Reduction Yinyu Ye Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering Stanford

More information

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations

A notion of Total Dual Integrality for Convex, Semidefinite and Extended Formulations A notion of for Convex, Semidefinite and Extended Formulations Marcel de Carli Silva Levent Tunçel April 26, 2018 A vector in R n is integral if each of its components is an integer, A vector in R n is

More information

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization

Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Sparse Optimization Lecture: Dual Certificate in l 1 Minimization Instructor: Wotao Yin July 2013 Note scriber: Zheng Sun Those who complete this lecture will know what is a dual certificate for l 1 minimization

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems

A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems Gábor Pataki gabor@unc.edu Dept. of Statistics and OR University of North Carolina at Chapel Hill Abstract The Facial Reduction

More information

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview.

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview. Research overview Lehigh University Department of Industrial & Systems Engineering COR@L Seminar September 4, 2008 1 Duality without regularity condition Duality in non-exact arithmetic 2 interior point

More information

Low-Rank Matrix Completion using Nuclear Norm with Facial Reduction

Low-Rank Matrix Completion using Nuclear Norm with Facial Reduction 1 2 3 4 Low-Rank Matrix Completion using Nuclear Norm with Facial Reduction Shimeng Huang Henry Wolkowicz Sunday 14 th August, 2016, 17:43 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

More information

On the local stability of semidefinite relaxations

On the local stability of semidefinite relaxations On the local stability of semidefinite relaxations Diego Cifuentes Department of Mathematics Massachusetts Institute of Technology Joint work with Sameer Agarwal (Google), Pablo Parrilo (MIT), Rekha Thomas

More information

Approximate Farkas Lemmas in Convex Optimization

Approximate Farkas Lemmas in Convex Optimization Approximate Farkas Lemmas in Convex Optimization Imre McMaster University Advanced Optimization Lab AdvOL Graduate Student Seminar October 25, 2004 1 Exact Farkas Lemma Motivation 2 3 Future plans The

More information

On SDP and ESDP Relaxation of Sensor Network Localization

On SDP and ESDP Relaxation of Sensor Network Localization On SDP and ESDP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle Southern California Optimization Day, UCSD March 19, 2009 (joint work with Ting Kei Pong)

More information

Optimal Value Function Methods in Numerical Optimization Level Set Methods

Optimal Value Function Methods in Numerical Optimization Level Set Methods Optimal Value Function Methods in Numerical Optimization Level Set Methods James V Burke Mathematics, University of Washington, (jvburke@uw.edu) Joint work with Aravkin (UW), Drusvyatskiy (UW), Friedlander

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Protein Structure by Semidefinite Facial Reduction

Protein Structure by Semidefinite Facial Reduction Protein Structure by Semidefinite Facial Reduction Babak Alipanahi 1, Nathan Krislock 2, Ali Ghodsi 3, Henry Wolkowicz 4, Logan Donaldson 5, and Ming Li 1 1 David R. Cheriton School of Computer Science,

More information

Spherical Euclidean Distance Embedding of a Graph

Spherical Euclidean Distance Embedding of a Graph Spherical Euclidean Distance Embedding of a Graph Hou-Duo Qi University of Southampton Presented at Isaac Newton Institute Polynomial Optimization August 9, 2013 Spherical Embedding Problem The Problem:

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

SOCP Relaxation of Sensor Network Localization

SOCP Relaxation of Sensor Network Localization SOCP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle IWCSN, Simon Fraser University August 19, 2006 Abstract This is a talk given at Int. Workshop on

More information

Applications of Convex Optimization on the Graph Isomorphism problem

Applications of Convex Optimization on the Graph Isomorphism problem Applications of Convex Optimization on the Graph Isomorphism problem 1 1 Department of Information and Computer Sciences UC Irvine March 8, 2011 Outline Motivation 1 Motivation The Graph Isomorphism problem

More information

Deterministic Methods for Detecting Redundant Linear. Constraints in Semidefinite Programming

Deterministic Methods for Detecting Redundant Linear. Constraints in Semidefinite Programming Deterministic Methods for Detecting Redundant Linear Constraints in Semidefinite Programming Daniel Stover Department of Mathematics and Statistics Northen Arizona University,Flagstaff, AZ 86001. July

More information

Distance Geometry-Matrix Completion

Distance Geometry-Matrix Completion Christos Konaxis Algs in Struct BioInfo 2010 Outline Outline Tertiary structure Incomplete data Tertiary structure Measure diffrence of matched sets Def. Root Mean Square Deviation RMSD = 1 n x i y i 2,

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u)

1 T 1 = where 1 is the all-ones vector. For the upper bound, let v 1 be the eigenvector corresponding. u:(u,v) E v 1(u) CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh (rezab@stanford.edu) Final Review Session 03/20/17 1. Let G = (V, E) be an unweighted, undirected graph. Let λ 1 be the maximum eigenvalue

More information

Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach

Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach Frank Permenter Henrik A. Friberg Erling D. Andersen August 18, 216 Abstract We establish connections

More information

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB 1 INTERIOR-POINT METHODS FOR SECOND-ORDER-CONE AND SEMIDEFINITE PROGRAMMING ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB Outline 2 Introduction

More information

Lecture: Introduction to LP, SDP and SOCP

Lecture: Introduction to LP, SDP and SOCP Lecture: Introduction to LP, SDP and SOCP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2015.html wenzw@pku.edu.cn Acknowledgement:

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

Inderjit Dhillon The University of Texas at Austin

Inderjit Dhillon The University of Texas at Austin Inderjit Dhillon The University of Texas at Austin ( Universidad Carlos III de Madrid; 15 th June, 2012) (Based on joint work with J. Brickell, S. Sra, J. Tropp) Introduction 2 / 29 Notion of distance

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

16.1 L.P. Duality Applied to the Minimax Theorem

16.1 L.P. Duality Applied to the Minimax Theorem CS787: Advanced Algorithms Scribe: David Malec and Xiaoyong Chai Lecturer: Shuchi Chawla Topic: Minimax Theorem and Semi-Definite Programming Date: October 22 2007 In this lecture, we first conclude our

More information

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Antonis Papachristodoulou Department of Engineering Science University of Oxford www.eng.ox.ac.uk/control/sysos antonis@eng.ox.ac.uk with

More information

On SDP and ESDP Relaxation of Sensor Network Localization

On SDP and ESDP Relaxation of Sensor Network Localization On SDP and ESDP Relaxation of Sensor Network Localization Paul Tseng Mathematics, University of Washington Seattle IASI, Roma September 16, 2008 (joint work with Ting Kei Pong) ON SDP/ESDP RELAXATION OF

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

New stopping criteria for detecting infeasibility in conic optimization

New stopping criteria for detecting infeasibility in conic optimization Optimization Letters manuscript No. (will be inserted by the editor) New stopping criteria for detecting infeasibility in conic optimization Imre Pólik Tamás Terlaky Received: March 21, 2008/ Accepted:

More information

Global Positioning from Local Distances

Global Positioning from Local Distances Global Positioning from Local Distances Amit Singer Yale University, Department of Mathematics, Program in Applied Mathematics SIAM Annual Meeting, July 2008 Amit Singer (Yale University) San Diego 1 /

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

Chapter 3. Some Applications. 3.1 The Cone of Positive Semidefinite Matrices

Chapter 3. Some Applications. 3.1 The Cone of Positive Semidefinite Matrices Chapter 3 Some Applications Having developed the basic theory of cone programming, it is time to apply it to our actual subject, namely that of semidefinite programming. Indeed, any semidefinite program

More information

1. Introduction. To motivate the discussion, consider an undirected graph G

1. Introduction. To motivate the discussion, consider an undirected graph G COORDINATE SHADOWS OF SEMI-DEFINITE AND EUCLIDEAN DISTANCE MATRICES DMITRIY DRUSVYATSKIY, GÁBOR PATAKI, AND HENRY WOLKOWICZ Abstract. We consider the projected semi-definite and Euclidean distance cones

More information

Copositive Programming and Combinatorial Optimization

Copositive Programming and Combinatorial Optimization Copositive Programming and Combinatorial Optimization Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria joint work with I.M. Bomze (Wien) and F. Jarre (Düsseldorf) IMA

More information

arxiv: v4 [math.oc] 12 Apr 2017

arxiv: v4 [math.oc] 12 Apr 2017 Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming arxiv:1507.00290v4 [math.oc] 12 Apr 2017 Minghui Liu Gábor Pataki April 14, 2017 Abstract In conic

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017

Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017 Additional Exercises for Introduction to Nonlinear Optimization Amir Beck March 16, 2017 Chapter 1 - Mathematical Preliminaries 1.1 Let S R n. (a) Suppose that T is an open set satisfying T S. Prove that

More information

The maximal stable set problem : Copositive programming and Semidefinite Relaxations

The maximal stable set problem : Copositive programming and Semidefinite Relaxations The maximal stable set problem : Copositive programming and Semidefinite Relaxations Kartik Krishnan Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 USA kartis@rpi.edu

More information

On positive duality gaps in semidefinite programming

On positive duality gaps in semidefinite programming On positive duality gaps in semidefinite programming Gábor Pataki June 27, 2018 Abstract Semidefinite programs (SDPs) are optimization problems with linear constraints, and semidefinite matrix variables.

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING

A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING A CONIC DANTZIG-WOLFE DECOMPOSITION APPROACH FOR LARGE SCALE SEMIDEFINITE PROGRAMMING Kartik Krishnan Advanced Optimization Laboratory McMaster University Joint work with Gema Plaza Martinez and Tamás

More information

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information

Semidefinite programs and combinatorial optimization

Semidefinite programs and combinatorial optimization Semidefinite programs and combinatorial optimization Lecture notes by L. Lovász Microsoft Research Redmond, WA 98052 lovasz@microsoft.com http://www.research.microsoft.com/ lovasz Contents 1 Introduction

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Instructor: Farid Alizadeh Scribe: Haengju Lee 10/1/2001 1 Overview We examine the dual of the Fermat-Weber Problem. Next we will

More information

Further Relaxations of the SDP Approach to Sensor Network Localization

Further Relaxations of the SDP Approach to Sensor Network Localization Further Relaxations of the SDP Approach to Sensor Network Localization Zizhuo Wang, Song Zheng, Stephen Boyd, and Yinyu Ye September 27, 2006; Revised May 2, 2007 Abstract Recently, a semi-definite programming

More information

Sparse Matrix Theory and Semidefinite Optimization

Sparse Matrix Theory and Semidefinite Optimization Sparse Matrix Theory and Semidefinite Optimization Lieven Vandenberghe Department of Electrical Engineering University of California, Los Angeles Joint work with Martin S. Andersen and Yifan Sun Third

More information

Localization from Incomplete Noisy Distance Measurements

Localization from Incomplete Noisy Distance Measurements Localization from Incomplete Noisy Distance Measurements Adel Javanmard Department of Electrical Engineering Stanford University Andrea Montanari Department of Electrical Engineering and Department of

More information

Combinatorial Types of Tropical Eigenvector

Combinatorial Types of Tropical Eigenvector Combinatorial Types of Tropical Eigenvector arxiv:1105.55504 Ngoc Mai Tran Department of Statistics, UC Berkeley Joint work with Bernd Sturmfels 2 / 13 Tropical eigenvalues and eigenvectors Max-plus: (R,,

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Convex Optimization and SVM

Convex Optimization and SVM Convex Optimization and SVM Problem 0. Cf lecture notes pages 12 to 18. Problem 1. (i) A slab is an intersection of two half spaces, hence convex. (ii) A wedge is an intersection of two half spaces, hence

More information

Positive semidefinite matrix approximation with a trace constraint

Positive semidefinite matrix approximation with a trace constraint Positive semidefinite matrix approximation with a trace constraint Kouhei Harada August 8, 208 We propose an efficient algorithm to solve positive a semidefinite matrix approximation problem with a trace

More information

III. Applications in convex optimization

III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

More information

Conic Linear Optimization and its Dual. yyye

Conic Linear Optimization and its Dual.   yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #04 1 Conic Linear Optimization and its Dual Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

Universal Rigidity and Edge Sparsification for Sensor Network Localization

Universal Rigidity and Edge Sparsification for Sensor Network Localization Universal Rigidity and Edge Sparsification for Sensor Network Localization Zhisu Zhu Anthony Man Cho So Yinyu Ye September 23, 2009 Abstract Owing to their high accuracy and ease of formulation, there

More information

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Degeneracy in Maximal Clique Decomposition for Semidefinite Programs Raghunathan, A.U.; Knyazev, A. TR2016-040 July 2016 Abstract Exploiting

More information

Theory of semidefinite programming for Sensor Network Localization

Theory of semidefinite programming for Sensor Network Localization Math. Program. Ser. B DOI 10.1007/s10107-006-0040-1 FULL LENGTH PAPER Theory of semidefinite programming for Sensor Network Localization Anthony Man-Cho So Yinyu Ye Received: 22 November 2004 / Accepted:

More information

Euclidean Distance Matrices, Semidefinite Programming, and Sensor Network Localization

Euclidean Distance Matrices, Semidefinite Programming, and Sensor Network Localization Euclidean Distance Matrices, Semidefinite Programming, and Sensor Network Localization Abdo Y. Alfakih Miguel F. Anjos Veronica Piccialli Henry Wolkowicz November 2, 2009 University of Waterloo Department

More information

Convex sets, conic matrix factorizations and conic rank lower bounds

Convex sets, conic matrix factorizations and conic rank lower bounds Convex sets, conic matrix factorizations and conic rank lower bounds Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute

More information

arxiv: v1 [math.oc] 26 Sep 2015

arxiv: v1 [math.oc] 26 Sep 2015 arxiv:1509.08021v1 [math.oc] 26 Sep 2015 Degeneracy in Maximal Clique Decomposition for Semidefinite Programs Arvind U. Raghunathan and Andrew V. Knyazev Mitsubishi Electric Research Laboratories 201 Broadway,

More information

c 2000 Society for Industrial and Applied Mathematics

c 2000 Society for Industrial and Applied Mathematics SIAM J. OPIM. Vol. 10, No. 3, pp. 750 778 c 2000 Society for Industrial and Applied Mathematics CONES OF MARICES AND SUCCESSIVE CONVEX RELAXAIONS OF NONCONVEX SES MASAKAZU KOJIMA AND LEVEN UNÇEL Abstract.

More information

Relations between Semidefinite, Copositive, Semi-infinite and Integer Programming

Relations between Semidefinite, Copositive, Semi-infinite and Integer Programming Relations between Semidefinite, Copositive, Semi-infinite and Integer Programming Author: Faizan Ahmed Supervisor: Dr. Georg Still Master Thesis University of Twente the Netherlands May 2010 Relations

More information

Duality revisited. Javier Peña Convex Optimization /36-725

Duality revisited. Javier Peña Convex Optimization /36-725 Duality revisited Javier Peña Conve Optimization 10-725/36-725 1 Last time: barrier method Main idea: approimate the problem f() + I C () with the barrier problem f() + 1 t φ() tf() + φ() where t > 0 and

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Network Localization via Schatten Quasi-Norm Minimization

Network Localization via Schatten Quasi-Norm Minimization Network Localization via Schatten Quasi-Norm Minimization Anthony Man-Cho So Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong (Joint Work with Senshan Ji Kam-Fung

More information

l p -Norm Constrained Quadratic Programming: Conic Approximation Methods

l p -Norm Constrained Quadratic Programming: Conic Approximation Methods OUTLINE l p -Norm Constrained Quadratic Programming: Conic Approximation Methods Wenxun Xing Department of Mathematical Sciences Tsinghua University, Beijing Email: wxing@math.tsinghua.edu.cn OUTLINE OUTLINE

More information

Copositive Programming and Combinatorial Optimization

Copositive Programming and Combinatorial Optimization Copositive Programming and Combinatorial Optimization Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria joint work with M. Bomze (Wien) and F. Jarre (Düsseldorf) and

More information

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS Sercan Yıldız syildiz@samsi.info in collaboration with Dávid Papp (NCSU) OPT Transition Workshop May 02, 2017 OUTLINE Polynomial optimization and

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Chapter 26 Semidefinite Programming Zacharias Pitouras 1 Introduction LP place a good lower bound on OPT for NP-hard problems Are there other ways of doing this? Vector programs

More information

Decentralized Control of Stochastic Systems

Decentralized Control of Stochastic Systems Decentralized Control of Stochastic Systems Sanjay Lall Stanford University CDC-ECC Workshop, December 11, 2005 2 S. Lall, Stanford 2005.12.11.02 Decentralized Control G 1 G 2 G 3 G 4 G 5 y 1 u 1 y 2 u

More information

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry assoc. prof., Ph.D. 1 1 UNM - Faculty of information studies Edinburgh, 16. September 2014 Outline Introduction Definition

More information

Convex Optimization of Graph Laplacian Eigenvalues

Convex Optimization of Graph Laplacian Eigenvalues Convex Optimization of Graph Laplacian Eigenvalues Stephen Boyd Abstract. We consider the problem of choosing the edge weights of an undirected graph so as to maximize or minimize some function of the

More information

Second-order cone programming

Second-order cone programming Outline Second-order cone programming, PhD Lehigh University Department of Industrial and Systems Engineering February 10, 2009 Outline 1 Basic properties Spectral decomposition The cone of squares The

More information

The Q Method for Symmetric Cone Programmin

The Q Method for Symmetric Cone Programmin The Q Method for Symmetric Cone Programming The Q Method for Symmetric Cone Programmin Farid Alizadeh and Yu Xia alizadeh@rutcor.rutgers.edu, xiay@optlab.mcma Large Scale Nonlinear and Semidefinite Progra

More information

Identifying Redundant Linear Constraints in Systems of Linear Matrix. Inequality Constraints. Shafiu Jibrin

Identifying Redundant Linear Constraints in Systems of Linear Matrix. Inequality Constraints. Shafiu Jibrin Identifying Redundant Linear Constraints in Systems of Linear Matrix Inequality Constraints Shafiu Jibrin (shafiu.jibrin@nau.edu) Department of Mathematics and Statistics Northern Arizona University, Flagstaff

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information