Lecture: Introduction to LP, SDP and SOCP

Size: px
Start display at page:

Download "Lecture: Introduction to LP, SDP and SOCP"

Transcription

1 Lecture: Introduction to LP, SDP and SOCP Zaiwen Wen Beijing International Center For Mathematical Research Peking University Acknowledgement: this slides is based on Prof. Farid Alizadeh lecture notes

2 Linear Programming (LP) Primal Dual min c 1 x c n x n max b 1 y b m y m s.t. a 11 x a 1n x n = b 1... a m1 x a mn x n = b m x i 0 s.t. a 11 y a m1 y m c 1... a 1n y a mn y m c n 2/29

3 3/29 Linear Programming (LP) more succinctly Primal (P) Dual (D) min c x max b y s.t. Ax = b x 0 s.t. A y + s = c s 0

4 4/29 Weak duality Suppose x is feasible to (P) (y, s) is feasible to (D) Then 0 x s because x i s i 0 = x (c A y) = c x (Ax) y = c x b y = duality gap

5 5/29 Key Properties of LP Strong duality: If both Primal and Dual are feasible then at the optimum c x = b y x s = 0 complementary slackness: This implies x s = x 1 s x n s n = 0 and therefore x i s i = 0

6 6/29 complementarity Putting together primal feasibility, dual feasibility and complementarity together we get a square system of equations Ax = b A y + s = c x i s i = 0 for i = 1,..., n At least in principle this system determines the primal and dual optimal values

7 Algebraic characterization 7/29 We can define x s = (x 1 s 1,..., x n s n ) and L x : y (x 1 y 1,..., x n y n ) i.e. L x = Diag(x) We can write complementary slackness conditions as x s = L x s = L x L s 1 = 0 1, the vector of all ones, is the identity element: x 1 = x

8 Semidefinite Programming (SDP) 8/29 X Y means that the the symmetric matrix X Y is positive semidefinite X is positive semidefinite a Xa 0 for all vector a X = B B all eigenvalues of X is nonnegative

9 Semidefinite Programming (SDP) X, Y = ij X ijy ij = Tr(XY) Primal (P) min C 1, X C n, X n max Dual (D) b 1 y b m y m s.t. A 11, X A 1n, X n = b 1... A m1, X A mn, X n = b m X i 0 s.t. A 11 y A m1 y m + S 1 = c 1... A 1n y A mn y m + S n = c n S i 0 9/29

10 Simplified SDP 10/29 For simplicity we deal with single variable SDP: Primal (P) Dual (D) min C, X max s.t. A 1, X = b 1... A m, X = b m X 0 s.t. A single variable LP is trivial b y y i A i + S = C i S 0 But a single matrix SDP is as general as a multiple matrix

11 Weak duality in SDP 11/29 Just as in LP X, S = C, X b y Also if both X 0 and S 0 then because S 1/2 XS 1/2 0 X, S = Tr(XS 1/2 S 1/2 ) = Tr(S 1/2 XS 1/2 ) 0 Thus X, S = C, X b y 0

12 12/29 Complementarity Slackness Theorem X 0 and S 0 and X, S = 0 implies XS = 0 Proof: X, S = Tr(XS 1/2 S 1/2 ) = Tr(S 1/2 XS 1/2 ) Thus Tr(S 1/2 XS 1/2 ) = 0. Since S 1/2 XS 1/2 0, then S 1/2 XS 1/2 = 0 = S 1/2 X 1/2 X 1/2 S 1/2 = 0 X 1/2 S 1/2 = 0 = XS = 0

13 Algebraic properties of SDP 13/29 For reasons to become clear later it is better to write complementary slackness conditions as XS + SX 2 = 0 It can be shown that if X 0 and S 0, then XS = 0 iff XS + SX = 0

14 Algebraic properties of SDP 14/29 Definition: X S = XS+SX 2 The binary operation is commutative X S = S X is not associative: X (Y Z) (X Y) Z in general But X (X X) = (X X) X. Thus X p = X p is well defined In general X (X 2 Y) = X 2 (X Y) The identity matrix I is identity w.r.t Define the operator L X : Y X Y, thus X S = L X (S) = L X (L S (I))

15 Constraint Qualifications 15/29 Unlike LP we need some conditions for the optimal values of Primal and Dual SDP to coincide Here are two: If there is primal-feasible X 0 (i.e. X is positive definite) If there is dual-feasible S 0 When strong duality holds X, S = 0

16 KKT Condition 16/29 Thus just like LP The system of equations A i, X = b i, for i = 1,..., m y i A i + S = C i X S = 0 Gives us a square system

17 Second Order Cone Programming (SOCP) 17/29 For simplicity we deal with single variable SOCP: Primal (P) Dual (D) min c x max b y s.t. Ax = b x Q 0 s.t. A y + s = c s Q 0 the vectors x, s, c are indexed from zero If z = (z 0, z 1,..., z n ) and z = (z 1,..., z n ) z Q 0 z 0 z

18 Illustration of SOC 18/29 Q = {z z 0 z }

19 19/29 Weak Duality in SOCP The single block SOCP is not as trivial as LP but it still can be solved analytically weak duality: Again as in LP and SDP If x, s Q 0, then x s = c x b y = duality gap x s = x 0 s 0 + x s x s + x s since x, s Q 0 x s + x s Cauchy-Schwartz inequality 0

20 Complementary Slackness for SOCP 20/29 Given x Q 0, s Q 0 and x s = 0. Assume x 0 > 0 and s 0 > 0 We have ( ) ( ) x 2 0 s 2 0 n i=1 x 2 i n s 2 i x0 2 i=1 n i=1 ( ) x s = 0 x 0 s 0 = i s 2 i x2 0 s 2 0 x i s i 2x 2 0 = Adding (*), (**), (***), we get 0 ( ) 2 n i=1 x i + s ix 0 s 0 n i=1 2x i s i x 0 s 0 This implies x i s 0 + x 0 s i = 0, for i = 1,..., n

21 Illustration of SOC 21/29 When x Q 0, s Q 0 are orthogonal both must be on the boundary in such a way that their projection on the x 1,..., x n plane is collinear

22 Strong Duality 22/29 at the optimum c x = b y x s = 0 Like SDP constraint qualifications are required If there is primal-feasible x Q 0 If there is dual-feasible s Q 0

23 23/29 Complementary Slackness for SOCP Thus again we have a square system Ax = b, A y + s = c x s = 0 x 0 s i + s 0 x i = 0

24 Algebraic properties of SOCP 24/29 Let us define a binary operation for vectors x and s both indexed from zero x 0 s 0 x s x 1. s 1. = x 0 s 1 + s 0 x 1. x n s n x 0 s n + s 0 x n

25 Algebraic properties of SOCP 25/29 The binary operation is commutative x s = s x is not associative: x (y z) (x y) z in general But x (x x) = (x x) x. Thus x p = x p is well defined In general x (x 2 y) = x 2 (x y) The identity matrix I is identity w.r.t e = (1, 0,..., 0) is the identity: x e = x

26 Algebraic properties of SOCP 26/29 Define the operator L x : y x y ( x0 x L x = Arw(x) = ) x x 0 I x s = Arw(x)s = Arw(x)Arw(s)e

27 Summary 27/29 Properties LP SDP SOCP ( ) x binary operator x s = (x i s i ) X S = XS+SX 2 x s = s x 0 s + s 0 x identity 1 I e = (1, 0,..., 0) associative yes no no L X y Diag(x)y Y XY+YX 2 y Arw(x)y Primal feasibility Ax = b A i, X = b i Ax = b dual feasility A y + s = c i y ia i + S = C A y + s = c complementarity L x L s 1 = 0 L X (L S (I)) = 0 L x L s e = 0

28 28/29 Conic LP A set K R n is a proper cone if It is a cone: If x K = ax K for all α 0 It is convex: x, y K = αx + (1 α)y K for α [0, 1] It is pointed: K ( K) = {0} It is closed It has non-empty interior in R n dual cone: K = {x for all z K, x, z 0}

29 Conic LP 29/29 Conic-LP is defined as the following optimization problem: Primal (P) Dual (D) min c x max s.t. Ax = b x K s.t. For LP K is the nonnegative orthant b y A y + s = c s K For SDP K is the cone of positive semidefinite matrices For SOCP K is the circular or Lorentz cone In all three cases the cones are self-dual K = K

Lecture: Algorithms for LP, SOCP and SDP

Lecture: Algorithms for LP, SOCP and SDP 1/53 Lecture: Algorithms for LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 4 Instructor: Farid Alizadeh Scribe: Haengju Lee 10/1/2001 1 Overview We examine the dual of the Fermat-Weber Problem. Next we will

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture: Duality of LP, SOCP and SDP

Lecture: Duality of LP, SOCP and SDP 1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

Conic Linear Optimization and its Dual. yyye

Conic Linear Optimization and its Dual.   yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #04 1 Conic Linear Optimization and its Dual Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

Lecture: Cone programming. Approximating the Lorentz cone.

Lecture: Cone programming. Approximating the Lorentz cone. Strong relaxations for discrete optimization problems 10/05/16 Lecture: Cone programming. Approximating the Lorentz cone. Lecturer: Yuri Faenza Scribes: Igor Malinović 1 Introduction Cone programming is

More information

Lecture: Duality.

Lecture: Duality. Lecture: Duality http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/35 Lagrange dual problem weak and strong

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 6 (Conic optimization) 07 Feb, 2013 Suvrit Sra Organizational Info Quiz coming up on 19th Feb. Project teams by 19th Feb Good if you can mix your research

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

Midterm Review. Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. Midterm Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapter 1-4, Appendices) 1 Separating hyperplane

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

A Review of Linear Programming

A Review of Linear Programming A Review of Linear Programming Instructor: Farid Alizadeh IEOR 4600y Spring 2001 February 14, 2001 1 Overview In this note we review the basic properties of linear programming including the primal simplex

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Agenda. 1 Duality for LP. 2 Theorem of alternatives. 3 Conic Duality. 4 Dual cones. 5 Geometric view of cone programs. 6 Conic duality theorem

Agenda. 1 Duality for LP. 2 Theorem of alternatives. 3 Conic Duality. 4 Dual cones. 5 Geometric view of cone programs. 6 Conic duality theorem Agenda 1 Duality for LP 2 Theorem of alternatives 3 Conic Duality 4 Dual cones 5 Geometric view of cone programs 6 Conic duality theorem 7 Examples Lower bounds on LPs By eliminating variables (if needed)

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Lagrangian Duality Theory

Lagrangian Duality Theory Lagrangian Duality Theory Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapter 14.1-4 1 Recall Primal and Dual

More information

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

The Q Method for Second-Order Cone Programming

The Q Method for Second-Order Cone Programming The Q Method for Second-Order Cone Programming Yu Xia Farid Alizadeh July 5, 005 Key words. Second-order cone programming, infeasible interior point method, the Q method Abstract We develop the Q method

More information

The Q Method for Symmetric Cone Programmin

The Q Method for Symmetric Cone Programmin The Q Method for Symmetric Cone Programming The Q Method for Symmetric Cone Programmin Farid Alizadeh and Yu Xia alizadeh@rutcor.rutgers.edu, xiay@optlab.mcma Large Scale Nonlinear and Semidefinite Progra

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Problem 1 (Exercise 2.2, Monograph)

Problem 1 (Exercise 2.2, Monograph) MS&E 314/CME 336 Assignment 2 Conic Linear Programming January 3, 215 Prof. Yinyu Ye 6 Pages ASSIGNMENT 2 SOLUTIONS Problem 1 (Exercise 2.2, Monograph) We prove the part ii) of Theorem 2.1 (Farkas Lemma

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Continuous Optimisation, Chpt 9: Semidefinite Problems

Continuous Optimisation, Chpt 9: Semidefinite Problems Continuous Optimisation, Chpt 9: Semidefinite Problems Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2016co.html version: 21/11/16 Monday

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Lecture 5. The Dual Cone and Dual Problem

Lecture 5. The Dual Cone and Dual Problem IE 8534 1 Lecture 5. The Dual Cone and Dual Problem IE 8534 2 For a convex cone K, its dual cone is defined as K = {y x, y 0, x K}. The inner-product can be replaced by x T y if the coordinates of the

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 2 Instructor: Farid Alizadeh Scribe: Xuan Li 9/17/2001 1 Overview We survey the basic notions of cones and cone-lp and give several

More information

III. Applications in convex optimization

III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

Lecture 10: Linear programming duality and sensitivity 0-0

Lecture 10: Linear programming duality and sensitivity 0-0 Lecture 10: Linear programming duality and sensitivity 0-0 The canonical primal dual pair 1 A R m n, b R m, and c R n maximize z = c T x (1) subject to Ax b, x 0 n and minimize w = b T y (2) subject to

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

LECTURE 13 LECTURE OUTLINE

LECTURE 13 LECTURE OUTLINE LECTURE 13 LECTURE OUTLINE Problem Structures Separable problems Integer/discrete problems Branch-and-bound Large sum problems Problems with many constraints Conic Programming Second Order Cone Programming

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry assoc. prof., Ph.D. 1 1 UNM - Faculty of information studies Edinburgh, 16. September 2014 Outline Introduction Definition

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Lecture 7: Convex Optimizations

Lecture 7: Convex Optimizations Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

More First-Order Optimization Algorithms

More First-Order Optimization Algorithms More First-Order Optimization Algorithms Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 3, 8, 3 The SDM

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Convex Optimization Boyd & Vandenberghe. 5. Duality

Convex Optimization Boyd & Vandenberghe. 5. Duality 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Using Schur Complement Theorem to prove convexity of some SOC-functions

Using Schur Complement Theorem to prove convexity of some SOC-functions Journal of Nonlinear and Convex Analysis, vol. 13, no. 3, pp. 41-431, 01 Using Schur Complement Theorem to prove convexity of some SOC-functions Jein-Shan Chen 1 Department of Mathematics National Taiwan

More information

Lecture 17: Primal-dual interior-point methods part II

Lecture 17: Primal-dual interior-point methods part II 10-725/36-725: Convex Optimization Spring 2015 Lecture 17: Primal-dual interior-point methods part II Lecturer: Javier Pena Scribes: Pinchao Zhang, Wei Ma Note: LaTeX template courtesy of UC Berkeley EECS

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Cuts for mixed 0-1 conic programs

Cuts for mixed 0-1 conic programs Cuts for mixed 0-1 conic programs G. Iyengar 1 M. T. Cezik 2 1 IEOR Department Columbia University, New York. 2 GERAD Université de Montréal, Montréal TU-Chemnitz Workshop on Integer Programming and Continuous

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Laura Galli 1 Adam N. Letchford 2 Lancaster, April 2011 1 DEIS, University of Bologna, Italy 2 Department of Management Science,

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality

Example Problem. Linear Program (standard form) CSCI5654 (Linear Programming, Fall 2013) Lecture-7. Duality CSCI5654 (Linear Programming, Fall 013) Lecture-7 Duality Lecture 7 Slide# 1 Lecture 7 Slide# Linear Program (standard form) Example Problem maximize c 1 x 1 + + c n x n s.t. a j1 x 1 + + a jn x n b j

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

BBM402-Lecture 20: LP Duality

BBM402-Lecture 20: LP Duality BBM402-Lecture 20: LP Duality Lecturer: Lale Özkahya Resources for the presentation: https://courses.engr.illinois.edu/cs473/fa2016/lectures.html An easy LP? which is compact form for max cx subject to

More information

Lecture #21. c T x Ax b. maximize subject to

Lecture #21. c T x Ax b. maximize subject to COMPSCI 330: Design and Analysis of Algorithms 11/11/2014 Lecture #21 Lecturer: Debmalya Panigrahi Scribe: Samuel Haney 1 Overview In this lecture, we discuss linear programming. We first show that the

More information

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1

L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones. definition. spectral decomposition. quadratic representation. log-det barrier 18-1 L. Vandenberghe EE236C (Spring 2016) 18. Symmetric cones definition spectral decomposition quadratic representation log-det barrier 18-1 Introduction This lecture: theoretical properties of the following

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

Convex Optimization and SVM

Convex Optimization and SVM Convex Optimization and SVM Problem 0. Cf lecture notes pages 12 to 18. Problem 1. (i) A slab is an intersection of two half spaces, hence convex. (ii) A wedge is an intersection of two half spaces, hence

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

Conic Linear Programming. Yinyu Ye

Conic Linear Programming. Yinyu Ye Conic Linear Programming Yinyu Ye December 2004, revised October 2017 i ii Preface This monograph is developed for MS&E 314, Conic Linear Programming, which I am teaching at Stanford. Information, lecture

More information

Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization

Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization Robert M. Freund M.I.T. June, 2010 from papers in SIOPT, Mathematics

More information

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n

Inner products and Norms. Inner product of 2 vectors. Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y x n y n in R n Inner products and Norms Inner product of 2 vectors Inner product of 2 vectors x and y in R n : x 1 y 1 + x 2 y 2 + + x n y n in R n Notation: (x, y) or y T x For complex vectors (x, y) = x 1 ȳ 1 + x 2

More information

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP)

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP) Agenda 1 Cone programming 2 Convex cones 3 Generalized inequalities 4 Linear programming (LP) 5 Second-order cone programming (SOCP) 6 Semidefinite programming (SDP) 7 Examples Optimization problem in

More information

EE/AA 578, Univ of Washington, Fall Duality

EE/AA 578, Univ of Washington, Fall Duality 7. Duality EE/AA 578, Univ of Washington, Fall 2016 Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Second-Order Cone Programming

Second-Order Cone Programming Second-Order Cone Programming F. Alizadeh D. Goldfarb 1 Introduction Second-order cone programming (SOCP) problems are convex optimization problems in which a linear function is minimized over the intersection

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP Different spaces and objective functions but in general same optimal

More information

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lecture-8 Lecture 8 Slide# 1 Today s Lecture 1. Recap of dual variables and strong duality. 2. Complementary Slackness Theorem. 3. Interpretation of dual variables.

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Duality in Nonlinear Optimization ) Tamás TERLAKY Computing and Software McMaster University Hamilton, January 2004 terlaky@mcmaster.ca Tel: 27780 Optimality

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

Semidefinite Programming

Semidefinite Programming Chapter 2 Semidefinite Programming 2.0.1 Semi-definite programming (SDP) Given C M n, A i M n, i = 1, 2,..., m, and b R m, the semi-definite programming problem is to find a matrix X M n for the optimization

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Continuous Optimisation, Chpt 9: Semidefinite Optimisation

Continuous Optimisation, Chpt 9: Semidefinite Optimisation Continuous Optimisation, Chpt 9: Semidefinite Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version: 28/11/17 Monday

More information

The fundamental theorem of linear programming

The fundamental theorem of linear programming The fundamental theorem of linear programming Michael Tehranchi June 8, 2017 This note supplements the lecture notes of Optimisation The statement of the fundamental theorem of linear programming and the

More information

m i=1 c ix i i=1 F ix i F 0, X O.

m i=1 c ix i i=1 F ix i F 0, X O. What is SDP? for a beginner of SDP Copyright C 2005 SDPA Project 1 Introduction This note is a short course for SemiDefinite Programming s SDP beginners. SDP has various applications in, for example, control

More information

Lecture 7 Duality II

Lecture 7 Duality II L. Vandenberghe EE236A (Fall 2013-14) Lecture 7 Duality II sensitivity analysis two-person zero-sum games circuit interpretation 7 1 Sensitivity analysis purpose: extract from the solution of an LP information

More information

Second-order cone programming

Second-order cone programming Outline Second-order cone programming, PhD Lehigh University Department of Industrial and Systems Engineering February 10, 2009 Outline 1 Basic properties Spectral decomposition The cone of squares The

More information

1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin

1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin Sensitivity Analysis in LP and SDP Using Interior-Point Methods E. Alper Yldrm School of Operations Research and Industrial Engineering Cornell University Ithaca, NY joint with Michael J. Todd INFORMS

More information

Conic Linear Programming. Yinyu Ye

Conic Linear Programming. Yinyu Ye Conic Linear Programming Yinyu Ye December 2004, revised January 2015 i ii Preface This monograph is developed for MS&E 314, Conic Linear Programming, which I am teaching at Stanford. Information, lecture

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008

Lecture 8 Plus properties, merit functions and gap functions. September 28, 2008 Lecture 8 Plus properties, merit functions and gap functions September 28, 2008 Outline Plus-properties and F-uniqueness Equation reformulations of VI/CPs Merit functions Gap merit functions FP-I book:

More information

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #06. The Simplex Method The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye (LY, Chapters 2.3-2.5, 3.1-3.4) 1 Geometry of Linear

More information