EE 5303 Electromagnetic Analysis Using Finite Difference Time Domain. Scattering Analysis

Size: px
Start display at page:

Download "EE 5303 Electromagnetic Analysis Using Finite Difference Time Domain. Scattering Analysis"

Transcription

1 11/14/018 EE 5303 Elecomagneic Analsis Using Finie Diffeence Time Domain Lecue #4 caeing Analsis Lecue 4 These noes ma conain copighed maeial obained unde fai use ules. Disibuion of hese maeials is sicl pohibied lide 1 Lecue Ouline Inoducion FDTD fo caeing imulaions Fomulaion of NFFF Tansfomaion Implemenaion NFFF in Two Dimensions imulaion Eamples Lecue 4 lide 1

2 11/14/018 Inoducion Lecue 4 lide 3 Animaion of caeing Analsis Finie obec TF/F on all suounding sides Ineesed pimail in he scaeed field Usuall he goal is o quanif scaeing in he fa field. Lecue 4 lide 4

3 11/14/018 Wha is NFFF Tansfomaion? (1 of ) uppose we wan o know he elecomagneic fields VERY fa awa fom an obec. ow de we do his? Do we us use an eemel lage gid? Obec NO!! Lecue 4 lide 5 Wha is NFFF Tansfomaion? ( of ) Insead, we pefom a small simulaion and use he NFFF echnique o calculae he fields ve fa awa. This is MUC moe efficien! Obec NFFF BIG IMULATION!! Lile simulaion + NFFF Lecue 4 lide 6 3

4 11/14/018 Repesening he Fa Field Usuall he fa field is ploed in clindical (D) o spheical (3D) coodinaes. Lecue 4 lide 7 Basic Ouline of caeing Analsis ep 1 Build obec on gid ep imulae obec ep 3 Calculae sead sae field ep 4 Pefom NFFF ep 5 Pos pocess NFFF Lecue 4 lide 8 4

5 11/14/018 FDTD fo caeing imulaions Lecue 4 lide 9 Gid cheme scaeed field oal field PML -lo PML -hi -lo -hi PML Ou souce is bounded on all sides so ha he enie oue poion of he gid is scaeed field. PML Lecue 4 lide 10 5

6 11/14/018 Recall he Cul Calculaions C C C E E E 1 E E Mode i1, E E i1, 1 C C C E E E Mode 1 E E i1, E E E E i1, 1 E E Noe: he ems in ed idenif ems ha equie modificaion in he TF/F famewok. Lecue 4 lide 11 -lo ide On he -lo side, onl CE and C equie modificaion. C E i1 1,, k C E E i,, k 1 i, E E i 1,, k i, i 1, i 1, 1 1 i1 i1 1 1 i1, i, 1,sc,, 1 i1, E i, i 1, i1, 1 i1 1,,sc Lecue 4 lide 1 6

7 11/14/018 -hi ide On he -hi side, onl CE and C equie modificaion. C C E i, E E i 1, i 1, E E i, i 1, i, i, i i 1, Lecue 4 lide 13,sc i 1, i 1, 1 i 1, i 1, i, 1, i 1, 1 E i,,sc -lo ide On he -lo side, onl CE and C equie modificaion. C E 1 1 C 1 E E 1 E E E,sc 1 i1, i1, ,sc Lecue 4 lide 14 7

8 11/14/018 -hi ide On he -hi side, onl CE and C equie modificaion. C C E E 1 E 1 E E E,sc 1 1 i1, 1 1, 1 i 1 i1, 1 1,sc Lecue 4 lide 15 Deiving a inusoidal ouce Funcion The geneal epession fo he nomalied elecic field componen of a plane wave is E, ; Pcos k Pcos kk The equivalen epession can be deived fo he magneic field b subsiuing he above epession ino Faada s law. ˆ cos ˆ cos k P k k P k k Lecue 4 lide 16 8

9 11/14/018 inusoidal ouce Funcions fo he E Mode The E mode has P = P = 0 and we se P = 1. Thus, he souce funcions educe o, ; cos E k k k k k ˆ, ; cos k k k ˆ, ; cos Lecue 4 lide 17 Numeical Equaions fo inusoidal ouce Funcions fo he E Mode In ems of aa indices, he souce funcions ae E E i1,, k,sc T i1 1,,sc T 0.5 i 1,,sc T i,,sc T 0.5 E E 1,sc T cos Tk ik 1 ˆ k cos T 0.5k i 0.5k 1 cos Tk i 1 k kˆ cos T 0.5k i 0.5 k costkik 1 1 1,sc T 0.5 1,sc T,sc T 0.5 ˆ k cos T 0.5 ki k cos Tkik 1 ˆ k cos T 0.5ki k 0.5 Lecue 4 lide 18 9

10 11/14/018 Code nippes fo inusoidal ouce % TF/F FOR CURL OF E E0 = RAMP(T); %lo Esc = E0*cos(*pi*f0*T*d - k*nlo*d - k*[nlo:nhi]*d); CE(nlo-1,nlo:nhi) = CE(nlo-1,nlo:nhi) + Esc/d; %hi Esc = E0*cos(*pi*f0*T*d - k*(nhi + 1)*d - k*[nlo:nhi]*d); CE(nhnlo:nhi) = CE(nhnlo:nhi) - Esc/d; %lo Esc = E0*cos(*pi*f0*T*d - k*[nlo:nhi]'*d - k*nlo*d); CE(nlo:nhnlo-1) = CE(nlo:nhnlo-1) - Esc/d; %hi Esc = E0*cos(*pi*f0*T*d - k*[nlo:nhi]'*d - k*(nhi + 1)*d); CE(nlo:nhnhi) = CE(nlo:nhnhi) + Esc/d; % TF/F FOR CURL OF 0 = + (k/k0)*ramp(t); 0 = - (k/k0)*ramp(t); %lo sc = 0*cos(*pi*f0*(T + 0.5)*d - k*(nlo - 0.5)*d - k*[nlo:nhi]*d); C(nlo,nlo:nhi) = C(nlo,nlo:nhi) - sc/d; %hi sc = 0*cos(*pi*f0*(T + 0.5)*d - k*(nhi + 0.5)*d - k*[nlo:nhi]*d); C(nhi+1,nlo:nhi) = C(nhi+1,nlo:nhi) + sc/d; %lo sc = 0*cos(*pi*f0*(T + 0.5)*d - k*[nlo:nhi]'*d - k*(nlo - 0.5)*d); C(nlo:nhnlo) = C(nlo:nhnlo) + sc/d; %hi sc = 0*cos(*pi*f0*(T + 0.5)*d - k*[nlo:nhi]'*d - k*(nhi + 0.5)*d); C(nlo:nhnhi+1) = C(nlo:nhnhi+1) - sc/d; Lecue 4 lide 19 Animaion of CW ouce Lecue 4 lide 0 10

11 11/14/018 Calculaing k and k (1 of ) The TF/F spans a lage enough amoun of space ha he numeical dispesion due o he Yee gid causes poblems. You mus compensae fo his. Uncompensaed Compensaed Lecue 4 lide 1 Calculaing k and k ( of ) ep 1 Define in dashboad. ep Calculae he efacive inde whee souce is ineced. n sc,sc,sc ep 3 Calculae k and k. k k n cos k k n 0 sc 0 sc ep 3 Calculae fudge faco f. c sin 1 sin 1 sin 0 f k k nsc sin f0 ep 4 Adus k and k. k fk k fk Noe: An alenae mehod is descibed fo he Gaussian souce ha usuall woks bee. Lecue 4 lide 11

12 11/14/018 1 Lecue 4 lide 3 Analical Equaions fo a Gaussian Pulse Fo a Gaussian pulse, he field componens ae 0 ˆ ˆ k k c, ; ep ˆ, ; ep ˆ, ; ep E k k This ime dela ensues he pulse begins us ouside of he TF/F egion egadless of he angle of incidence. Lecue 4 lide 4 Numeical Equaions fo a Gaussian Pulse Fo a Gaussian pulse, he field componens ae ˆ ˆ, ; ep ˆ ˆ ˆ, ; ep ˆ ˆ ˆ, ; ep T k i k c E i T T k i k c i T k T k i k c i T k

13 11/14/018 Code nippes fo Gaussian ouce % TF/F FOR CURL OF E E0 = ep(-((t*d - T0)/au).^); E0 = E0(1::N,1::N); %lo Esc = E0(nlo,nlo:nhi); CE(nlo-1,nlo:nhi) = CE(nlo-1,nlo:nhi) + Esc/d; %hi Esc = E0(nhi+1,nlo:nhi); CE(nhnlo:nhi) = CE(nhnlo:nhi) - Esc/d; %lo Esc = E0(nlo:nhnlo); CE(nlo:nhnlo-1) = CE(nlo:nhnlo-1) - Esc/d; %hi Esc = E0(nlo:nhnhi+1); CE(nlo:nhnhi) = CE(nlo:nhnhi) + Esc/d; % TF/F 0 = ep(-(((t + 0.5)*d - T0)/au).^); 0 = + (k/k0)*0(::n,1::n); 0 = - (k/k0)*0(1::n,::n); %lo sc = 0(nlo-1,nlo:nhi); C(nlo,nlo:nhi) = C(nlo,nlo:nhi) - sc/d; %hi sc = 0(nhnlo:nhi); C(nhi+1,nlo:nhi) = C(nhi+1,nlo:nhi) + sc/d; %lo sc = 0(nlo:nhnlo - 1); C(nlo:nhnlo) = C(nlo:nhnlo) + sc/d; %hi sc = 0(nlo:nhnhi); C(nlo:nhnhi+1) = C(nlo:nhnhi+1) - sc/d; % CALCULATE TIME GRADIENT ACRO X GRID del = *cos(hea); del = *sin(hea); T0 = (cos(hea)*(x + del) + sin(hea)*(y + del))/c0; Lecue 4 lide 5 Animaion of Gaussian Pulse ouce Lecue 4 lide 6 13

14 11/14/018 Animaion of Gaussian Pulse ouce Wih a caeing Obec Lecue 4 lide 7 Compensaing fo Dispesion fo a Gaussian ouce (1 of ) The TF/F spans a lage enough amoun of space ha he numeical dispesion due o he Yee gid causes poblems. You mus compensae fo his. Uncompensaed Compensaed Lecue 4 lide 8 14

15 11/14/018 Compensaing fo Dispesion fo a Gaussian ouce ( of ) ep 1 Define in dashboad. ep Calculae he efacive inde whee souce is ineced. n sc,sc,sc ep 3 Calculae k and k. k k0nsccos k k n sin 0 sc ep 4 Calculae fudge faco f. c ep 5 Adus maeial aas ER and UR accoding o f. UR = f*ur; ER = f*er; 1 sin 1 sin 0 f k k nsc sin f0 Noe: This mehod of compensae woks fo he sinusoidal souce as well. Lecue 4 lide 9 Fomulaion of NFFF Tansfomaion Lecue 4 lide 30 15

16 11/14/018 Elecomagneic Bounda Condiions Magneic Field a an Ineface J, T 1, T s J, T 1, T s nˆ ˆ n1 Js nˆ J 1 s E, ˆn J s E, 1 1 M s Elecic Field a an Ineface E E M, T 1, T s E E M, T 1, T s nˆe ˆ ne1 Ms nˆ E E M 1 s J nˆ s 1 nˆ suface nomal poining fom 1 o M nˆ E E s 1 Lecue 4 lide 31 uface Equivalence Theoem E, ˆn E, M s E, = E, 1 1 J s The fa field E and is compleel descibed b he suface cuens J s and M s flowing aound a closed suface. Lecue 4 lide 3 16

17 11/14/018 Calculaing he uface Cuens ince we ae onl ineesed in he fa fields E and, we ae fee o le E 1 and 1 be whaeve is convenien. Le E ˆn E, M s We can now calculae he suface cuens as J ˆ s n M nˆ E s 0 J s Noe: Calculaing J and M in his wa makes i onl possible o calculae fields ouside of he suface. Lecue 4 lide 33 Veco Poenials We wish o calculae he fields ve fa fom he suface. I is useful o do his using he veco poenials. kr e A J ds 4 R kr e F M ds 4 R R disance fom poin on suface s o he obsevaion poin. Lecue 4 lide 34 17

18 11/14/018 Fa Field Appoimaion In he fa field, R is eemel lage. cos R fo phase calculaions fo ampliude calculaions Noe: cos ˆ ˆ R Lecue 4 lide 35 Veco Poenials in he Fa Field Using he fa field appoimaion fo R, he equaions fo calculaing he veco poenials become k cos k e cos e A J ds 4 F M cos 4 ds cos k e kcos J e ds 4 k e kcos Me ds 4 Las, we wie hese equaions in spheical coodinaes. k e A,, N, 4 N J e ds kcos, k e F,, L, 4 L M e ds cos, k I is impoan o noe he,, and dependencies in hese equaions. Lecue 4 lide 36 18

19 11/14/018 Caesian o pheical Coodinaes (1 of ) andad FDTD poduces field quaniies in Caesian coodinaes. This means he cuen ems J s and M s will be in Caesian coodinaes. Usuall fa field analsis is done is spheical coodinaes so hese funcions mus be conveed o spheical coodinaes. J sincos sinsin cos J J coscos cossin sin J J sin cos 0 J N N aˆ N aˆ N aˆ kcos N Jsin cos Jsinsin J cos e ds J kcos N JcoscosJcossinJsine ds J N J sinj cos e ds kcos J Lecue 4 lide 37 Caesian o pheical Coodinaes ( of ) And he calculaion fo L, is M sincos sinsin cos M M coscos cossin sin M M sin cos 0 M L L aˆ L aˆ L aˆ Lecue 4 lide 38 kcos L Msincos M sinsin Mcos e ds M kcos L Mcoscos M cossin Msin e ds M kcos L Msin M cos e ds M 19

20 11/14/018 N and L Onl Depend on and (1 of 3) N, and L, ae fa field quaniies so he ae independen of he choice of he suface. Le s pick his one fo now. Lecue 4 lide 39 N and L Onl Depend on and ( of 3) The cuen ems J s and M s ae suface cuens and alwas angenial o he suface. J s M s o when we choose o be a sphee, he suface cuens have no adial componens. J M 0 when is a sphee Lecue 4 lide 40 0

21 11/14/018 N and L Onl Depend on and (3 of 3) We see fom he following equaions ha and ake one he same veco componens as J and M s s. kcos N, J e ds k L, M e ds Theefoe, N and L have no adial componens. N L cos We also ecognie ha his will alwas be he case since he fa field is fied and independen of he choice of. N L 0 alwas Lecue 4 lide 41 Final Epessions fo N and L N, 0, coscos cossin sin kcos N J J J e ds, sin cos kcos N J J e ds L, 0, coscos cossin sin kcos L M M M e ds, sin cos kcos L M M e ds Lecue 4 lide 4 1

22 11/14/018 Calculaing he Fa Fields (1 of 3) The elecic and magneic fields, E and, ae calculaed fom he veco poenials accoding o 1 A F F 1 E F A A The? ems poduce equaions wih 1/ dependence. In he fa field is ve lage so hese ems vanish. 1 1 A F E F A Lecue 4 lide 43 Calculaing he Fa Fields ( of 3) 1 1 A F E F A The cul ems become k e k e A N F N 4 4 k k e e N N 4 4 k k ke ke Naˆ Naˆ Laˆ Laˆ 4 4 k A aˆ A aˆ k F aˆ F aˆ Lecue 4 lide 44 The elecic and magneic fields ae now k k A aˆ A aˆ F E Faˆ Faˆ A

23 11/14/018 Calculaing he Fa Fields (3 of 3) k A aˆ A aˆ F We now combine veco componens. And las we pu hese equaions in ems of N and L. k E Faˆ Faˆ A 1 1 A F aˆ A F aˆ E A F aˆ A F aˆ 0 k ke 1 N L 4 k ke 1 N L 4 E 0 E k ke N 4 L E k ke N 4 L Lecue 4 lide 45 Impedance of he fa field medium: Rada Coss ecion The powe in he adiaed field can be calculaed fom he fa field quaniies as 1 * 1 * Pad Re Re E E 1 k N L + N L 4 The ada coss secion (RC) in hee dimensions is RC, lim 4 ad P inc inc P k N L + N L 8P Lecue 4 lide 46 3

24 11/14/018 Flow of Equaions fo 3D NFFF ep 1 Calculae cuen ems aound a closed suface. J nˆ M nˆ E s ep Loop ove all values of and a) Calculae N and L in he fa field s kcos N JcoscosJcossinJsin e ds kcos N JsinJcos e ds kcos L Mcoscos M cossin Msin e ds kcos L Msin M cos e ds b) Calculae E and in he fa field 0 k ke 1 N L 4 k ke 1 N L 4 E 0 k ke E N L 4 k ke E N L 4 Lecue 4 lide 47 c) Calculae RC o whaeve else ou need k N L N L RC, + 8P inc NFFF in Two Dimensions Lecue 4 lide 48 4

25 11/14/018 uface Cuens (1 of ) We esic ou analsis o he plane. This means he nomal veco is esiced o he plane. ˆn E, M s nˆ n aˆ n aˆ This also means ha he spheical coodinae paamee is eo. 0 0 Theefoe, we wie N and L onl as funcions of. J s,,, N N L L Lecue 4 lide 49 uface Inegals o Line Inegals (1 of ) Fo he geneal case, we inegae he cuen ems J and M ove a closed suface o obain N() and L() in he fa field. N N ds ds L L ds ds In FDTD, i is mos convenien o seup ou inegaing suface o be a ecangle. oweve, in D he closed suface can be educed o a closed line. Lecue 4 lide 50 5

26 11/14/018 uface Inegals o Line Inegals ( of ) We mus wie ou inegaions as closed line inegals. ds d Given ha ou inegaing line is a ecangle, we divide his ino fou sepaae odina inegals. d d d 1 1 low side high side 1 1 d d high side low side low high 1 1 low high Lecue 4 lide 51 Oienaion of he uface Cuens (1 of 3) We have defined he suface cuens o be flowing in a common diecion. J, M J, M J, M J, M Lecue 4 lide 5 6

27 11/14/018 7 Lecue 4 lide 53 Oienaion of he uface Cuens ( of 3) oweve, his is no he inheen diecionali calculaed on he Yee gid., J M, J M, J M, J M Lecue 4 lide 54 Oienaion of he uface Cuens (3 of 3) We have o oae he suface cuen vecos abou he suface nomal., J M, J M, J M, J M ˆn ˆn ˆn ˆn

28 11/14/018 Roaion of uface Cuen Tems Based on his line of easoning, we mus oae ou suface cuen ems in wo of he line segmen inegals. 1 1 d d d d d 1 1 low side high side high side low side R180 R180 J, M ˆn ˆn J, M Flip sign of J, J, M, and M Flip sign of J, J, M, and M Lecue 4 lide 55 Wie Inegals as andad Inegals The las wo inegals ae calculaed fom b o a. To aive a a moe saighfowad numeical implemenaion, he ode of inegaion is evesed. When his is done, he sign of he inegal changes. 1 1 d d d d d 1 1 low side high side high side low side R180 R180 d dd d 1 R low side high side high side d 1 low side R 180 Lecue 4 lide 56 8

29 11/14/018 Final Equaions fo D Analsis Appling all of his o ou oiginal suface inegal equaions fo N() and L(), we ge kcos kcos kcos kcos N J e d J e d J e d J e d low side high side high side low side kcos N JcosJsine d 1 L 1 low side high side kcos cos sin cos sin 1 1 kcos JcosJsin e d kcos J J e d J J e d high side low side kcos kcos kcos kcos Me low side high side high side low side kcos L M M e d cos sin d M e d M e d M e d kcos M cosmsin e d 1 1 low side high side kcos cos sin cos sin 1 1 high side low side Lecue 4 lide 57 kcos M M e d M M e d implificaions fo E and Modes E Mode E E ˆ a aˆ aˆ Mode E Eaˆ Eaˆ aˆ E E 0 E 0 J s na na a a Js na na a M n a n a E a M na na Ea Ea ˆ ˆ ˆ ˆ ˆ ˆ ˆ s J n n aˆ M neaˆ neaˆ s s ˆ ˆ ˆ ˆ ˆ ˆ ˆ s J naˆ naˆ M ne ne aˆ s s J J M 0 M M J 0 Lecue 4 lide 58 9

30 11/14/018 N(,) and L(,) fo he E Mode Given all of he simplificaions on he pevious slide, ou epessions fo N(,) and L(,) educe o 0 0 kcos kcos kcos kcos low side high side high side low side N e d e d e d e d N L kcos kcos cos Ee 1 1 low side high side kcos kcos cos 1 1 high side low side L sin E e d d sin E e d E e d Lecue 4 lide 59 N(,) and L(,) fo he Mode Given all of he simplificaions on he pevious slide, ou epessions fo N(,) and L(,) educe o N 0 kcos kcos cos 1 1 low side high side kcos kcos cos 1 1 high side low side N sin e d e d L L sin e d e d kcos kcos kcos kcos E e d E e d E e d E e d low side high side high side low side Lecue 4 lide 60 30

31 11/14/018 E(,) and (,) fo D Analsis Given ha N = L = 0 fo he E mode and N = L = 0 fo he mode, he elecomagneic fa fields fo each mode ae calculaed as E k ke N 4 L E 0 0 E Mode ke 4 k L N E 0 k ke E N L 4 0 Mode ke 4 k L N Lecue 4 lide 61 P ad (,) and RC(,) fo D Analsis E Mode 1 k Pad N L 4 RC Mode k 8P inc inc N L 1 k Pad N L 4 RC k 8P N L Lecue 4 lide 6 31

32 11/14/018 Inciden Powe P inc The powe in a unifom plane wave is calculaed as 1 E 1 Pinc Assuming a uni ampliude plane wave souce, P inc educes o 0.5 fo E 1 Pinc 0.5 fo 1 Assuming a uni ampliude plane wave souce, P inc educes o P inc 1 0 E Mode wih E 1 P inc 0 Mode wih 1 Lecue 4 lide 63 Flow of Equaions fo E Mode NFFF Loop ove all values of a) Inegae o calculae N and L in he fa field kcos kcos kcos kcos N e d e d e d e d low side high side high side low side kcos sin 1 low side kcos kcos kcos L E e dcos E e d sin E e d cos E e d high side high side low side b) Calculae E and in he fa field fom N and L (if desied) ke ke E N L N 4 4 k k L c) Calculae P ad and RC fom N and L (if desied) 1 k k Pad N L RC N L 4 8 Pinc Lecue 4 lide 64 3

33 11/14/018 Flow of Equaions fo Mode NFFF Loop ove all values of a) Inegae o calculae N and L in he fa field kcos L Ee d 1 kcos kcos kcos kcos N sin e dcos e dsin e dcos e d low side high side high side low side k cos k cos k cos E e d E e d E e d low side high side high side low side b) Calculae E and in he fa field fom N and L (if desied) k k ke ke L E N L N 4 4 c) Calculae P ad and RC fom N and L (if desied) 1 k k Pad N L RC N L 4 8 Pinc Lecue 4 lide 65 Implemenaion Lecue 4 lide 66 33

34 11/14/018 ep 1 eup he Gid 3D Gid PML D Gid TF/F Ineface caeing Obec Noe ha he nea field suface is locaed wihin he scaeed field egion. Lecue 4 lide 67 ep imulae o Ge ead ae Field 3D Gid D Gid Calculae sead sae field along The sead sae field fom FDTD is he same daa ha would be geneaed if simulaed b finie diffeence fequenc domain (FDFD). Lecue 4 lide 68 34

35 11/14/018 ep imulae o Ge ead ae Field Below is MATLAB code fom inside he main FDTD loop ha updaes he Fouie ansfom acoss he enie gid a a single fequenc defined b he kenel K. The Fouie ansfom of he souce a his same fequenc is also calculaed. % Updae Fouie Tansfoms FT_E = FT_E + (K^T*d)*E; FT_ = FT_ + (K^T*d)*; FT_ = FT_ + (K^T*d)*; FT_ = FT_ + (K^T*d)*0(nc,nc); Afe he main FDTD loop has finished, he Fouie ansfoms ae nomalied o souce using he follow code: % NORMALIZE FOURIER TRANFORM FT_E = FT_E/FT_; FT_ = FT_/FT_; FT_ = FT_/FT_; Lecue 4 lide 69 ep 3 Inepolae Field Quaniies Along We need o inepolae he field quaniies in each Yee cell a a common poin. I is convenien o choose he oigin of each cell as he common poin. E E E, k, k, k, k, k, k 1,,,, E i k E i k E i k E i k E i k E i k, 1,,,,, 1,,, 1, 1, 1,,, 1,, i k i k i k i k 4 i k i k i k i k 4 i k i k i k i k 4 1,, 1 1,,,, 1,, 1, 1, 1,,, 1,,, Lecue 4 lide 70 35

36 11/14/018 ep 3 Inepolae Field Quaniies Along Fo D simulaions, he inepolaion equaions educe o E Mode E i E i,, 1 i i 1,, % INTERPOLATE FIELD TO ORIGIN OF YEE CELL ie = FT_E; i = 0.5*FT_; i(:,:n) = 0.5*(FT_(:,1:N-1)... + FT_(:,:N)); i = 0.5*FT_; i(:n,:) = 0.5*(FT_(1:N-1,:)... + FT_(:N,:)); Mode 1, 1 1,, 1, i i i i 4 Ei1, E E E 1 E E Lecue 4 lide 71 ep 4 Calculae N and L b Inegaing Fields Along We pick a ange of values fo, usuall < <. Fo each value of we inegae E and aound he conou. E Mode Mode kcos kcos kcos kcos low side high side high side low side kcos kcos kcos kcos sin cos sin cos low side high side high side low side N e d e d e d e d L E e d E e d E e d E e d kcos kcos kcos kcos low side high side high side low side N sin e dcos e dsin e dcos e d kcos k cos k cos k cos L Ee d Ee d Ee d Ee d low side high side high side low side Lecue 4 lide 7 36

37 11/14/018 Block Diagam fo caeing Analsis (1 of 3) a Iniialie MATLAB Dashboad ouce NFFF Device Gid Calculae Gid N, N, d, d Build Device ER, ER, ER, UR, UR, UR Compue ouce Paamees d, au, ns, ns, T0, k, k, ec. Compensae fo Numeical Dispesion Iniialie FDTD Fields BC s This sep onl calculaes souce paamees, no he souce funcions. Those ae calculaed in he main FDTD loop. Culs Inegaions Lecue 4 lide 73 Block Diagam fo caeing Analsis ( of 3) es Finish Fouie Tansfoms Done? no ime Compue Cul of E CE, CE, CE andle TF/F CE, CE, CE Updae Inegaions Compue Cul of C, C, C andle TF/F C, C, C Updae Inegaions Updae E Updae Fouie Tansfoms Visualie imulaion Updae Updae D This is he odina main loop fo FDTD ecep he TF/F and calculaing Fouie ansfoms whee he NFFF is o be calculaed. Lecue 4 lide 74 37

38 11/14/018 Block Diagam fo caeing Analsis (3 of 3) Inepolae Fields o Oigin of Yee Cells Denomalie E E E 0 Iniialie NFFF N, N, N, 0 L, L, L, 0 E, E, 0,, 0 P, RC, 0 ad All following calculaions should use he inepolaed and denomalied field values. Inegae Aound Peimee N, N, N, L, L, L Calculae Fields (if desied) E, E,, Calculae RC (if desied) P ad,rc Done? no & es how Resuls Finish Lecue 4 lide 75 igh Level Code fo Loop % CALCULATE N AND L = 10*ma(,); PI = linspace(-ppnpi); fo nphi = 1 : NPI end % Ne Phi Angle phi = PI(nphi); n = [ cos(phi) ; sin(phi) ]; % lo apeoidal inegaion... % hi apeoidal inegaion... % hi apeoidal inegaion... % lo apeoidal inegaion... Lecue 4 lide 76 38

39 11/14/018 Eample Code fo Inegaion kcos kcos kcos kcos N e d e d e d e d low side high side high side low side kcos kcos kcos kcos sin cos Ee dsin Ee dcos Ee d low side high side high side low side L E e d Noe: na and nb ae he lef and igh aa indices of. na and nb ae he op and boom aa indices of. % lo apeoidal inegaion N = 0; L = 0; n = na; fo n = na : nb p = [ a(n) ; a(n) ]; e = ep(-1i*k0*do(n,p)); iw = 1 - ((n==na) + (n==nb))/; N = N + iw*(n,n)*e; L = L + iw*e(n,n)*e; end Nh(nphi) = Nh(nphi) - N*d; Lphi(nphi) = Lphi(nphi) - sin(phi)*l*d; Lecue 4 lide 77 imulaion Eamples Lecue 4 lide 78 39

40 11/14/018 Eample #1: caeing fom a Dielecic Clinde The Poblem Wha is he RC of a dielecic clinde wih adius and dielecic consan of = 4.0? Lecue 4 lide 79 Eample #1: caeing fom a Dielecic Clinde The imulaion (E Mode) The imulaion ( Mode) PML PML Inegaing suface Inegaing suface TF/F ineface TF/F ineface PML PML PML PML caee caee PML PML Lecue 4 lide 80 40

41 11/14/018 Eample #1: caeing fom a Dielecic Clinde The uface Cuens (E Mode) Lecue 4 lide 81 Eample #1: caeing fom a Dielecic Clinde The uface Cuens ( Mode) Lecue 4 lide 8 41

42 11/14/018 Eample #1: caeing fom a Dielecic Clinde N and L Funcions (E Mode) Lecue 4 lide 83 Eample #1: caeing fom a Dielecic Clinde N and L Funcions ( Mode) Lecue 4 lide 84 4

43 11/14/018 Eample #1: caeing fom a Dielecic Clinde E and Fields (E Mode) Lecue 4 lide 85 Eample #1: caeing fom a Dielecic Clinde E and Fields ( Mode) Lecue 4 lide 86 43

44 11/14/018 Eample #1: caeing fom a Dielecic Clinde RC (E Mode) RC ( Mode) Lecue 4 lide 87 44

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch Two-dimensional Effecs on he CS Ineacion Foces fo an Enegy-Chiped Bunch ui Li, J. Bisognano,. Legg, and. Bosch Ouline 1. Inoducion 2. Pevious 1D and 2D esuls fo Effecive CS Foce 3. Bunch Disibuion Vaiaion

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

r r r r r EE334 Electromagnetic Theory I Todd Kaiser 334 lecoagneic Theoy I Todd Kaise Maxwell s quaions: Maxwell s equaions wee developed on expeienal evidence and have been found o goven all classical elecoagneic phenoena. They can be wien in diffeenial

More information

Orthotropic Materials

Orthotropic Materials Kapiel 2 Ohoopic Maeials 2. Elasic Sain maix Elasic sains ae elaed o sesses by Hooke's law, as saed below. The sesssain elaionship is in each maeial poin fomulaed in he local caesian coodinae sysem. ε

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

Finite Difference Time Domain

Finite Difference Time Domain 11/9/016 5303 lecromagneic Analsis Using Finie Difference Time Domain Lecure #3 Finie Difference Time Domain Lecure 3 These noes ma conain coprighed maerial obained under fair use rules. Disribuion of

More information

Implementation of RCWA

Implementation of RCWA Instucto D. Ramond Rumpf (915) 747 6958 cumpf@utep.edu EE 5337 Computational Electomagnetics Lectue # Implementation of RCWA Lectue These notes ma contain copighted mateial obtained unde fai use ules.

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

B da = 0. Q E da = ε. E da = E dv

B da = 0. Q E da = ε. E da = E dv lectomagnetic Theo Pof Ruiz, UNC Asheville, doctophs on YouTube Chapte Notes The Maxwell quations in Diffeential Fom 1 The Maxwell quations in Diffeential Fom We will now tansfom the integal fom of the

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence C 188: Aificial Inelligence Fall 2007 obabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Lecue 15: Bayes Nes 10/18/2007 Given a join disibuion, we can eason abou unobseved vaiables

More information

Chapter 2 Wave Motion

Chapter 2 Wave Motion Lecue 4 Chape Wae Moion Plane waes 3D Diffeenial wae equaion Spheical waes Clindical waes 3-D waes: plane waes (simples 3-D waes) ll he sufaces of consan phase of disubance fom paallel planes ha ae pependicula

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

Review and Walkthrough of 1D FDTD

Review and Walkthrough of 1D FDTD 6//8 533 leomagnei Analsis Using Finie Diffeene Time Domain Leue #8 Review and Walhough of D FDTD Leue 8These noes ma onain opighed maeial obained unde fai use ules. Disibuion of hese maeials is sil pohibied

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster The -fileing pplied o Wave lecic and Magneic Field Measuemens fom Cluse Jean-Louis PINÇON and ndes TJULIN LPC-CNRS 3 av. de la Recheche Scienifique 4507 Oléans Fance jlpincon@cns-oleans.f OUTLINS The -fileing

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

An Automatic Door Sensor Using Image Processing

An Automatic Door Sensor Using Image Processing An Auomaic Doo Senso Using Image Pocessing Depamen o Elecical and Eleconic Engineeing Faculy o Engineeing Tooi Univesiy MENDEL 2004 -Insiue o Auomaion and Compue Science- in BRNO CZECH REPUBLIC 1. Inoducion

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

POISSON S EQUATION 2 V 0

POISSON S EQUATION 2 V 0 POISSON S EQUATION We have seen how to solve the equation but geneally we have V V4k We now look at a vey geneal way of attacking this poblem though Geen s Functions. It tuns out that this poblem has applications

More information

EE 5337 Computational Electromagnetics

EE 5337 Computational Electromagnetics Instucto D. Ramond Rumpf (95) 747 6958 cumpf@utep.edu EE 5337 Computational Electomagnetics Lectue # WEM Etas Lectue These notes ma contain copighted mateial obtained unde fai use ules. Distibution of

More information

Chapter 2: The Derivation of Maxwell Equations and the form of the boundary value problem

Chapter 2: The Derivation of Maxwell Equations and the form of the boundary value problem Chape : The eiaion of Mawell quaions and he fom of he bounda alue poblem In moden ime, phsics, including geophsics, soles eal-wold poblems b appling fis pinciples of phsics wih a much highe capabili han

More information

Chapter 7. Interference

Chapter 7. Interference Chape 7 Inefeence Pa I Geneal Consideaions Pinciple of Supeposiion Pinciple of Supeposiion When wo o moe opical waves mee in he same locaion, hey follow supeposiion pinciple Mos opical sensos deec opical

More information

Energy dispersion relation for negative refraction (NR) materials

Energy dispersion relation for negative refraction (NR) materials Enegy dispesion elaion fo negaive efacion (NR) maeials Y.Ben-Ayeh Physics Depamen, Technion Isael of Technology, Haifa 3, Isael E-mail addess: ph65yb@physics.echnion,ac.il; Fax:97 4 895755 Keywods: Negaive-efacion,

More information

Advanced FDTD Algorithms

Advanced FDTD Algorithms EE 5303 Elecromagneic Analsis Using Finie Difference Time Domain Lecure #5 Advanced FDTD Algorihms Lecure 5 These noes ma conain coprighed maerial obained under fair use rules. Disribuion of hese maerials

More information

Authors name Giuliano Bettini* Alberto Bicci** Title Equivalent waveguide representation for Dirac plane waves

Authors name Giuliano Bettini* Alberto Bicci** Title Equivalent waveguide representation for Dirac plane waves Auhos name Giuliano Beini* Albeo Bicci** Tile Equivalen waveguide epesenaion fo Diac plane waves Absac Ideas abou he elecon as a so of a bound elecomagneic wave and/o he elecon as elecomagneic field apped

More information

Non-sinusoidal Signal Generators

Non-sinusoidal Signal Generators Non-sinusoidal Signal Geneaos ecangle, iangle, saw ooh, pulse, ec. Muliibao cicuis: asable no sable saes (wo quasi-sable saes; i emains in each sae fo pedeemined imes) monosable one sable sae, one unsable

More information

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines. Mah A Final Eam Problems for onsideraion. Show all work for credi. Be sure o show wha you know. Given poins A(,,, B(,,, (,, 4 and (,,, find he volume of he parallelepiped wih adjacen edges AB, A, and A.

More information

This is an example to show you how SMath can calculate the movement of kinematic mechanisms.

This is an example to show you how SMath can calculate the movement of kinematic mechanisms. Dec :5:6 - Kinemaics model of Simple Arm.sm This file is provided for educaional purposes as guidance for he use of he sofware ool. I is no guaraeed o be free from errors or ommissions. The mehods and

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION FINITE DIFFERENCE ROCH TO WVE GUIDE MODES COMUTTION Ing.lessando Fani Elecomagneic Gou Deamen of Elecical and Eleconic Engineeing Univesiy of Cagliai iazza d mi, 93 Cagliai, Ialy SUMMRY Inoducion Finie

More information

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u Genealized Mehods of Momens he genealized mehod momens (GMM) appoach of Hansen (98) can be hough of a geneal pocedue fo esing economics and financial models. he GMM is especially appopiae fo models ha

More information

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes omewok # P7-3 ecngul loop of widh w nd heigh h is siued ne ve long wie cing cuen i s in Fig 7- ssume i o e ecngul pulse s shown in Fig 7- Find he induced cuen i in he ecngul loop whose self-inducnce is

More information

Engineering Accreditation. Heat Transfer Basics. Assessment Results II. Assessment Results. Review Definitions. Outline

Engineering Accreditation. Heat Transfer Basics. Assessment Results II. Assessment Results. Review Definitions. Outline Hea ansfe asis Febua 7, 7 Hea ansfe asis a Caeo Mehanial Engineeing 375 Hea ansfe Febua 7, 7 Engineeing ediaion CSUN has aedied pogams in Civil, Eleial, Manufauing and Mehanial Engineeing Naional aediing

More information

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis ect_patch_cavit.doc Page 1 of 1 Micostip Antennas- Rectangula Patch Chapte 14 in Antenna Theo, Analsis and Design (4th dition) b Balanis Cavit model Micostip antennas esemble dielectic-loaded cavities

More information

Pressure Vessels Thin and Thick-Walled Stress Analysis

Pressure Vessels Thin and Thick-Walled Stress Analysis Pessue Vessels Thin and Thick-Walled Sess Analysis y James Doane, PhD, PE Conens 1.0 Couse Oveview... 3.0 Thin-Walled Pessue Vessels... 3.1 Inoducion... 3. Sesses in Cylindical Conaines... 4..1 Hoop Sess...

More information

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can. 1 Cicula Moion Radians One evoluion is equivalen o 360 0 which is also equivalen o 2π adians. Theefoe we can say ha 360 = 2π adians, 180 = π adians, 90 = π 2 adians. Hence 1 adian = 360 2π Convesions Rule

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Support Vector Machines

Support Vector Machines Suppo Veco Machine CSL 3 ARIFICIAL INELLIGENCE SPRING 4 Suppo Veco Machine O, Kenel Machine Diciminan-baed mehod olean cla boundaie Suppo veco coni of eample cloe o bounday Kenel compue imilaiy beeen eample

More information

Physics 122, Fall October 2012

Physics 122, Fall October 2012 hsics 1, Fall 1 3 Octobe 1 Toda in hsics 1: finding Foce between paallel cuents Eample calculations of fom the iot- Savat field law Ampèe s Law Eample calculations of fom Ampèe s law Unifom cuents in conductos?

More information

WORK POWER AND ENERGY Consevaive foce a) A foce is said o be consevaive if he wok done by i is independen of pah followed by he body b) Wok done by a consevaive foce fo a closed pah is zeo c) Wok done

More information

ln 2 1 ln y x c y C x

ln 2 1 ln y x c y C x Lecure 14 Appendi B: Some sample problems from Boas Here are some soluions o he sample problems assigned for Chaper 8 8: 6 Soluion: We wan o find he soluion o he following firs order equaion using separaion

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

2 Electromagnetic Theory, Antennas, and Numerical Methods.

2 Electromagnetic Theory, Antennas, and Numerical Methods. lecomagneic Theo, nenna, and Numeical Mehod. The impoance of cience i eviden in eveda life. Fom he heavie and poweful moo o he malle anio, ued in oda' micochip, he elecomagneic cience pla an impoan ole

More information

2-d Motion: Constant Acceleration

2-d Motion: Constant Acceleration -d Moion: Consan Acceleaion Kinemaic Equaions o Moion (eco Fom Acceleaion eco (consan eloci eco (uncion o Posiion eco (uncion o The eloci eco and posiion eco ae a uncion o he ime. eloci eco a ime. Posiion

More information

Windowing and Grid Techniques

Windowing and Grid Techniques EE 533 Elecromagneic Analsis Using Finie Difference Time Domain Lecure #12 Windowing and Grid Techniques Lecure 12 These noes ma conain coprighed maerial obained under fair use rules. Disribuion of hese

More information

Projection of geometric models

Projection of geometric models ojecion of geomeic moels Eie: Yeh-Liang Hsu (998-9-2); ecommene: Yeh-Liang Hsu (2-9-26); las upae: Yeh-Liang Hsu (29--3). Noe: This is he couse maeial fo ME55 Geomeic moeling an compue gaphics, Yuan Ze

More information

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN D. Keffe - ChE 40: Hea Tansfe and Fluid Flow Deamen of Chemical Enee Uniesi of Tennessee Pof. Daid Keffe Couse Lecue Noes SIXTEEN SECTION.6 DIFFERENTIL EQUTIONS OF CONTINUITY SECTION.7 DIFFERENTIL EQUTIONS

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole ignen 6 Soluion - Hydogen ga i oed a high peue in a ecangula conaine (--hick wall). Hydogen concenaion a he inide wall i kole / and eenially negligible on he ouide wall. The B fo hydogen in eel i.6 / ec

More information

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4 Fouie tansfom pais: f(x) 1 f(k) e p 2 (k) p e iax 2 (k a) 2 e a x a a 2 + k 2 e a2 x 1 2, a > 0 a p k2 /4a2 e 2 1 H(x) ik p 2 + 2 (k) The fist few Y m Y 0 0 = Y 0 1 = Y ±1 1 = l : 1 Y2 0 = 4 3 ±1 cos Y

More information

Projection of geometric models

Projection of geometric models ojecion of geomeic moels Copigh@, YZU Opimal Design Laboao. All ighs eseve. Las upae: Yeh-Liang Hsu (-9-). Noe: his is he couse maeial fo ME55 Geomeic moeling an compue gaphics, Yuan Ze Univesi. a of his

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 ps 57 Machne Leann School of EES Washnon Sae Unves ps 57 - Machne Leann Assume nsances of classes ae lneal sepaable Esmae paamees of lnea dscmnan If ( - -) > hen + Else - ps 57 - Machne Leann lassfcaon

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , PART A PHYSICS

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,  PART A PHYSICS Pena Towe, oad No, Conacos Aea, isupu, Jamshedpu 83, Tel (657)89, www.penaclasses.com AIEEE PAT A PHYSICS Physics. Two elecic bulbs maked 5 W V and W V ae conneced in seies o a 44 V supply. () W () 5 W

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Green s Identities and Green s Functions

Green s Identities and Green s Functions LECTURE 7 Geen s Identities and Geen s Functions Let us ecall The ivegence Theoem in n-dimensions Theoem 7 Let F : R n R n be a vecto field ove R n that is of class C on some closed, connected, simply

More information

Transfer Matrix Method

Transfer Matrix Method 9/6/17 Instucto D. Ramond Rumpf (915) 747 6958 cumpf@utep.edu 5337 Computational lectomagnetics Lectue #4 Tansfe Mati Method Lectue 4These notes ma contain copighted mateial obtained unde fai use ules.

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

The Perfectly Matched Layer (PML)

The Perfectly Matched Layer (PML) 9/13/216 EE 533 Electomagnetic Analsis Using Finite Diffeence Time Domain Lectue #13 The Pefectl Matched Lae (PML) Lectue 13 These notes ma contain copighted mateial obtained unde fai use ules. Distibution

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise

Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise COM47 Inoducion o Roboics and Inelligen ysems he alman File alman File: an insance of Bayes File alman File: an insance of Bayes File Linea dynamics wih Gaussian noise alman File Linea dynamics wih Gaussian

More information

Monochromatic Wave over One and Two Bars

Monochromatic Wave over One and Two Bars Applied Mahemaical Sciences, Vol. 8, 204, no. 6, 307-3025 HIKARI Ld, www.m-hikai.com hp://dx.doi.og/0.2988/ams.204.44245 Monochomaic Wave ove One and Two Bas L.H. Wiyano Faculy of Mahemaics and Naual Sciences,

More information

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT Link to: phsicspages home page. To leave a comment o epot an eo, please use the auilia blog. Refeence: d Inveno, Ra, Intoducing Einstein s Relativit

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

DERIVATION OF LORENTZ TRANSFORMATION EQUATIONS AND THE EXACT EQUATION OF PLANETARY MOTION FROM MAXWELL AND NEWTON Sankar Hajra

DERIVATION OF LORENTZ TRANSFORMATION EQUATIONS AND THE EXACT EQUATION OF PLANETARY MOTION FROM MAXWELL AND NEWTON Sankar Hajra PHYSICAL INTERPRETATION OF RELATIVITY THEORY CONFERENCE, LONDON, 4 DERIVATION OF LORENTZ TRANSFORMATION EQUATIONS AND THE EXACT EQUATION OF PLANETARY MOTION FROM MAXWELL AND NEWTON Sanka Haja CALCUTTA

More information

MECHANICS OF MATERIALS Poisson s Ratio

MECHANICS OF MATERIALS Poisson s Ratio Fouh diion MCHANICS OF MATRIALS Poisson s Raio Bee Johnson DeWolf Fo a slende ba subjeced o aial loading: 0 The elongaion in he -diecion is accompanied b a conacion in he ohe diecions. Assuming ha he maeial

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II.

( ) ( )( ) ˆ. Homework #8. Chapter 27 Magnetic Fields II. Homewok #8. hapte 7 Magnetic ields. 6 Eplain how ou would modif Gauss s law if scientists discoveed that single, isolated magnetic poles actuall eisted. Detemine the oncept Gauss law fo magnetism now eads

More information

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS PHYS 54 - GENERAL RELATIVITY AND COSMOLOGY - 07 - PROBLEM SET 7 - SOLUTIONS TA: Jeome Quinin Mach, 07 Noe ha houghou hee oluion, we wok in uni whee c, and we chooe he meic ignaue (,,, ) a ou convenion..

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

KINGS UNIT- I LAPLACE TRANSFORMS

KINGS UNIT- I LAPLACE TRANSFORMS MA5-MATHEMATICS-II KINGS COLLEGE OF ENGINEERING Punalkulam DEPARTMENT OF MATHEMATICS ACADEMIC YEAR - ( Even Semese ) QUESTION BANK SUBJECT CODE: MA5 SUBJECT NAME: MATHEMATICS - II YEAR / SEM: I / II UNIT-

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Fundamenal Jounal of Mahemaical Phsics Vol 3 Issue 013 Pages 55-6 Published online a hp://wwwfdincom/ MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH Univesias

More information

Stress Analysis of Infinite Plate with Elliptical Hole

Stress Analysis of Infinite Plate with Elliptical Hole Sess Analysis of Infinie Plae ih Ellipical Hole Mohansing R Padeshi*, D. P. K. Shaa* * ( P.G.Suden, Depaen of Mechanical Engg, NRI s Insiue of Infoaion Science & Technology, Bhopal, India) * ( Head of,

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information