Mathematica examples relevant to Legendre functions

Size: px
Start display at page:

Download "Mathematica examples relevant to Legendre functions"

Transcription

1 Mathematica eamples relevant to Legendre functions Legendre Polynomials are built in Here is Legendre s equation, and Mathematica recognizes as being solved by Legendre polynomials (LegendreP) and the second solution (LegendreQ) DSolve@H ^ L y ''@D y '@D + n Hn + L y@d, y@d, D y@d C@D LegendreP@n, D + C@D LegendreQ@n, D<< Evaluating and plotting first few Legendre polynomials Table@n, LegendreP@n, D<, n,, 6<D TableForm 4 6 H + L H + L H + 4 L H L I M legto = Table@LegendreP@n, D, n,, <D :,, I + M, I + M> Plot of first 4 Legendre Polynomials

2 <, PlotStyle Thick, Red<, Thick, Green<, Thick, Blue<, Thick, Black<<, LabelStyle "Medium", AesLabel, P<, PlotLabel "First 4 Legendre Polynomials"D First 4 Legendre Polynomials P Normalization and orthogonality LegendreP@n, D Integrate@LegendreP@, D LegendreP@, D,,, <D The other Legendre solutions (which diverge at =, ) These are the second solutions to Legendre s equation, usually denoted Q LegendreQ@, D Log@ D + Log@ + D LegendreQ@, D + Log@ D + Log@ + D LegendreQ@, D + I + M Log@ D + Log@ + D LegendreQ@, D I M Log@ D + Log@ + D

3 D, D, D, D<,,, <, PlotStyle Thick, Red<, Thick, Green<, Thick, Blue<, Thick, Black<<, PlotLabel "Second solutions l=,,,"d Second solutions l=,,,.... Checking Generating Function _D := h + h ^ D Series@phi@h, D, h,, 6<D +h+ + h + I M h h + I + 4 M h4 + I M h6 + O@hD7 Compare to see that the coefficient on h^n is indeed P_n Table@SeriesCoefficient@phi@h, D, h,, l<d Simplify, LegendreP@l, D<, l,, 6<D TableForm H + L H + L H + 4 L H L I M H + L H + L H + 4 L H L I M The Simple Eamples of Legendre Polynomials in Physics The a single charged particle s ' l= = S Hr'Ll l+ l= r r potential can be written in terms of Legendre Prolynomials: Pl HcosΓL where cosγ is the angle between (the position vector to the point of observation) and ' (the position vector to the point where the charge is located). This series is only convergent for r>r (away from the source).

4 4 l= ' = S Hr'Ll l+ l= r Pl HcosΓL where cosγ is the angle between (the position vector to the point of observation) and ' (the position vector to the point where the charge is located). This series is only convergent for r>r (away from the source). A simple case is a point charge shifted off of the origin at point (,). Looking at the slice at y=, cosγ=/+ depending if you are on the right or the left of the point charge, in other words cosγ=sign[]. Lastly we can simplify because the Legendre Polynomials are normalized Pl HL = and are even/odd for even/odd l. This means we can replace LegendreP[l,Sign[]] with just (Sign[])^l ManipulateBPlotB: H + L, SumB l+ H Sign@DLl, l,, ll<f>,,, <, PlotRange., <, AspectRatio, PlotLegends :" Ó Ó ' l=ll ", " S l= Hr 'Ll r l+ Pl HcosΓL">, PlotStyle Orange, Blue<F, ll,,, <F ll.. '. l=ll S Hr'Ll l+ l= r Pl HcosΓL. As we add higher moments the approimation becomes better in the region r>r. To see this in D:

5 ManipulateB PlotDB: H + L + y, SumB LegendrePBl, l+ + y +y,, <, y,, <, AspectRatio, PlotRange,.<, PlotStyle Orange, Blue<, PlotLegends :" Ó Ó ' l=ll ", " S l= Hr 'Ll r l+ F, l,, ll<f>, Pl HcosΓL">F, ll,,, <F ll.4 ' l=ll S.. Hr'Ll l+ l= r Pl HcosΓL For a slightly more interesting eample, we can look at a physical dipole, with a positive charge at (,) and a negative charge at (,). Again in a y= slice, adding the Legendre polynomial for each term by term looks like Pl HSign@DL Pl HSign@DL For any even l, this will vanish and for odd l it will equal *Sign[]. This makes sense because the charge distribution is odd along the ais. Considering there is no net charge it makes sense there will be no monopole term.

6 6 ManipulateBPlotB: H + L H L, SumB l+ H * Sign@DL, l,, ll, <F>,,, <, PlotRange, <, AspectRatio, PlotStyle Orange, Blue<, PlotLegends "Eact", "Sum up to ll"<f, ll,,, <F ll 4 Eact 4 Sum up to ll

7 ManipulateBPlotDB: H + L + y H L + y l+ +y +y, SumB F LegendrePBl, LegendrePBl, 7 F, l,, ll, <F>, +y,, <, y,, <, AspectRatio, PlotRange.,.<, PlotStyle Orange, Blue<, PlotLegends "Eact", "Sum up to ll"<f, ll,,, <F ll. Eact Sum up to ll.. To get an idea of how quickly the sum converges, lets look at the Log of the absolute value of the differences, dipoleres@_, y_, ll_d := LogBAbsB H + L + y LegendrePBl, l+ +y +y H L + y F LegendrePBl, SumB +y F, l,, ll, <FFF

8 y, lld,,, <, y,, <, AspectRatio, PlotRange 4, <, PlotLegends Sum up to lldd"<d, ll,,, <D ll Sum up to lldd 4 We see it converges quickly and tends to be a better approimation for larger r. We can also see if we bring the two point charges closer to the origin, the l= dipole term becomes eact. This is the same as if we were zooming out, observing from greater r.

9 ManipulateBPlotB: H + ΕL Ε H ΕL, H Sign@DL>,,, <, PlotRange, <, AspectRatio, PlotStyle Orange, Blue<, PlotLegends "Eact", "Sum up to ll"<f, Ε,, <F Ε Eact Sum up to ll Eample of Legendre series for step function (Boas Sec. 9.) Here are the series coefficients. Step function is implemented by integrating from to. In[]:= c@n_d := Integrate@LegendreP@n, D,,, <D H n + L 9

10 In[]:= n,, 7<D TableForm Out[]//TableForm= 4 In[4]:= In[]:= legsum@_, m_d := Epand@Sum@c@nD LegendreP@n, D, n,, m<dd legsum@_d = legsum@, D + Out[]= In[6]:= 4 legsum7@_d = legsum@, 7D In[7]:= Out[6]= legsum@_d = legsum@, D; Caution! When Mathematica is working with large polynoimials with large coefficents that require eact cancelations, sometimes Mathematica will not give the correct answer due to not working to high enough numerical precision. When working with a decimal, In[]:= Out[]= legsum@.9d. When keeping it as a fraction In[9]:= Out[9]= In[4]:= Out[4]= legsum@9 D % N.994

11 Plot of approimation with up to P_, P_7 and P_ In[4]:= WorkingPrecision, PlotStyle Thick, Blue<, Thick, Green<, Thick, Red<<, PlotRange >, <, LabelStyle "Large", PlotLabel "Legendre series for a step", PlotLegends :" S cl Pl HL", " S cl Pl HL", " S cl Pl HL">F l= l=7 l= l= l= l= Legendre series for a step.... Out[4]= S cl Pl HL l= l= S cl Pl HL l=7 l= S cl Pl HL l= l= Lets play with this a little more (caution, very large values of l may cause Mathematica to slow down as l the lth polynomial has ~ + terms (rounded down)

12 In[4]:= ldd<,,, <, WorkingPrecision, PlotStyle Thick, Blue<, Thick, Green<, Thick, Red<<, PlotRange >, <, PlotLegends " S cl Pl HL"F, l,,, <F l=ll l= l... Out[4]= S cl Pl HL l=ll. l= Integrate::ilim : Invalid integration variable or limithsl in.99999,, <. Integrate::ilim : Invalid integration variable or limithsl in.994,, <. Integrate::ilim : Invalid integration variable or limithsl in.96,, <. General::stop : Further output of Integrate::ilim will be suppressed during this calculation. Associated Legendre polynomials Pm n HL is given by LegendreP[n,m,] m Note that Pn HL is the same as Pn HL, and that Pm n HL and Pn HL are proportional. tabassoc@n_d := Table@n, m, LegendreP@n, m, D<, m, n, n<d tabassoc@d TableForm

13 TableForm H L H + L H + L Plot@LegendreP@,, D, LegendreP@,, D<,,, <, PlotStyle Thick, Blue<, Thick, Green<, Thick, Red<<, PlotLabel "Associated Legendres for n="d Associated Legendres for n= Plot@LegendreP@,, D, LegendreP@,, D, LegendreP@,, D<,,, <, PlotStyle Thick, Blue<, Thick, Green<, Thick, Red<<, PlotLabel "Associated Legendres for n="d Associated Legendres for n=....

Lecture 22 Appendix B (More on Legendre Polynomials and Associated Legendre functions)

Lecture 22 Appendix B (More on Legendre Polynomials and Associated Legendre functions) Lecture Appendix B (More on Legendre Polynomials and Associated Legendre functions) Ex.7: Let's use Mathematica to solve the equation and then verify orthogonality. First In[]:= Out[]= DSolve y'' x n^y

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

ME201/MTH21/ME400/CHE400 ASSIGNMENT #7 PROBLEM 1 Newton's Law of Cooling in Transient Conduction 1. Introduction This notebook uses Mathematica to solve problem 1 of Assignment #7, in which we analyze

More information

Chapter 6. Legendre and Bessel Functions

Chapter 6. Legendre and Bessel Functions Chapter 6 Legendre and Bessel Functions Legendre's Equation Legendre's Equation (order n): legendre d K y''k y'c n n C y = : is an important ode in applied mathematics When n is a non-negative integer,

More information

Lecture 4: Series expansions with Special functions

Lecture 4: Series expansions with Special functions Lecture 4: Series expansions with Special functions 1. Key points 1. Legedre polynomials (Legendre functions) 2. Hermite polynomials(hermite functions) 3. Laguerre polynomials (Laguerre functions) Other

More information

first define colors for future graphics red RGBColor 1, 0, 0 ; green RGBColor 0, 1, 0 ; blue RGBColor 0, 0, 1 ; black RGBColor 0, 0, 0 ;

first define colors for future graphics red RGBColor 1, 0, 0 ; green RGBColor 0, 1, 0 ; blue RGBColor 0, 0, 1 ; black RGBColor 0, 0, 0 ; In[1]:= note: to simplifynotations all periodic functions of x are expected to have a period of 2 Pi, as Ch. 11.1 by KR. If a function has a period "2L" as in his later sections, one can always switch

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

Unit 9: Symmetric Functions

Unit 9: Symmetric Functions Haberman MTH 111 Section I: Functions and Their Graphs Unit 9: Symmetric Functions Some functions have graphs with special types of symmetries, and we can use the reflections we just studied to analyze

More information

Expansion of 1/r potential in Legendre polynomials

Expansion of 1/r potential in Legendre polynomials Expansion of 1/r potential in Legendre polynomials In electrostatics and gravitation, we see scalar potentials of the form V = K d Take d = R r = R 2 2Rr cos θ + r 2 = R 1 2 r R cos θ + r R )2 Use h =

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

Class 4: More Pendulum results

Class 4: More Pendulum results Class 4: More Pendulum results The pendulum is a mechanical problem with a long and interesting history, from Galileo s first ansatz that the period was independent of the amplitude based on watching priests

More information

HW #6. 1. Inflaton. (a) slow-roll regime. HW6.nb 1

HW #6. 1. Inflaton. (a) slow-roll regime. HW6.nb 1 HW6.nb HW #6. Inflaton (a) slow-roll regime In the slow-roll regime, we neglect the kinetic energy as well as f ÿÿ term in the equation of motion. Then H = ÅÅÅ 8 p 3 G N ÅÅÅ m f, 3 H f ÿ + m f = 0. We

More information

Multipole moments. November 9, 2015

Multipole moments. November 9, 2015 Multipole moments November 9, 5 The far field expansion Suppose we have a localized charge distribution, confined to a region near the origin with r < R. Then for values of r > R, the electric field must

More information

Steady and unsteady diffusion

Steady and unsteady diffusion Chapter 5 Steady and unsteady diffusion In this chapter, we solve the diffusion and forced convection equations, in which it is necessary to evaluate the temperature or concentration fields when the velocity

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

December 18, 2017 Section W Nandyalam

December 18, 2017 Section W Nandyalam Mathematica Gift #11 Problem Complete the following 15 exercises in a Mathematica notebook. You should write the problem in a text cell and show your work below the question. Questions Question 1 Compute

More information

Quantile Precision Issues in CUDA

Quantile Precision Issues in CUDA Quantile Precision Issues in CUDA Thomas Luu and William Shaw UCL, Dec 2011. Corrections to w.shaw@ucl.ac.uk Set up and Introduction In[1]:= This Mathematica notebook uses the high-precision arithmetic

More information

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling ME1/MTH281/ME0/CHE0 Newton's Law of Cooling 1. Introduction This notebook uses Mathematica to solve the problem presented in class, in section 5.1 of the notes. The problem is one of transient heat conduction

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 3 Differentiation ü 3.1 The Derivative Students should read Sections 3.1-3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. ü 3.1.1 Slope of Tangent

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

Numerical Methods. Root Finding

Numerical Methods. Root Finding Numerical Methods Solving Non Linear 1-Dimensional Equations Root Finding Given a real valued function f of one variable (say ), the idea is to find an such that: f() 0 1 Root Finding Eamples Find real

More information

Quantum Mechanics using Matrix Methods

Quantum Mechanics using Matrix Methods Quantum Mechanics using Matrix Methods Introduction and the simple harmonic oscillator In this notebook we study some problems in quantum mechanics using matrix methods. We know that we can solve quantum

More information

3.2 Logarithmic Functions and Their Graphs

3.2 Logarithmic Functions and Their Graphs 96 Chapter 3 Eponential and Logarithmic Functions 3.2 Logarithmic Functions and Their Graphs Logarithmic Functions In Section.6, you studied the concept of an inverse function. There, you learned that

More information

Summer AP Assignment Coversheet Falls Church High School

Summer AP Assignment Coversheet Falls Church High School Summer AP Assignment Coversheet Falls Church High School Course: AP Calculus AB Teacher Name/s: Veronica Moldoveanu, Ethan Batterman Assignment Title: AP Calculus AB Summer Packet Assignment Summary/Purpose:

More information

University of Colorado at Colorado Springs Math 090 Fundamentals of College Algebra

University of Colorado at Colorado Springs Math 090 Fundamentals of College Algebra University of Colorado at Colorado Springs Math 090 Fundamentals of College Algebra Table of Contents Chapter The Algebra of Polynomials Chapter Factoring 7 Chapter 3 Fractions Chapter 4 Eponents and Radicals

More information

Mathematica for Calculus II (Version 9.0)

Mathematica for Calculus II (Version 9.0) Mathematica for Calculus II (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy December 31, 013 Contents 1. Introduction. Volumes of revolution 3. Solving systems of equations

More information

f[x_, μ_] := 4. μ... Nest[f[#,...] &,...,...] Plot[{x, f[...]}, {x, 0, 1}, AspectRatio Equal]

f[x_, μ_] := 4. μ... Nest[f[#,...] &,...,...] Plot[{x, f[...]}, {x, 0, 1}, AspectRatio Equal] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 In this exercise, we use renormalization-group and scaling methods to study the onset of chaos. There are several routes by which a dynamical system can start exhibiting chaotic

More information

4. Gaussian derivatives

4. Gaussian derivatives 04 GaussianDerivatives.nb In[3]:=

More information

Avon High School Name AP Calculus AB Summer Review Packet Score Period

Avon High School Name AP Calculus AB Summer Review Packet Score Period Avon High School Name AP Calculus AB Summer Review Packet Score Period f 4, find:.) If a.) f 4 f 4 b.) Topic A: Functions f c.) f h f h 4 V r r a.) V 4.) If, find: b.) V r V r c.) V r V r.) If f and g

More information

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1 Regent College Maths Department Core Mathematics Trapezium Rule C Integration Page Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

COMPUTATIONAL EXPLORATIONS IN MAGNETRON SPUTTERING

COMPUTATIONAL EXPLORATIONS IN MAGNETRON SPUTTERING COMPUTATIONAL EXPLORATIONS IN MAGNETRON SPUTTERING E. J. McInerney Basic Numerics Press 4. ELECTRON MOTION With the groundwork laid in the last two chapters, we can now simulate the motion of electrons

More information

Lecture 16: Special Functions. In Maple, Hermite polynomials are predefined as HermiteH(n,x) The first few Hermite polynomials are: simplify.

Lecture 16: Special Functions. In Maple, Hermite polynomials are predefined as HermiteH(n,x) The first few Hermite polynomials are: simplify. Lecture 16: Special Functions 1. Key points Hermite differential equation: Legendre's differential equation: Bessel's differential equation: Modified Bessel differential equation: Spherical Bessel differential

More information

Connection to Laplacian in spherical coordinates (Chapter 13)

Connection to Laplacian in spherical coordinates (Chapter 13) Connection to Laplacian in spherical coordinates (Chapter 13) We might often encounter the Laplace equation and spherical coordinates might be the most convenient 2 u(r, θ, φ) = 0 We already saw in Chapter

More information

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS

CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS CHAPTER 3a. INTRODUCTION TO NUMERICAL METHODS A. J. Clark School of Engineering Department of Civil and Environmental Engineering by Dr. Ibrahim A. Assakkaf Spring 1 ENCE 3 - Computation in Civil Engineering

More information

TOPIC 3. Taylor polynomials. Mathematica code. Here is some basic mathematica code for plotting functions.

TOPIC 3. Taylor polynomials. Mathematica code. Here is some basic mathematica code for plotting functions. TOPIC 3 Taylor polynomials Main ideas. Linear approximating functions: Review Approximating polynomials Key formulas: P n (x) =a 0 + a (x x )+ + a n (x x ) n P n (x + x) =a 0 + a ( x)+ + a n ( x) n where

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.8 Newton s Method In this section, we will learn: How to solve high degree equations using Newton s method. INTRODUCTION Suppose that

More information

Supplementary material Mathematica codes

Supplementary material Mathematica codes Supplementary material Mathematica codes Developed by Kira Joel, Davida Kollmar, and Lea F. Santos Yeshiva University New York, NY, USA (If you use these codes, please cite the paper) Hamiltonian Description

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revision Guides Numerical Methods for Solving Equations Page of M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C3 Edecel: C3 OCR: C3 NUMERICAL METHODS FOR SOLVING EQUATIONS

More information

Module 2, Section 2 Solving Equations

Module 2, Section 2 Solving Equations Principles of Mathematics Section, Introduction 03 Introduction Module, Section Solving Equations In this section, you will learn to solve quadratic equations graphically, by factoring, and by applying

More information

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below.

Math 261 Final Exam - Practice Problem Solutions. 1. A function f is graphed below. Math Final Eam - Practice Problem Solutions. A function f is graphed below. f() 8 7 7 8 (a) Find f(), f( ), f(), and f() f() = ;f( ).;f() is undefined; f() = (b) Find the domain and range of f Domain:

More information

every hour 8760 A every minute 525,000 A continuously n A

every hour 8760 A every minute 525,000 A continuously n A In the previous lesson we introduced Eponential Functions and their graphs, and covered an application of Eponential Functions (Compound Interest). We saw that when interest is compounded n times per year

More information

A small note on the statistical method of moments for fitting a probability model to data

A small note on the statistical method of moments for fitting a probability model to data A small note on the statistical method of moments for fitting a probability model to data by Nasser Abbasi, Nov 16, 2007 Mathematics 502 probability and statistics, CSUF, Fall 2007 f x x Μ 2 2 Σ 2 2 Π

More information

y x is symmetric with respect to which of the following?

y x is symmetric with respect to which of the following? AP Calculus Summer Assignment Name: Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number. Part : Multiple Choice Solve

More information

As shown in the text, we can write an arbitrary azimuthally-symmetric solution to Laplace s equation in spherical coordinates as:

As shown in the text, we can write an arbitrary azimuthally-symmetric solution to Laplace s equation in spherical coordinates as: Remarks: In dealing with spherical coordinates in general and with Legendre polynomials in particular it is convenient to make the sustitution c = cosθ. For example, this allows use of the following simplification

More information

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential

Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Module 2 : Electrostatics Lecture 9 : Electrostatic Potential Objectives In this lecture you will learn the following Electric Dipole and field due to a dipole Torque on a dipole in an inhomogeneous electric

More information

SECTION 4-3 Approximating Real Zeros of Polynomials Polynomial and Rational Functions

SECTION 4-3 Approximating Real Zeros of Polynomials Polynomial and Rational Functions Polynomial and Rational Functions 79. P() 9 9 8. P() 6 6 8 7 8 8. The solutions to the equation are all the cube roots of. (A) How many cube roots of are there? (B) is obviously a cube root of ; find all

More information

Chapter 29 BC Calculus Practice Test

Chapter 29 BC Calculus Practice Test Chapter 9 BC Calculus Practice Test The Eam AP Calculus BC Eam SECTION I: Multiple-Choice Questions DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO. At a Glance Total Time hour and 5 minutes Number

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Using Mathematica to study series (part II)

Using Mathematica to study series (part II) Using Mathematica to study series (part II) Truncation errors Example of exponential; first consider x>0 Remainder if use only first 3 terms in power series for exponential: PlotExpx1xx ^,x, 0,, PlotStyleThick,

More information

Quadrature approaches to the solution of two point boundary value problems

Quadrature approaches to the solution of two point boundary value problems Quadrature approaches to the solution of two point boundary value problems Seth F. Oppenheimer Mohsen Razzaghi Department of Mathematics and Statistics Mississippi State University Drawer MA MSU, MS 39763

More information

Physics 229& 100 Homework #1 Name: Nasser Abbasi

Physics 229& 100 Homework #1 Name: Nasser Abbasi Physics 229& 100 Homework #1 Name: Nasser Abbasi (converted to 6.0) 1. Practice in transcribing expressions into Mathematica syntax a) Find the determinant of this matrix: In[94]:= a = {{1, 2, 3, 4}, {1,

More information

7.8 Improper Integrals

7.8 Improper Integrals CHAPTER 7. TECHNIQUES OF INTEGRATION 65 7.8 Improper Integrals Eample. Find Solution. Z Z e d. e d = lim F () F (), where F () = e! = lim e! = (e ) = Eample. Find the volume of the shape known as Gabriel

More information

7.8 Improper Integrals

7.8 Improper Integrals CHAPTER 7. TECHNIQUES OF INTEGRATION 67 7.8 Improper Integrals Eample. Find Solution. Z e d. Z e d = = e e!! e = (e ) = Z Eample. Find d. Solution. We do this prolem twice: once the WRONG way, and once

More information

(a) Determine the general solution for φ(ρ) near ρ = 0 for arbitary values E. (b) Show that the regular solution at ρ = 0 has the series expansion

(a) Determine the general solution for φ(ρ) near ρ = 0 for arbitary values E. (b) Show that the regular solution at ρ = 0 has the series expansion Problem 1. Curious Wave Functions The eigenfunctions of a D7 brane in a curved geometry lead to the following eigenvalue equation of the Sturm Liouville type ρ ρ 3 ρ φ n (ρ) = E n w(ρ)φ n (ρ) w(ρ) = where

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7

Name Date. Analyzing Graphs of Polynomial Functions For use with Exploration 2.7 Name Date.7 Analyzing Graphs of Polynomial Functions For use with Eploration.7 Essential Question How many turning points can the graph of a polynomial function have? 1 EXPLORATION: Approimating Turning

More information

22. RADICALS. x add 5. multiply by 7

22. RADICALS. x add 5. multiply by 7 22. RADICALS doing something, then undoing it The concept of doing something and then undoing it is very important in mathematics. Here are some eamples: Take a number. Add 5 to it. How can you get back

More information

ME 406 Bifurcations VII Subcritical Hopf Bifurcation

ME 406 Bifurcations VII Subcritical Hopf Bifurcation ME 406 Bifurcations VII Subcritical Hopf Bifurcation sysid Mathematica 4.1.2, DynPac 10.66, 3ê5ê2002 intreset; plotreset; 1. Introduction In this notebook, the seventh in a series of notebooks on bifurcations,

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2

C. Finding roots of trinomials: 1st Example: x 2 5x = 14 x 2 5x 14 = 0 (x 7)(x + 2) = 0 Answer: x = 7 or x = -2 AP Calculus Students: Welcome to AP Calculus. Class begins in approimately - months. In this packet, you will find numerous topics that were covered in your Algebra and Pre-Calculus courses. These are

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

Computer Problems for Taylor Series and Series Convergence

Computer Problems for Taylor Series and Series Convergence Computer Problems for Taylor Series and Series Convergence The two problems below are a set; the first should be done without a computer and the second is a computer-based follow up. 1. The drawing below

More information

Paper Reference. Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Orange or Green)

Paper Reference. Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Orange or Green) Centre No. Candidate No. Paper Reference(s) 6665/01 Edecel GCE Core Mathematics C3 Advanced Thursday 11 June 009 Morning Time: 1 hour 30 minutes Materials required for eamination Mathematical Formulae

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

Polynomial and Synthetic Division

Polynomial and Synthetic Division Chapter Polynomial Functions. f y. Common function: y Transformation: Vertical stretch each y-value is multiplied by, then a vertical shift nine units upward f Horizontal shift of three units to the left,

More information

Magnetostatics and the vector potential

Magnetostatics and the vector potential Magnetostatics and the vector potential December 8, 2015 1 The divergence of the magnetic field Starting with the general form of the Biot-Savart law, B (x 0 ) we take the divergence of both sides with

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

PHYS 301 HOMEWORK #8

PHYS 301 HOMEWORK #8 PHYS 301 HOMEWORK #8 Due : 5 April 2017 1. Find the recursion relation and general solution near x = 2 of the differential equation : In this case, the solution will be of the form: y'' - (x - 2) y' +

More information

Nonlinear Oscillations and Chaos

Nonlinear Oscillations and Chaos CHAPTER 4 Nonlinear Oscillations and Chaos 4-. l l = l + d s d d l l = l + d m θ m (a) (b) (c) The unetended length of each spring is, as shown in (a). In order to attach the mass m, each spring must be

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

A Summary of Contour Integration

A Summary of Contour Integration A Summary of Contour Integration vs 0., 5//08 ' Niels Walet, University of Manchester In this document I will summarise some very simple results of contour integration. The Basics The key word linked to

More information

Concepts of Approximate Error: Approximate Error, Absolute Approximate Error, Relative Approximate Error, and Absolute Relative Approximate Error

Concepts of Approximate Error: Approximate Error, Absolute Approximate Error, Relative Approximate Error, and Absolute Relative Approximate Error Concepts of Approximate Error: Approximate Error, Absolute Approximate Error, Relative Approximate Error, and Absolute Relative Approximate Error Sean Rodby, Luke Snyder, Autar Kaw University of South

More information

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion

CHAPTER 3 POTENTIALS 10/13/2016. Outlines. 1. Laplace s equation. 2. The Method of Images. 3. Separation of Variables. 4. Multipole Expansion CHAPTER 3 POTENTIALS Lee Chow Department of Physics University of Central Florida Orlando, FL 32816 Outlines 1. Laplace s equation 2. The Method of Images 3. Separation of Variables 4. Multipole Expansion

More information

Multipoles, Electrostatics of Macroscopic Media, Dielectrics

Multipoles, Electrostatics of Macroscopic Media, Dielectrics Multipoles, Electrostatics of Macroscopic Media, Dielectrics 1 Reading: Jackson 4.1 through 4.4, 4.7 Consider a distribution of charge, confined to a region with r < R. Let's expand the resulting potential

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form a 2 + b + c = 0. Quadratic Formula The solutions of a 2 +

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Chapter 7, Part A Sampling and Sampling Distributions Simple Random Sampling Point Estimation Introduction to Sampling Distributions

More information

Polynomial Division. You may also see this kind of problem written like this: Perform the division x2 +2x 3

Polynomial Division. You may also see this kind of problem written like this: Perform the division x2 +2x 3 Polynomial Division 5015 You do polynomial division the way you do long division of numbers It s difficult to describe the general procedure in words, so I ll work through some eamples stepbystep Eample

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

BC Calculus Diagnostic Test

BC Calculus Diagnostic Test BC Calculus Diagnostic Test The Eam AP Calculus BC Eam SECTION I: Multiple-Choice Questions DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO. At a Glance Total Time hour and 5 minutes Number of Questions

More information

AP Calculus BC Prerequisite Knowledge

AP Calculus BC Prerequisite Knowledge AP Calculus BC Prerequisite Knowledge Please review these ideas over the summer as they come up during our class and we will not be reviewing them during class. Also, I feel free to quiz you at any time

More information

The Fundamental Theorem of Calculus Part 3

The Fundamental Theorem of Calculus Part 3 The Fundamental Theorem of Calculus Part FTC Part Worksheet 5: Basic Rules, Initial Value Problems, Rewriting Integrands A. It s time to find anti-derivatives algebraically. Instead of saying the anti-derivative

More information

Polynomial Functions of Higher Degree

Polynomial Functions of Higher Degree SAMPLE CHAPTER. NOT FOR DISTRIBUTION. 4 Polynomial Functions of Higher Degree Polynomial functions of degree greater than 2 can be used to model data such as the annual temperature fluctuations in Daytona

More information

Euler-Maclaurin summation formula

Euler-Maclaurin summation formula Physics 4 Spring 6 Euler-Maclaurin summation formula Lecture notes by M. G. Rozman Last modified: March 9, 6 Euler-Maclaurin summation formula gives an estimation of the sum N in f i) in terms of the integral

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

[t] 2-2 G M + v 2 R G M

[t] 2-2 G M + v 2 R G M This notebook demonstrates some of the behavior of the ODEs you'll be studying during Project 5, on trajectories of rockets in a changing gravitational field. In recitation, we ll find that the differential

More information

Algebra, Part I. x m x = n xm i x n = x m n = 1

Algebra, Part I. x m x = n xm i x n = x m n = 1 Lesson 7 Algebra, Part I Rules and Definitions Rules Additive property of equality: If a, b, and c represent real numbers, and if a=b, then a + c = b + c. Also, c + a = c + b Multiplicative property of

More information

Analytic Trigonometry

Analytic Trigonometry 0 Analytic Trigonometry In this chapter, you will study analytic trigonometry. Analytic trigonometry is used to simplify trigonometric epressions and solve trigonometric equations. In this chapter, you

More information

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1

9.8 APPLICATIONS OF TAYLOR SERIES EXPLORATORY EXERCISES. Using Taylor Polynomials to Approximate a Sine Value EXAMPLE 8.1 9-75 SECTION 9.8.. Applications of Taylor Series 677 and f 0) miles/min 3. Predict the location of the plane at time t min. 5. Suppose that an astronaut is at 0, 0) and the moon is represented by a circle

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

Spherical Coordinates

Spherical Coordinates Spherical Coordinates Bo E. Sernelius 4:6 SPHERICAL COORDINATES Φ = 1 Φ + 1 Φ + 1 Φ = 0 r r r θ sin r r sinθ θ θ r sin θ ϕ ( ) = ( ) ( ) ( ) Φ r, θϕ, R r P θq ϕ 1 d 1 1 0 r R dr r dr d dp d Q dr + sinθ

More information

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part) The Definite Integral Day 5 The Fundamental Theorem of Calculus (Evaluative Part) Practice with Properties of Integrals 5 Given f d 5 f d 3. 0 5 5. 0 5 5 3. 0 0. 5 f d 0 f d f d f d - 0 8 5 F 3 t dt

More information

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t 2Â F b. Th h ph rd l nd r. l X. TH H PH RD L ND R. L X. F r, Br n, nd t h. B th ttr h ph rd. n th l f p t r l l nd, t t d t, n n t n, nt r rl r th n th n r l t f th f th th r l, nd d r b t t f nn r r pr

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information