Research Article Estimating the Reliability Function for a Family of Exponentiated Distributions

Size: px
Start display at page:

Download "Research Article Estimating the Reliability Function for a Family of Exponentiated Distributions"

Transcription

1 Probabiliy ad Saisics, Aricle ID 56393, 1 pages hp://dx.doi.org/1.1155/214/56393 Research Aricle Esimaig he Reliabiliy Fucio for a Family of Expoeiaed Disribuios Aji Chaurvedi ad Aupam Pahak Deparme of Saisics, Uiversiy of Delhi, Delhi 117, Idia Correspodece should be addressed o Aupam Pahak; pahakaupam24@gmail.com Received 4 Jue 213; Revised 17 December 213; Acceped 22 March 214; Published 29 April 214 Academic Edior: Dejia Lai Copyrigh 214 A. Chaurvedi ad A. Pahak. This is a ope access aricle disribued uder he Creaive Commos Aribuio Licese, which permis uresriced use, disribuio, ad reproducio i ay medium, provided he origial work is properly cied. A family of expoeiaed disribuios is proposed. The problems of esimaig he reliabiliy fucio are cosidered. Uiformly miimum variace ubiased esimaors ad maximum likelihood esimaors are derived. A comparaive sudy of he wo mehods of esimaio is doe. Simulaio sudy is preformed. 1. Iroducio The reliabiliy fucio R() is defied as he probabiliy of failure-free operaio uil ime. Thus,if he radom variable (rv) X deoes he lifeime of a iem, he R() = P(X > ). Aoher measure of reliabiliy uder sresssregh seup is he probabiliy P = P(X > Y), which represes he reliabiliy of a iem of radom sregh X subjec o radom sress Y. A lo of work has bee doe i he lieraure o deal wih ifereial problems relaed o various expoeiaed disribuios. I paricular, Mudholkar ad Srivasava [1] cosidered expoeiaed Weibull family for aalyzig bahub failure-real daa. The expoeiaed Weibull family was also applied o he bus-moor-failure daa i Davis [2], o head-ad-eck cacer cliical rial daa i Efro [3] [see[4]], ad i aalyzig flood daa [see [5]]. Jiag ad Murhy [6] cosidered expoeiaed Weibull family ad illusraed some of is properies by usig graphical approach. Nassar ad Eissa [7, 8] sudied a wo-parameer expoeiaed Weibull disribuio ad hey gave some of is properies ad esimaed he parameers by usig he maximum likelihood ad Bayes mehods based o ype II cesored daa. They used he squared-error ad liear i expoeial (LINEX) loss fucios ad a iformaive prior o obai he Bayes esimaes. Pal e al. [9] showedha he failure rae of expoeiaed Weibull behaves more like he failure rae of he Weibull disribuio ha ha of he Gamma disribuio. They also obaied maximum likelihood esimaors, Fisher s iformaio marix, ad cofidece iervals for relaed parameers. Gupa e al. [1] iroduced expoeiaed expoeial disribuio i a series of papers. Gupa ad Kudu [11 17], Gupa e al. [18], ad Kudu e al. [19] coceraed o he sudy of he expoeiaed expoeial disribuio. Kudu ad Gupa [2] saed ha expoeiaed expoeial disribuio is a aleraive o he well-kow wo-parameer Gamma, wo-parameer Weibull or wo-parameer logormal disribuios. Kudu ad Gupa [2] esimaed he reliabiliy of he sress-sregh model P(X < Y),whe X ad Y are idepede expoeiaed expoeial radom variables. Raqab ad Ahsaullah [21] esimaed he parameers of he expoeiaed expoeial based o ordered saisics. Iferece for expoeiaed Weibull disribuio based o record values was made by Raqab [22]. Abdel-Hamid ad AL-Hussaii [23] obaied he maximum likelihood esimaes of he parameers whe sep-sress acceleraed life esig is applied for expoeiaed expoeial disribuio. Al-Hussaii ad Hussei [24, 25] fied he expoeiaed Burr model o he daa of breakig sregh of sigle carbo fibers of paricular legh (daa i [26])ihecompleesamplecaseadwheypeIIcesorig isimposedodaa.selfadlinexlossfuciosare used i he Bayes esimaio. Gupa e al. [1] iroduced a ew disribuio, called he expoeiaed Pareo disribuio.shawkyadabu-ziadah[27] obaiedmaximum likelihood esimaors of he differe parameers of he

2 2 Probabiliy ad Saisics expoeiaed Pareo disribuio. They also cosidered five oher esimaio procedures ad compared heir performaces hrough umerical simulaios. The purpose of he prese paper is mayfold. We propose a family of expoeiaed disribuios, which covers as may as e expoeiaed disribuios as specific cases. We cosider he problems of esimaig R() ad P. Uiformly miimum variace ubiased esimaors (UMVUES) ad maximum likelihood esimaors (MLES) are derived. I order o obai hese esimaors, he major role is played by he esimaor of he probabiliy desiy fucio (pdf) a a specified poi, ad he fucioal forms of he parameric fucios o be esimaed are o eeded. I is worh meioig here ha, i order o esimae P, i he lieraure, he auhors have cosidered he case whe X ad Y follow he same disribuios, may be wih differe parameers. We have geeralizedheresulohecasewhex ad Y may follow ay disribuio from he proposed expoeiaed family of disribuios. Simulaio sudy is carried ou o ivesigae he performace of he esimaors. I Secio 2, we iroduce he family of expoeiaed disribuios. I Secio 3, we derive he UMVUES of R() ad P. I Secio 4,weobaiheMLESofR() ad P. I Secio 5, aalysis of a simulaed daa has bee preseed for illusraive purposes. Fially, i Secio 6, coclusios have bee provided. 2. The Family of Expoeiaed Disribuios Le he rv X follow he disribuio havig he pdf f (x; a, α, λ, θ) =αλg (x;a,θ)e λg(x;a,θ) (1 e λg(x;a,θ) ) α 1 ; x>a, α,λ>. (1) Here, g(x; a, θ) is a fucio of X ad may also deped o (may be vecor-valued) parameer θ. Moreover,g(x; a, θ) is a real-valued, moooically icreasig fucio of X wih g(a; a, θ) =, g(; a, θ) =,adg (x;a,θ) deoes he derivaive of g(x; a, θ) wih respec o x. Ourcaseisa special model of he bea exeded Weibull family proposed by Cordeiro e al. [28] ad ca be obaied from equaio (7) whe b =.Weoeha(1) represesafamily of expoeiaed disribuios, as i covers he followig expoeiaed disribuios as special cases. (i) For g(x; a, θ) =xad a=, we ge he expoeiaed expoeial disribuio [see [1]]. (ii) For g(x; a, θ) =x 2 ad a=, i gives expoeiaed Rayleigh disribuio [see [29]]. (iii) For g(x; a, θ) = x δ, δ > ad a =,wegehe expoeiaed Weibull disribuio [see [1]]. (iv) For g(x; a, θ) =log(1+x δ ), δ>ad a=,ileadsus o pdf of expoeiaed Burr disribuio [see [24]]. (v) For g(x; a, θ) =log(x/a),iursouobeexpoeiaed Pareo disribuio [see [1]]. (vi) For g(x; a, θ) = (1 + (x/ξ)), ξ>ad a=,igives us expoeiaed Lomax disribuio [see [3]]. (vii) For g(x; a, θ) = (1 + (x ξ /])), ξ>, ] >ad a=,i urs ou o be expoeiaed Burr disribuio wih scale parameer ] [see [31]]. (viii) For g(x; a, θ) =x γ exp(]x), γ>, ] >ad a=, i gives he expoeiaed form of modified Weibull disribuio of Lai e al. [32]. (ix) For g(x; a, θ) =γexp[(x/γ) ] 1], γ>, ] >ad a=, we ge he expoeiaed form of a modificaio of Weibull disribuio [see [33]]. (x) For g(x; a, θ) = (x a)+(]/λ) log((x + ])/(a + ])), ] >, i gives expoeiaed form of he geeralized Pareo disribuio [see [34]]. 3. UMVUES of R() ad P Throughou his secio, we assume ha α is ukow, bu a, λ, adθ are kow. Le X 1,X 2,...,X be a radom sample of size from (1). Lemma 1. Le T = log(1 e λg(x i,a,θ) ).The,T is complee ad sufficie for he family of disribuios give i (1).Moreover,hepdfofT is g (; α, λ, θ) = α Γ () ( ) 1 e α ; < <. (2) Proof. Deoig by h(x 1,x 2,...,x 2 ;a,α,λ,θ) he joi pdf of X 1,X 2,...,X,wehave h(x 1,x 2,...,x 2 ;a,α,λ,θ) = (αλ) g (x i ;a,θ)e λ g(x i;a,θ) e (α 1) log(1 e λg(x i ;a,θ)). I follows from (3) ad Fishers-Neyma facorizaio heorem [see [35, p. 341]] ha T is sufficie for he family of disribuios f(x; a, α, λ, θ). I is easy o see ha he rv V = 2αlog(1 e λg(x;a,θ) ) follows χ 2 (2) disribuio. Thus, from he well-kow addiive propery of Chi-square disribuio [see Johso ad Koz, [36, p. 17]], 2αT = 2α log(1 e λg(x i;a,θ) ) is a χ 2 (2) rv ad he resul follows. Sice he disribuio of T belogs o expoeial family, i is also complee [see [35, p. 341]]. The followig lemma provides he UMVUES of he powers of α. Lemma 2. For q (, ),heumvueofα q is α q = Γ () Γ( q) ( T) q ; q <, ; oherwise. (3) (4)

3 Probabiliy ad Saisics 3 Proof. The resul follows from Lemma 1, Lehma-Scheffé heorem [see [35, p. 357]], ad he fac ha E( 2αT) q = Γ( q) 2 q ; q <. (5) Γ () I he followig lemma, we provide he UMVUE of he sampled pdf (1) a a specified poi x. Lemma 3. The UMVUE of f(x; a, α, λ, θ) a a specified poi x is f (x; a, α, λ, θ) ( 1) λt 1 (1 e λg(x;a,θ) ) 1 g (x; a, θ)e λg(x;a,θ) = [1 T 1 log (1 e λg(x;a,θ) )] 2 ; T < log 1 e λg(x;a,θ) }, ; oherwise. (6) Proof. Sice T is complee ad sufficie for he family of disribuios f(x; a, α, λ, θ), ay fucio H(T) of T saisfyig E[H(T)] = f(x; a, α, λ, θ) will be he UMVUE of f(x; a, α, λ, θ).tohised,from(1)adlemma 1, α H () Γ () ( ) 1 e α d (7) =αλg (x; a, θ) e λg(x;a,θ) (1 e λg(x;a,θ) ) α 1, or α 1 Γ () log(1 e λg(x;a,θ) ) H[ u+log 1 e λg(x;a,θ) }] [ u+log (1 e λg(x;a,θ) )] 1 e αu du =λ(1 e λg(x;a,θ) ) 1 g (x; a, θ) e λg(x;a,θ). Equaio (8) is saisfied if we choose H[ u+log (1 e λg(x;a,θ) )] ( ( 1) λg (x;a,θ) e λg(x;a,θ) ( u) 2 ) = ((1 e λg(x;a,θ) ) [ u + log (1 e λg(x;a,θ) )] 1 ) 1 ; u >, ; oherwise, (9) ad he lemma holds. Remark 4. We ca wrie (1)as f (x; a, α, λ, θ) = λ(1 e λg(x;a,θ) ) 1 (8) Usig Lemma 1 of Chaurvedi ad Tomer [37]ad Lemma 2, he UMVUE of f(x; a, α, λ, θ) a a specified poi x is or f (x; a, α, λ, θ) = λ(1 e λg(x;a,θ) ) 1 f (x; a, α, λ, θ) g (x; a, θ)e λg(x;a,θ) i= [log (1 e λg(x;a,θ) )] i i! α i+1 =λ(1 e λg(x;a,θ) ) 1 g (x;a,θ)e λg(x;a,θ) ( T) 1 2 Γ ( 1) Γ ( i 1) ( T)i i= [log (1 e λg(x;a,θ) )] i ( 1) λt 1 (1 e λg(x;a,θ) ) 1 i!, (11) g (x; a, θ)e λg(x;a,θ) = [1 T 1 log (1 e λg(x;a,θ) )] 2 ; T < log 1 e λg(x;a,θ) }, ; oherwise, (12) which coicides wih Lemma 3. Thus, he UMVUE of he power of α ca be used o derive he UMVUE of f(x; a, α, λ, θ) a a specified poi. I he followig heorem, we obai he UMVUE of R(). Theorem 5. The UMVUE of R() is give by 1 [1 T 1 log 1 e λg(;a,θ) }] 1 ; R () = T<log (1 e λg(;a,θ) ), ; oherwise. (13) Proof. Le us cosider he expeced value of he iegral f(x; a, α, λ, θ)dx wih respec o T;hais, f (x; a, α, λ, θ)dx}h(;α,λ,θ)d g (x;a,θ)e λg(x;a,θ) α i= [log (1 e λg(x;a,θ) )] i α i. i! (1) = [E T f (x; a, α, λ, θ)}] dx = f(x;a,α,λ,θ)} dx = R (). (14)

4 4 Probabiliy ad Saisics We coclude from (14) ha he UMVUE of R() ca be obaied simply iegraig f(x; a, α, λ, θ) from o.thus, deoig by g 1 ( ), he iverse fucio of g(x; a, θ), from Lemma 3,weobai R () = ( 1) T 1 g 1 λ 1 log(1 e T )} λ(1 e λg(x;a,θ) ) 1 g (x; a, θ)e λg(x;a,θ) [1 T 1 log (1 e λg(x; a,θ) )] 2 dx; (15) T<log 1 e λg(x;a,θ) 1 }= ( 1) T 1 log(1 e λg(;a,θ) ) (1 y) 2 dy, ad he heorem follows. Le X ad Y be wo idepede rvs followig he families of disribuios f 1 (x; a 1,α 1,λ 1,θ 1 ) ad f 2 (y; a 2,α 2,λ 2,θ 2 ), respecively. We assume ha α 1 ad α 2 are ukow bu a 1,a 2,λ 1,λ 2,θ 1,adθ 2 are kow. Le X 1,X 2,...,X be a radom sample of size from f 1 (x; a 1,α 1,λ 1,θ 1 ) ad le Y 1,Y 2,...,Y m be a radom sample of size m from f 2 (y; a 2,α 2,λ 2,θ 2 ). Le us deoe by T = log(1 e λ 1g(x i ;a 1,θ 1 ) ) ad S= m j=1 log(1 e λ 2h(y j ;a 2,θ 2 ) ). I wha follows, we obai he UMVUE of P. Theorem 6. The UMVUE of P isgiveby P = 1+(m 1) 1+ (m 1) [1 T 1 log 1 e λ 1g(h 1 ( (1/λ 2 ) log(1 e s] ))) }] 1 (1 ]) m 2 d]; 1 h 1 λ 1 2 log (1 es )}>g 1 λ 1 1 log (1 et )}, log1 S 1 e λ 2 h(g 1 ( (1/λ 1 ) log(1 e T ))) } [1 T 1 log 1 e λ 1g(h 1 ( (1/λ 2 ) log(1 e s] ))) }] 1 (1 ]) m 2 d]; h 1 λ 1 2 log (1 es )}<g 1 λ 1 1 log (1 et )}. (16) Proof. From he argumes similar o hose adoped i provig Theorem 5,i ca be show ha he UMVUE of P is give by P = y=a 2 x=y f 1 (x; a 1,α 1,λ 1,θ 1 ) f 2 (y; a 2,α 2,λ 2,θ 2 )dxdy. (17) Thus, usig Lemma 3, P = [ y=a 2 x=y ( 1) λ 1 (1 e λ 1g(x;a 1,θ 1 ) ) 1 g (x; a 1,θ 1 )e λ 1g(x;a 1,θ 1 ) (1 T 1 log (1 e λ 1g(x;a 1,θ ) 1 )) 2 dx] f2 (y; a 2,α 2,λ 2,θ 2 )dy =1+(m 1) λ 2 S 1 y=max[h 1 λ 1 2 log(1 es )},g 1 λ 1 1 log(1 et )}] 1 T 1 log (1 e λ 1g(y;a 1,θ 1) )} 1 (18) (1 e λ 2h(y;a 2,θ 2 ) ) 1 h (y; a 2,θ 2 )e λ 2h(y;a 2,θ 2 ) [1 S 1 log (1 e λ 2h(y;a 2,θ 2 ) )] m 2 dy. Le us firs cosider he case whe h 1 λ 1 2 log(1 es )} > g 1 λ 1 1 log(1 et )}.Ihiscase,from(18), P =1+(m 1) [1 T 1 log 1 e λ 1g(h 1 ( (1/λ 2 ) log(1 e S] ))) }] 1 (1 ]) m 2 d]. (19) 1

5 Probabiliy ad Saisics 5 Nowwecosiderhecasewheh 1 λ 1 2 log(1 es )} < g 1 λ 1 1 log(1 et )}.Ihiscase,from(18), P =1+(m 1) [1 T 1 log 1 e λ 1g(h 1 ( (1/λ 2 ) log(1 e s] ))) }] 1 (1 ]) m 2 d]. (2) log1 S 1 e λ 2 h(g 1 ( (1/λ 1 ) log(1 e T ))) } The heorem ow follows o combiig (19)ad(2). Corollary 7. For he case whe a 1 =a 2 =a,say,λ 1 =λ 2 =λ, say, θ 1 =θ 2 =θ,say,adg(x; a, θ) =h(y;a,θ), 1 1 ( 1) i ( 1)!(m 1)! i= ( i 1)!(m+i 1)! ( S i T ) ; T > S, P = m 2 1 ( 1) i i+1 ( 1)!(m 1)! i= (+i)!(m i 2)! (T S ), T < S. Remarks 1. (21) (i) I he lieraure, he researchers have deal wih he esimaio of R() ad P, separaely.ifwelooka he proofs of Theorem 5 ad Theorem 6, weobserve ha he UMVUE of he sampled pdf is used o obai he UMVUES of R() ad P. Thus, we have esablished ierrelaioship bewee he wo esimaio problems. (ii) I he lieraure, he researchers have derived he UMVUES of P forhecasewhex ad Y follow he same disribuio (may be wih differe parameers). We have obaied UMVUES of P forallhehree siuaios, whe X ad Y followhesamedisribuio havig all he parameers same oher ha α s, whe X ad Y havehesamedisribuiowihdiffere parameers ad whe X ad Y have differe disribuios. (iii) I follows from Lemma 2 ha Var( α) = α 2 /( 1) as.thus, α is a cosise esimaor of α. Sice f(x; a, α, λ, θ), R(), ad P are coiuous fucios of cosise esimaors, hey are also cosise esimaors of f(x; a, α, λ, θ), R(),ad P, respecively. 4. MLES of R() ad P Whe All he Parameers Are Ukow Lookig a he disribuios belogig o he family (1), we oice ha, excep for expoeiaed Pareo ad geeralized expoeiaed Pareo disribuios [(V) ad (X)], a=;ha is, a is kow. For hese wo disribuios θ coais a. Irrespecive of he disribuio, he MLE of a is a =X (1) = mi 1 i X i.from(3), he log-likelihood fucio is L (a, α, λ, θ x)=log α+log λ+ λg(x i ;a,θ)+(α 1) log (1 e λg(x i;a,θ) ). log g (x i ;a,θ) (22) Firsofall,wereplace a byx (1) i (22); he we differeiae (22) wih respec o all he ukow parameers ad equae hese differeial equaios o zero. The MLES of ukow parameers are obaied o solvig hese equaios simulaeously. Le α, λ, ad θ be he maximum likelihood esimaors of α, λ, adθ, respecively. The followig lemma provides The MLE of f(x; a, α, λ, θ) a a specified poi x. Lemma 8. The MLE of f(x; a, α, λ, θ) a a specified poi x is f (x; a, α, λ, θ) = α λg (x; a, θ)e λg(x; a, θ) (1 e λg(x; a, θ) ) α 1. (23) Proof. The proof follows from (1) ad he oe-o-oe propery of he MLE. I he followig heorem, we derive he MLE of R(). Theorem 9. The MLE of R() is give by R () =1 (1 e λg(; a, θ) ) α. (24) Proof. Usig Lemma 8 ad ivariace propery of he MLES, R () = f (x; a, α, λ, θ)dx = α λ g (x; a, θ)e λg(x; a, θ) (1 e λg(x; a, θ) ) α 1 dx = α 1 (1 e λg(; a, θ) ) ad he heorem follows. (1 u) α 1 du, (25) I he followig heorem, we obai he maximum likelihood esimaor of P.

6 6 Probabiliy ad Saisics Theorem 1. The MLE of P isgiveby 1 P = α 1 [1 exp λ 2 h (g 1 λ 1 1 log (1 u)})}] α 2 u α 1 1 du. (26) Proof. Usig Lemma 8 ad he oe-o-oe propery of he MLES P = y=y (1) x=y f 1 (x; a 1,α 1,λ 1,θ 1 ) f 2 (y; a 2,α 2,λ 2,θ 2 )dxdy = [1 R 2 (x)] f 1 (x; a 1,α 1,λ 1,θ 1 )dx y=y (1) = [1 exp λ 2 h(x; a 2, θ 2 2 )}] α y=y (1) ad he resul follows. α 1 λ1 g (x; a 1, θ 1 )e λ 1 g (x; a 1, θ 1 ) (1 e λ 1 g (x; a 1, θ 1 ) ) α 1 dx, (27) Corollary 11. For he case whe a 1 =a 2 =a,say,λ 1 =λ 2 =λ, say, θ 1 =θ 2 =θ,say,adg(x; a, θ) =h(y;a,θ), Remarks 2. P = α 1 α 1 + α 2. (28) (i) All he commes made uder Remarks 1 for UMVUES are eable for MLES. (ii) I he prese approaches of obaiig UMVUES ad MLES, oe does o eed he expressios of R() ad P. (iii) Sice he UMVUES ad MLES of powers of α are obaied uder he same codiios, we compare heir performaces. For q = 1 he UMVUE ad MLE of α are, respecively, α = ( 1)( T) 1 ad α = ()( T) 1. For hese esimaors V ( α) = Hece, α 2 ( 2), V( α) = 2 ( 1) 2 ( 2). (29) V ( α) V( α) = (2 1) ( 1)( 2) α2 >. (3) Thus, he UMVUE of α is more efficie ha is MLE. Similarly, we ca compare he performaces of hese esimaors for oher powers of α f3 =3 =2 =15 =1 =5 Figure 1: Cures of f(x; α, λ) ad f(x; α, λ). 5. Simulaio Sudies I order o verify he cosisecy of esimaors, we have draw samples of sizes = 5,2ad3from(1) wih g(x; a, θ) = x, a =, α = 3,adλ = 1.IFigure 1, we have ploed f(x; α, λ) correspodig o hese samples. Wecocludehaashesamplesizeicreases,hecurves of f(x; α, λ) come closer o he curve of f(x; α, λ), whichis ploedihesamefigureolyfor=3.for=3,he curves overlap. A similar paer follows for he curves of f(x; α, λ). For he case whe α is ukow bu oher parameers are kow, we have coduced simulaio experimes usig boosrap resamplig echique for sample sizes = 5, 1, 2, ad 5. The samples are geeraed from (1), wih, g(x; a, θ) = x, a =, α = 3,adλ = 1.Fordiffere values of, we have compued R(), R(), heir correspodig bias, variace, 95% cofidece legh, ad correspodig coverage perceage. All he compuaios are based o 5 boosrap replicaios ad resuls are repored i Table 1. I order o esimae P, for he case whe α 1 ad α 2 areukowbuoherparameersarekow,wehavecoduced simulaio experimes usig boosrap resamplig echique for sample sizes (, m) =(5,5),(1,1),(15,15), (25, 25), ad (3, 3). The samples are geeraed from (1), wih g(x; a 1,θ 1 ) = x,h(y;a 2,θ 2 ) = y, a 1 = a 2 =, λ 1 = λ 2 =1, α 1 =2,adα 2 =.5(.25)1.25. The compuaios are based o 5 boosrap replicaios. We have compued P, P, bias, variace, 95% cofidece legh, ad correspodig coverage perceage. The resuls are preseed i Table 2. I order o demosrae he applicaio of he heory developed i Secio 4, we cosider he followig example. f f

7 Probabiliy ad Saisics 7 Table 1: Simulaio resuls for R(). R() R() =5 =1 =2 =5 R() R() R() R() R() R() R() e 4 2e e e 4 5e e e e e 4.5 6e e Here, he firs row idicaes he esimae, he secod row idicaes he bias, he hird row idicaes variace, he fourh row idicaes 95% boosrap cofidece legh, ad he fifh row idicaes he coverage perceage. Le he rv X follow expoeiaed expoeial disribuio wih pdf f (x; α, λ, δ) = αλδx δ 1 e λxδ (1 e λxδ ) α 1 ; x,α,λ,δ>, (31) where α, λ,adδ are ukow. Deoig, L 1 (α, λ, δ x),he likelihood, he log-likelihood is give by log L 1 (α, λ, δx) =log α+log λ+log δ + (δ 1) + (α 1) log x i λ x δ i log (1 e λxδ i ). (32) Cosiderig egaive log-likelihood, he differeiaig i wih respec o all ukow parameers, ad equaig hese differeial coefficies o zero, from (32), α log (1 e λxδ i )=, λ + x δ x δ i i (α 1) e λxδ i (1 e λxδ i ) =, δ log x i +λ x δ i e λxδ i log x i (1 e λxδ i ) =. x δ i log x i (δ 1) λ (33)

8 8 Probabiliy ad Saisics Table 2: Simulaio resuls for P. (α 1,α 2 ) (1,.5) (1,.75) (1, 1.) (1, 1.25) P (, m) P P P P P P P P e 4 (5, 5) e 4 (1, 1) (15, 15) e 4 6e (25, 25) e 4 1e (3, 3) Here, he firs row idicaes he esimae, he secod row idicaes he bias, he hird row idicaes variace, he fourh row idicaes 95% boosrap cofidece legh, ad he fifh row idicaes he coverage perceage. The followig sample of size 5 is geeraed from (31), for α = 3.5, λ=1,adδ=1as follows. Sample ,.588, ,.9756, 2.362, , 1.433, ,.9241, 2.591, 1.221, 1.322, ,.8146, 1.783,.3126, ,.9462,.4557, 2.12, , ,.973, 1.35,.4618,.7465, , , ,.9742, 2.741, , , , , , , , 1.191,.8248, 3.91,.9511, 1.338, , 2.216, 1.674, 1.562, 2.339,.6882, Assumig ha he daa represes life spas of iems i hours, R(.35) =.986, adsolvig(33) simulaeously, we ge α = , λ = , δ = ,ad R(.35) = I order o obai he maximum likelihood esimaor of P, we have geeraed oe more sample of size 5 from (31), for α=3, λ=1,adδ=1as follows. Sample ,.9467, 1.98,.6613,.4526, 1.571, 1.414, 1.98, , , 1.412,.564, 1.674, 2.615, 1.436, ,.7443,.9568, 1.636,.2327, 1.24,.8178,.774, ,.846, , 1.72, , , , 3.41, ,.6874, , , ,.4313, , , 1.575, , 1.437, , , ,.829,.6693, , 3.265, For his sample, we have α = , λ = , ad δ = Usig hese resuls (obaied from Samples 1 ad 2) ad Theorem 1, wegep = ad P = Coclusios We propose a class of disribuios, which covers as may as e expoeiaed disribuios as special cases. The problems of esimaig R() ad P are cosidered. UMVUES ad MLES are derived. A comparaive sudy of he wo mehods of esimaio is doe. The esimaors of P are derived, which cover he cases whe X ad Y may follow he same, as well as, differe disribuios. By esimaig he sampled pdf o obai he esimaors of R() ad P, a ierrelaioship bewee he wo esimaio problems is esablished. Simulaio sudy is performed, ad a real-daa example is preseed.

9 Probabiliy ad Saisics 9 Coflic of Ieress The auhors declare ha here is o coflic of ieress regardig he publicaio of his paper. Ackowledgme The auhors are hakful o he referee for his valuable commes. Refereces [1] G. S. Mudholkar ad D. K. Srivasava, Expoeiaed Weibull family for aalyzig bahub failure-rae daa, IEEE Trasacios o Reliabiliy, vol. 42, o. 2, pp , [2]D.I.Davis, Aaalysisofsomefailuredaa, he America Saisical Associaio,vol.47,pp ,1952. [3] B.Efro, Logisicregressio,survivalaalysisadheKapla- Meier curve, JouralofheAmericaSaisicalAssociaio,vol. 83, pp , [4] G. S. Mudholkar ad D. K. Srivasa, Expoeiaed weibull family: a reaalysis of he bus-moor-failure daa, Techomerics,vol.37,o.4,pp ,1995. [5] G. S. Mudholkar ad A. D. Huso, The expoeiaed weibull family: some properies ad a flood daa applicaio, Commuicaios i Saisics Theory ad Mehods, vol.25,o.12,pp , [6] R.JiagadD.N.P.Murhy, Theexpoeiaedweibullfamily: a graphical approach, IEEE Trasacios o Reliabiliy,vol.48, o. 1, pp , [7] M. M. Nassar ad F. H. Eissa, O he expoeiaed weibull disribuio, Commuicaios i Saisics Theory ad Mehods,vol.32,o.7,pp ,23. [8] M. M. Nassar ad F. H. Eissa, Bayesia esimaio for he expoeiaed Weibull model, Commuicaios i Saisics Theory ad Mehods,vol.33,o.1,pp ,24. [9] M.Pal,M.M.Ali,adJ.Woo, ExpoeiaedWeibulldisribuio, Saisica,vol.66, o.2,pp , 26. [1] R. C. Gupa, P. L. Gupa, ad R. D. Gupa, Modelig failureimedaabylehmaaleraives, Commuicaios i Saisics Theory ad Mehods, vol. 27, o. 4, pp , [11] R. D. Gupa ad D. Kudu, Geeralized expoeial disribuios, Ausralia ad New Zealad Saisics,vol.41, o. 2, pp , [12] R. D. Gupa ad D. Kudu, Geeralized expoeial disribuio: differe mehod of esimaios, Saisical Compuaio ad Simulaio,vol.69,o.4,pp ,21. [13] R.D.GupaadD.Kudu, Expoeiaedexpoeialfamily: a aleraive o gamma ad Weibull disribuios, Biomerical Joural,vol.43,pp ,21. [14] R. D. Gupa ad D. Kudu, Geeralized expoeial disribuios: saisical iferece, Saisical Theory ad Applicaios,vol.1,pp ,22. [15] R. D. Gupa ad D. Kudu, Discrimiaig bewee Weibull ad geeralized expoeial disribuios, Compuaioal Saisics ad Daa Aalysis,vol.43,o.2,pp ,23. [16] R. D. Gupa ad D. Kudu, Closeess of gamma ad geeralized expoeial disribuio, Commuicaios i Saisics Theory ad Mehods,vol.32,o.4,pp ,23. [17] R. D. Gupa ad D. Kudu, Discrimiaig bewee gamma ad geeralized expoeial disribuios, Saisical Compuaio ad Simulaio,vol.74,o.2,pp ,24. [18] R. D. Gupa, D. Kudu, ad A. Maglick, Probabiliy of correc selecio of gamma versus GE or Weibull versus GE based likelihood raio saisic, i Proceedigs of Saisics Rece Advaces i Saisical Mehods,Y.P.Chaubey,Ed.,pp , Imperial College Press, 22. [19] D. Kudu, R. D. Gupa, ad A. Maglick, Discrimiaig bewee he log-ormal ad geeralized expoeial disribuios, Saisical Plaig ad Iferece, vol.127,o. 1-2, pp , 25. [2] D. Kudu ad R. D. Gupa, Esimaio of P[Y < X]for geeralized expoeial disribuio, Merika,vol.61,o.3,pp , 25. [21] M. Z. Raqab ad M. Ahsaullah, Esimaio of he locaio ad scale parameers of geeralized expoeial disribuio based o order saisics, Saisical Compuaio ad Simulaio,vol.69,o.2,pp ,21. [22] M. Z. Raqab, Ifereces for geeralized expoeial disribuio based o record saisics, Saisical Plaig ad Iferece,vol.14,o.2,pp ,22. [23] A. H. Abdel-Hamid ad E. K. AL-Hussaii, Esimaio i sepsress acceleraed life ess for he expoeiaed expoeial disribuio wih ype-i cesorig, Compuaioal Saisics addaaaalysis,vol.53,o.4,pp ,29. [24] E. K. AL-Hussaii, O expoeiaed class of disribuios, Saisical Theory ad Applicaios, vol.8,pp.41 63, 21. [25] E. K. AL-Hussaii ad M. Hussei, Esimaio usig cesored daa from expoeiaed Burr ype XII populaio, America Ope Saisics,vol.1,pp.33 45,211. [26] J. F. Lawless, Saisical Models ad Mehods for Lifeime Daa, Wiley, New York, NY, USA, 2d ediio, 23. [27] A. I. Shawky ad H. H. Abu-Ziadah, Expoeiaed Pareo disribuio: differe mehod of esimaios, Ieraioal Coemporary Mahemaical Scieces, vol.4,o.14, pp , 29. [28] G. M. Cordeiro, G. O. Silva, ad E. M. M. Orega, The bea exeded weibull family, Probabiliy ad Saisical Sciece,vol.1,pp.15 4,212. [29] D. Kudu ad M. Z. Raqab, Geeralized Rayleigh disribuio: differe mehods of esimaios, Compuaioal Saisics ad Daa Aalysis,vol.49,o.1,pp.187 2,25. [3] I. B. Abdul-Moiem ad H. F. Abdel-Hameed, O expoeiaed Lomax disribuio, Ieraioal Mahemaical Archive,vol.3,o.5,pp ,212. [31] P. R. Tadikamalla, A look a he Burr ad relaed disribuios, Ieraioal Saisical Review, vol. 48, pp , 198. [32] C. D. Lai, M. Xie, ad D. N. P. Murhy, A modified Weibull disribuio, IEEE Trasacios o Reliabiliy,vol.52,o.1,pp , 23. [33] M. Xie, Y. Tag, ad T. N. Goh, A modified Weibull exesio wih bahub-shaped failure rae fucio, Reliabiliy Egieerig ad Sysem Safey,vol.76,o.3,pp ,22. [34] M. Ljubo, Curves ad coceraio idices for cerai geeralized Pareo disribuios, Saisical Review, vol.15,pp , [35] V. K. Rohagi, A Iroducio o Probabiliy Theory ad Mahemaical Saisics, Joh Wiley & Sos, New York, NY, USA, 1976.

10 1 Probabiliy ad Saisics [36] N. L. Johso ad S. Koz, Coiuous Uivariae Disribuios- I, Joh Wiley & Sos, New York, NY, USA, 197. [37] A. Chaurvedi ad S. K. Tomer, Classical ad Bayesia reliabiliy esimaio of he egaive biomial disribuio, Applied Saisical Sciece,vol.11,pp.33 43,22.

11 Advaces i Operaios Research Advaces i Decisio Scieces Applied Mahemaics Algebra Probabiliy ad Saisics The Scieific World Joural Ieraioal Differeial Equaios Submi your mauscrips a Ieraioal Advaces i Combiaorics Mahemaical Physics Complex Aalysis Ieraioal Mahemaics ad Mahemaical Scieces Mahemaical Problems i Egieerig Mahemaics Discree Mahemaics Discree Dyamics i Naure ad Sociey Fucio Spaces Absrac ad Applied Aalysis Ieraioal Sochasic Aalysis Opimizaio

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials

Research Article On a Class of q-bernoulli, q-euler, and q-genocchi Polynomials Absrac ad Applied Aalysis Volume 04, Aricle ID 696454, 0 pages hp://dx.doi.org/0.55/04/696454 Research Aricle O a Class of -Beroulli, -Euler, ad -Geocchi Polyomials N. I. Mahmudov ad M. Momezadeh Easer

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables Available olie a wwwsciecedireccom ScieceDirec Procedia - Social ad Behavioral Scieces 30 ( 016 ) 35 39 3 rd Ieraioal Coferece o New Challeges i Maageme ad Orgaizaio: Orgaizaio ad Leadership, May 016,

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

July 24-25, Overview. Why the Reliability Issue is Important? Some Well-known Reliability Measures. Weibull and lognormal Probability Plots

July 24-25, Overview. Why the Reliability Issue is Important? Some Well-known Reliability Measures. Weibull and lognormal Probability Plots Par I: July 24-25, 204 Overview Why he Reliabiliy Issue is Impora? Reliabiliy Daa Paer Some Well-kow Reliabiliy Measures Weibull ad logormal Probabiliy Plos Maximum Likelihood Esimaor 2 Wha is Reliabiliy?

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity e Scieific World Joural, Aricle ID 807324, 4 pages hp://dx.doi.org/10.1155/2014/807324 Research Aricle Geeralized Equilibrium Problem wih Mixed Relaxed Moooiciy Haider Abbas Rizvi, 1 Adem KJlJçma, 2 ad

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Inference of the Second Order Autoregressive. Model with Unit Roots

Inference of the Second Order Autoregressive. Model with Unit Roots Ieraioal Mahemaical Forum Vol. 6 0 o. 5 595-604 Iferece of he Secod Order Auoregressive Model wih Ui Roos Ahmed H. Youssef Professor of Applied Saisics ad Ecoomerics Isiue of Saisical Sudies ad Research

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

Research Article A MOLP Method for Solving Fully Fuzzy Linear Programming with LR Fuzzy Parameters

Research Article A MOLP Method for Solving Fully Fuzzy Linear Programming with LR Fuzzy Parameters Mahemaical Problems i Egieerig Aricle ID 782376 10 pages hp://dx.doi.org/10.1155/2014/782376 Research Aricle A MOLP Mehod for Solvig Fully Fuzzy Liear Programmig wih Fuzzy Parameers Xiao-Peg Yag 12 Xue-Gag

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

A Generalization of Hermite Polynomials

A Generalization of Hermite Polynomials Ieraioal Mahemaical Forum, Vol. 8, 213, o. 15, 71-76 HIKARI Ld, www.m-hikari.com A Geeralizaio of Hermie Polyomials G. M. Habibullah Naioal College of Busiess Admiisraio & Ecoomics Gulberg-III, Lahore,

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA Volume 8 No. 8, 45-54 ISSN: 34-3395 (o-lie versio) url: hp://www.ijpam.eu ijpam.eu INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA A.Arul dass M.Dhaapal

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Effect of Test Coverage and Change Point on Software Reliability Growth Based on Time Variable Fault Detection Probability

Effect of Test Coverage and Change Point on Software Reliability Growth Based on Time Variable Fault Detection Probability Effec of Tes Coverage ad Chage Poi o Sofware Reliabiliy Growh Based o Time Variable Faul Deecio Probabiliy Subhashis Chaerjee*, Akur Shukla Deparme of Applied Mahemaics, Idia School of Mies, Dhabad, Jharkhad,

More information

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA Proceedigs of he 202 Ieraioal Coferece o Idusrial Egieerig ad Operaios Maageme Isabul, urey, July 3 6, 202 A eeralized Cos Malmquis Ide o he Produciviies of Uis wih Negaive Daa i DEA Shabam Razavya Deparme

More information

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix 4h Ieraioal Coferece o Sesors, Mecharoics ad Auomaio (ICSMA 06) A Complex Neural Newor Algorihm for Compuig he Larges eal Par Eigevalue ad he correspodig Eigevecor of a eal Marix HANG AN, a, XUESONG LIANG,

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

The universal vector. Open Access Journal of Mathematical and Theoretical Physics [ ] Introduction [ ] ( 1)

The universal vector. Open Access Journal of Mathematical and Theoretical Physics [ ] Introduction [ ] ( 1) Ope Access Joural of Mahemaical ad Theoreical Physics Mii Review The uiversal vecor Ope Access Absrac This paper akes Asroheology mahemaics ad pus some of i i erms of liear algebra. All of physics ca be

More information

Modified Ratio and Product Estimators for Estimating Population Mean in Two-Phase Sampling

Modified Ratio and Product Estimators for Estimating Population Mean in Two-Phase Sampling America Joural of Operaioal esearch 06, 6(3): 6-68 DOI: 0.593/j.ajor.060603.0 Moifie aio a Prouc Esimaors for Esimaig Populaio Mea i Two-Phase Samplig Subhash Kumar Yaav, Sa Gupa, S. S. Mishra 3,, Alok

More information

BAYESIAN ESTIMATION METHOD FOR PARAMETER OF EPIDEMIC SIR REED-FROST MODEL. Puji Kurniawan M

BAYESIAN ESTIMATION METHOD FOR PARAMETER OF EPIDEMIC SIR REED-FROST MODEL. Puji Kurniawan M BAYESAN ESTMATON METHOD FOR PARAMETER OF EPDEMC SR REED-FROST MODEL Puji Kuriawa M447 ABSTRACT. fecious diseases is a impora healh problem i he mos of couries, belogig o doesia. Some of ifecious diseases

More information

On the Validity of the Pairs Bootstrap for Lasso Estimators

On the Validity of the Pairs Bootstrap for Lasso Estimators O he Validiy of he Pairs Boosrap for Lasso Esimaors Lorezo Campoovo Uiversiy of S.Galle Ocober 2014 Absrac We sudy he validiy of he pairs boosrap for Lasso esimaors i liear regressio models wih radom covariaes

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

BRIDGE ESTIMATOR AS AN ALTERNATIVE TO DICKEY- PANTULA UNIT ROOT TEST

BRIDGE ESTIMATOR AS AN ALTERNATIVE TO DICKEY- PANTULA UNIT ROOT TEST The 0 h Ieraioal Days of Saisics ad Ecoomics Prague Sepember 8-0 06 BRIDGE ESTIMATOR AS AN ALTERNATIVE TO DICKEY- PANTULA UNIT ROOT TEST Hüseyi Güler Yeliz Yalҫi Çiğdem Koşar Absrac Ecoomic series may

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

Institute of Actuaries of India

Institute of Actuaries of India Isiue of cuaries of Idia Subjec CT3-robabiliy ad Mahemaical Saisics May 008 Eamiaio INDICTIVE SOLUTION Iroducio The idicaive soluio has bee wrie by he Eamiers wih he aim of helig cadidaes. The soluios

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

A Bayesian Approach for Detecting Outliers in ARMA Time Series

A Bayesian Approach for Detecting Outliers in ARMA Time Series WSEAS RASACS o MAEMAICS Guochao Zhag Qigmig Gui A Bayesia Approach for Deecig Ouliers i ARMA ime Series GUOC ZAG Isiue of Sciece Iformaio Egieerig Uiversiy 45 Zhegzhou CIA 94587@qqcom QIGMIG GUI Isiue

More information

Research Article Testing for Change in Mean of Independent Multivariate Observations with Time Varying Covariance

Research Article Testing for Change in Mean of Independent Multivariate Observations with Time Varying Covariance Joural of Probabiliy ad Saisics Volume, Aricle ID 969753, 7 pages doi:.55//969753 Research Aricle Tesig for Chage i Mea of Idepede Mulivariae Observaios wih Time Varyig Covariace Mohamed Bouahar Isiue

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

INVESTMENT PROJECT EFFICIENCY EVALUATION

INVESTMENT PROJECT EFFICIENCY EVALUATION 368 Miljeko Crjac Domiika Crjac INVESTMENT PROJECT EFFICIENCY EVALUATION Miljeko Crjac Professor Faculy of Ecoomics Drsc Domiika Crjac Faculy of Elecrical Egieerig Osijek Summary Fiacial efficiecy of ivesme

More information

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Yugoslav Joural of Operaios Research 8 (2008, Number, 53-6 DOI: 02298/YUJOR080053W NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Jeff Kuo-Jug WU, Hsui-Li

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 4, ISSN: Available olie a h://scik.og J. Mah. Comu. Sci. 2 (22), No. 4, 83-835 ISSN: 927-537 UNBIASED ESTIMATION IN BURR DISTRIBUTION YASHBIR SINGH * Deame of Saisics, School of Mahemaics, Saisics ad Comuaioal

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Efficiency of Some Estimators for a Generalized Poisson Autoregressive Process of Order 1

Efficiency of Some Estimators for a Generalized Poisson Autoregressive Process of Order 1 Ope Joural of Saisics 6 6 637-65 Published Olie Augus 6 i SciRes hp://wwwscirporg/joural/ojs hp://dxdoiorg/436/ojs66454 Efficiecy of Some Esimaors for a Geeralized Poisso Auoregressive Process of Order

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Local Influence Diagnostics of Replicated Data with Measurement Errors

Local Influence Diagnostics of Replicated Data with Measurement Errors ISSN 76-7659 Eglad UK Joural of Iformaio ad Compuig Sciece Vol. No. 8 pp.7-8 Local Ifluece Diagosics of Replicaed Daa wih Measureme Errors Jigig Lu Hairog Li Chuzheg Cao School of Mahemaics ad Saisics

More information

Effect of Heat Exchangers Connection on Effectiveness

Effect of Heat Exchangers Connection on Effectiveness Joural of Roboics ad Mechaical Egieerig Research Effec of Hea Exchagers oecio o Effeciveess Voio W Koiaho Maru J Lampie ad M El Haj Assad * Aalo Uiversiy School of Sciece ad echology P O Box 00 FIN-00076

More information

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER

METHOD OF THE EQUIVALENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBLEM FOR ELASTIC DIFFUSION LAYER Maerials Physics ad Mechaics 3 (5) 36-4 Received: March 7 5 METHOD OF THE EQUIVAENT BOUNDARY CONDITIONS IN THE UNSTEADY PROBEM FOR EASTIC DIFFUSION AYER A.V. Zemsov * D.V. Tarlaovsiy Moscow Aviaio Isiue

More information

A new flexible Weibull distribution

A new flexible Weibull distribution Communicaions for Saisical Applicaions and Mehods 2016, Vol. 23, No. 5, 399 409 hp://dx.doi.org/10.5351/csam.2016.23.5.399 Prin ISSN 2287-7843 / Online ISSN 2383-4757 A new flexible Weibull disribuion

More information

O & M Cost O & M Cost

O & M Cost O & M Cost 5/5/008 Turbie Reliabiliy, Maieace ad Faul Deecio Zhe Sog, Adrew Kusiak 39 Seamas Ceer Iowa Ciy, Iowa 54-57 adrew-kusiak@uiowa.edu Tel: 39-335-5934 Fax: 39-335-5669 hp://www.icae.uiowa.edu/~akusiak Oulie

More information

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles Idia Joural of Sciece ad echology Vol 9(5) DOI: 7485/ijs/6/v9i5/8533 July 6 ISSN (Pri) : 974-6846 ISSN (Olie) : 974-5645 Fuzzy Dyamic Euaios o ime Scales uder Geeralized Dela Derivaive via Coracive-lie

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Comparing Different Estimators for Parameters of Kumaraswamy Distribution Compaig Diffee Esimaos fo Paamees of Kumaaswamy Disibuio ا.م.د نذير عباس ابراهيم الشمري جامعة النهرين/بغداد-العراق أ.م.د نشات جاسم محمد الجامعة التقنية الوسطى/بغداد- العراق Absac: This pape deals wih compaig

More information

On Another Type of Transform Called Rangaig Transform

On Another Type of Transform Called Rangaig Transform Ieraioal Joural of Parial Differeial Equaios ad Applicaios, 7, Vol 5, No, 4-48 Available olie a hp://pubssciepubcom/ijpdea/5//6 Sciece ad Educaio Publishig DOI:69/ijpdea-5--6 O Aoher Type of Trasform Called

More information

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme America Joural of Compuaioal ad Applied Maemaics, (6): 77-8 DOI:.59/.acam.6. Numerical Soluio of Parabolic Volerra Iegro-Differeial Equaios via Bacward-Euler Sceme Ali Filiz Deparme of Maemaics, Ada Mederes

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods

Order Determination for Multivariate Autoregressive Processes Using Resampling Methods joural of mulivariae aalysis 57, 175190 (1996) aricle o. 0028 Order Deermiaio for Mulivariae Auoregressive Processes Usig Resamplig Mehods Chaghua Che ad Richard A. Davis* Colorado Sae Uiversiy ad Peer

More information

Skewness of Gaussian Mixture Absolute Value GARCH(1, 1) Model

Skewness of Gaussian Mixture Absolute Value GARCH(1, 1) Model Commuicaios for Saisical Applicaios ad Mehods 203, Vol. 20, No. 5, 395 404 DOI: hp://dx.doi.org/0.535/csam.203.20.5.395 Skewess of Gaussia Mixure Absolue Value GARCH(, Model Taewook Lee,a a Deparme of

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

ASSESSING GOODNESS OF FIT

ASSESSING GOODNESS OF FIT ASSESSING GOODNESS OF FIT 1. Iroducio Ofe imes we have some daa ad wa o es if a paricular model (or model class) is a good fi. For isace, i is commo o make ormaliy assumpios for simpliciy, bu ofe i is

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

A New Functional Dependency in a Vague Relational Database Model

A New Functional Dependency in a Vague Relational Database Model Ieraioal Joural of Compuer pplicaios (0975 8887 olume 39 No8, February 01 New Fucioal Depedecy i a ague Relaioal Daabase Model Jaydev Mishra College of Egieerig ad Maageme, Kolagha Wes egal, Idia Sharmisha

More information

Pure Math 30: Explained!

Pure Math 30: Explained! ure Mah : Explaied! www.puremah.com 6 Logarihms Lesso ar Basic Expoeial Applicaios Expoeial Growh & Decay: Siuaios followig his ype of chage ca be modeled usig he formula: (b) A = Fuure Amou A o = iial

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Application of Fixed Point Theorem of Convex-power Operators to Nonlinear Volterra Type Integral Equations

Application of Fixed Point Theorem of Convex-power Operators to Nonlinear Volterra Type Integral Equations Ieraioal Mahemaical Forum, Vol 9, 4, o 9, 47-47 HIKRI Ld, wwwm-hikaricom h://dxdoiorg/988/imf4333 licaio of Fixed Poi Theorem of Covex-ower Oeraors o Noliear Volerra Tye Iegral Equaios Ya Chao-dog Huaiyi

More information