Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009

Size: px
Start display at page:

Download "Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009"

Transcription

1 Fermilab Program Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009

2 Outline State of the program and future evolution Energy Frontier Cosmic Frontier Intensity Frontier Any other items the Board may want to discuss 2

3 The particle physics program We are after a unified and coherent framework to understand the world around us We have a beautiful and powerful Standard Model that organizes what we know and allows us to recognize the phenomena in nature that do not fit Multiple experimental approaches are essential 3

4 Three main thrusts The energy frontier: produce particles at highest energy The intensity frontier: the most particles for neutrinos and rare decays Cosmic frontier: study phenomena in nature 4

5 Fermilab: facilities and experiments Energy Tevatron LHC LHC LHC upgrades LHC ILC? LHC CLIC or Muon Collider? Intensity Minos MiniBooNE NOvA MicroBooNE MINERvA LBNE Mu2e Project X+LBNE Mu2e ν Factory Cosmic P Auger DM Searches SDSS P Auger DM: scalable? DES JDEM DM searches JDEM Now

6 Fermilab: facilities and experiments Energy Tevatron LHC LHC LHC upgrades LHC ILC? LHC CLIC or Muon Collider? Now Green curve: same rates as 09 6

7 Tevatron Performance: Run II from 2002 to 2009 Int. Lum / week Total Luminosity FY09 FY08 FY07 FY06 year FY10 FY05 FY04 FY03 FY02 year Ran ~20 months without a long shutdown Coming back very fast after a long shutdown Initial instantaneous lum ~ 3 x cm -2 s -1 7

8 Precision Higgs constraints m H = GeV Tevatron and LEP2 (prel.) Now with 10 fb -1 m H < 157 (m H < 186 GeV when LEP limit inclued) m H < 117 (δm W =15MeV, δm t =1GeV) 8

9 The Higgs Search Over the last years, there s been a dramatic infusion of people, effort and ideas, aimed at finding the Higgs The SM Higgs (if it exists) is being produced NOW Just not that often & it s buried in backgrounds It will take luminosity, persistence and luck 9

10 SM Higgs Search Result: November Update and new Tevatron combination expected for HCP conference in November CDF Prelim fb -1 DØ Prelim fb -1 10

11 September 10, 2008 The LHC has first closed orbit; 300 press outfits at CERN; hoopla everywhere 11

12 September 19 th, 2008 The demons take over: a quench at one of the splices leads to failure of a splice, arc that vaporizes vacuum pipe and six tons of superfluid helium spill and overpressure the many cryostats 12

13 The LHC repairs in detail

14 CMS Detector Tracker Insertion: Dec 07 14

15 US involvement is huge! Exp. Univ. Labs. % CMS % ATLAS % ALICE % LHCb 1 1% The LHC provides a great opportunity to the US HEP community for the next two decades LHC has been the largest investment in HEP over the last decade of both capital and human resources It is important to continue to be a good partner to CERN 15

16 Lepton colliders beyond LHC ILC Enough By far the easiest! LHC Results or CLIC ILC not enough or Muon collider 16

17 ILC/Project X technology at Fermilab Horizontal Test Stand 1st cryomodule 17 Vertical Test Stand

18 Muon Collider R&D For a machine of greater energy than the ILC: Together with the existing collaboration on muon collider and neutrino factory we have proposed to carry out feasibility study in the next few years Several aspects require new technologies: mostly in capturing and cooling muon beams Time scale for either CLIC or a muon collider is well beyond a possible ILC 18

19 19

20 Muon collider layout 4 TeV 20

21 Fermilab: facilities and experiments Cosmic P Auger CDMS COUPP SDSS P Auger P Auger North? DM: scalable? DES JDEM DM searches Holometer? JDEM Now

22 Intensity Frontier Intensity Minos MiniBooNE ArgoNeut NOvA MicroBooNE MINERvA LBNE Mu2e Now Project X+LBNE Mu2e ν Factory 22

23 Two avenues to real understanding! Intensity frontier: the most particles Allows the study of neutrinos and rare process Sensitive to physics far beyond the LHC, but only indirectly Need to measure multiple processes LHC: direct production of heavy particles Wonderful direct discoveries of physics beyond the Standard Model Very difficult and often impossible to study how new particles couple to each other and to ordinary particles Need both for a complete understanding 23

24 Interplay: LHC Intensity Frontier nothing Only handle on the next energy scale LHC Intensity Frontier Lots Determine/verify structure of new physics. Anything beyond? 24

25 Example: early discovery at LHC ATLAS discovers strongly coupled SUSY q χ~ 0 1 g Missing E T dark matter candidate ~ χ 0 1 A host of new particles: fit roughly some masses, make assumption on couplings 25

26 Large effects in kaon decay rates d d d W s d s quarks quarks W Z ν ν SM: Κ L π 0 ν ν lepts W d d ν ν d squarks d d s d s squarks χ χ ν ν χ slepts BSM: Κ L π 0 ν ν χ d d ν ν 26

27 For particular classes of SUSY Decay K K + 0 L + π νν ( γ ) 0 π νν Branching Ratio ( 10 Theory (SM) Experiment ± ± 0.04 [1] [3] < 670 ) [2] (90% CL) [4] Large effect on rare K decay modes highly suppressed with SM particles Much higher SM backgrounds in B and C decays 27

28 Or models with extra dimensions + one sigma 28

29 Same for many other experiments Neutrinos LBNE Proton decay (same detector as LBNE) Charged lepton number violation experiments Other rare decays 29

30 Central to intensity frontier: neutrinos Only weak interactions: very small cross sections >> hard to study Need large flux of particles and massive detectors Complementary to LHC: measure neutrino parameters (new symmetries?), neutrino masses, matter-antimatter symmetry violation and surprises. Long base-line and high intensities 30

31 L = 1290 km 31

32 Intensity frontier: DUSEL 32

33 Mu2e can probe TeV New Physics Scale (TeV) with Project X pre-project X MEG Experiment SUSY Model Parameter Compositene ss 33

34 Ultimately will need Project X Provide the most powerful beam of neutrinos to the Homestake site for the highest parameter reach in neutrino physics Provide the most intense proton beams for muon, kaon, low energy neutrino physics and other possible applications without affecting the neutrino program Develop Project X to serve as the front end of future facilities like a neutrino factory or muon collider 34

35 Evolution of the Project X concept Originally an 8 GeV pulsed linac (5Hz, 1 msec pulses) with accumulation in the Recycler storage ring and acceleration to high energy in the Main Injector Original Idea 35

36 Project X and LBNE to Homestake 5% of the time line, the 2 GeV linac feeds a simple Rapid Cycling Synchrotron (RCS), 500m circumference, to strip, accumulate and boost the energy to 8 GeV Six pulses of the SAB are transferred to the recycler, filling the existing recycler, and every 1.4 sec transferred to the Main Injector for acceleration to high energies (60 GeV to 120 GeV) 2 MW to DUSEL 36

37 Project X and 8 GeV beams 8/14 RCS cycles are available for an 8 GeV program driven by a fast spill (single turn). An example is a much upgraded muon g-2 Slow extraction as needed for rare processes is very limited from circular machines: only method is resonance extraction which is rad dirty and limits extraction to 10s of kw. 8 GeV Fast spill 37

38 Project X and 2 GeV beams The greatest potential for rare processes comes from 2 MW continuous beam. Intensity experiments need continuous beam: pile up is the main limitation in pulsed beams 2 MW at 2+ GeV 38

39 Project X By a large margin, the best machine in the world at the intensity frontier for neutrino, kaon and muon beams Would maintain the vitality of the domestic US program by creating many physics opportunities; more than 1000 users Would develop and exercise the technologies to position the US to host a global facility at the energy frontier (or contribute to one elsewhere) Attract major international participation 39

40 In conclusion Fermilab together with the community are developing a vital national program that is complementary to the LHC This program fits within the financial envelope predicted for Office of Science in the next few years The program has flexibility: can adapt to future results and funding scenarios 40

Perspective from Fermilab NRC-DUSEL, December 15, 2010

Perspective from Fermilab NRC-DUSEL, December 15, 2010 Perspective from Fermilab NRC-DUSEL, December 15, 2010 Outline Summary An underground laboratory for the US Unique advantages of DUSEL The importance of DUSEL in Fermilab s plans Overall particle physics

More information

DOE Office of High Energy Physics Perspective on DUSEL

DOE Office of High Energy Physics Perspective on DUSEL OFFICE OF SCIENCE DOE Office of High Energy Physics Perspective on DUSEL NRC Committee to Assess the DUSEL December 14, 2010 Dennis Kovar Office of High Energy Physics Office of Science, U.S. Department

More information

E = mc 2 Opening Windows on the World

E = mc 2 Opening Windows on the World E = mc 2 Opening Windows on the World Young-Kee Kim Fermilab and the University of Chicago Physics Department Colloquium University of Virginia September 4, 2009 What is the world made of? What holds the

More information

Why a muon collider?

Why a muon collider? Why a muon collider? What will we learn? Mary Anne Cummings Northern Illinois Center for Accelerator and Detector Development Northern Illinois University 1 Why consider a Muon Collider? The current story

More information

My Challenges in Particle Physics

My Challenges in Particle Physics My Challenges in Particle Physics Conference for Undergraduate Women in Physics at Yale January 16, 2010 Young-Kee Kim Fermilab and the University of Chicago ykkim@fnal.gov x x Rochester erkeley x (1986-1990)

More information

Department Heads Meeting. David B. MacFarlane

Department Heads Meeting. David B. MacFarlane Department Heads Meeting October 18, 2012 David B. MacFarlane Visitors Brian Sherin & Simon Ovrahim» Plans for site security 2 Science program dates and news KIPAC Advisory Committee [Aug 22-23]:» Report

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

SLHC Physics Impact Albert De Roeck/CERN

SLHC Physics Impact Albert De Roeck/CERN SLHC Physics Impact Albert De Roeck/CERN XXXVII SLAC Summer Institute 1 Today s Lecture Contents Introduction Luminosity upgrade scenario for the LHC machine Physics with the SLHC Other possible upgrades

More information

e + e - (1) Silicon Vertex Detector

e + e - (1) Silicon Vertex Detector 3.1 GeV (4) Electromagnetic Calorimeter (3) Cerenkov- Detector (2) Drift Chamber (5) 1.5 T Solenoid (6) Instrumented Iron Yoke e + e - (1) Silicon Vertex Detector 9.0 GeV e + e - Colliders as B Factories

More information

Scientific Community Perspectives Physics

Scientific Community Perspectives Physics Scientific Community Perspectives Physics Barry C Barish Committee on Science, Engineering and Public Policy Board on Physics and Astronomy Committee on Setting Priorities for NSF s Large Research Facility

More information

Probing Supersymmetric Connection with Dark Matter

Probing Supersymmetric Connection with Dark Matter From サイエンス 82 Probing Supersymmetric Connection with Dark Matter Taken from Science, 1982 Teruki Kamon Department of Physics Texas A&M University November 3, 2005 Physics Colloquium, Texas Tech University

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK)

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK) 1 LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK) ATLAS experiment in 2016 2 3 ATLAS experiment The experiment started in 2008. Discovered Higgs in 2012. Run-2 operation started

More information

Where is Europe going?

Where is Europe going? Where is Europe going? Lars Bergström The Oskar Klein Centre for Cosmoparticle Physics Department of Physics, Stockholm University 1 www.aspensnowmass.com In Swedish, Snowmass may translate to two different

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada Dean Karlen University of Victoria & TRIUMF APS NW Section Meeting 2005 Victoria, Canada The International Linear Collider Next in the line of e + e - colliders at the high energy frontier of particle

More information

SuperB. Adrian Bevan. CIPANP 09, San Diego, May 2009.

SuperB. Adrian Bevan.   CIPANP 09, San Diego, May 2009. SuperB http://www.pi.infn.it/superb/ Adrian Bevan CIPANP 09, San Diego, May 2009. SuperB in a nutshell Overview Physics potential of SuperB New Physics Search Capabilities Lepton Flavour & CP Violation

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units The European Strategy for Particle Physics Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units Purpose of this meeting q To inform CERN s employees (staff, fellows) about the goals

More information

UK input to European Particle Physics Strategy Update FINAL DRAFT

UK input to European Particle Physics Strategy Update FINAL DRAFT UK input to European Particle Physics Strategy Update STFC Particle Physics Advisory Panel: P.N. Burrows, C. Da Via, E.W.N. Glover, P. Newman, J. Rademacker, C. Shepherd-Themistocleous, W. Spence, M. Thomson,

More information

Flavour physics in the LHC era

Flavour physics in the LHC era Maria Laach school, september 2012 An introduction to Flavour physics in the LHC era and quest for New Physics (an experimentalist s point of view) Clara Matteuzzi INFN and Universita Milano-Bicocca 1

More information

Did we discover the Higgs?

Did we discover the Higgs? Did we discover the Higgs? UTA Physics Public Symposium July 6, 2012 Dr. Outline What is High Energy Physics? What is the Higgs particle and what does it do? What did we see? (some scientific plots ) Did

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Search for Heavy Majorana Neutrinos

Search for Heavy Majorana Neutrinos Search for Heavy Majorana Neutrinos Workshop on Lepton Baryon Number Violation Madison, WI Anupama Atre Fermilab Outline A Brief Introduction: What we know about neutrinos Simplest extension The Search

More information

Experimental Searches for Muon to Electron Conversion

Experimental Searches for Muon to Electron Conversion Experimental Searches for Muon to Electron Conversion Yoshitaka Kuno Department of Physics Osaka University May 20th, 2009 FJPPL, EPOCHAL, Tsukuba Outline Overview of Our Proposal to FJPPL Physics Motivation

More information

The Gamma Factory proposal for CERN

The Gamma Factory proposal for CERN The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy

More information

Roadmap to the Future. Fred Gilman SLAC Summer Institute August 13, 2004

Roadmap to the Future. Fred Gilman SLAC Summer Institute August 13, 2004 Roadmap to the Future Fred Gilman SLAC Summer Institute August 13, 2004 Questions What is the nature of the universe and what is it made of? What are matter, energy, space and time? How did we get here

More information

A paradigm shift in physics until 2025 because of the LHC? David Côté (CERN)

A paradigm shift in physics until 2025 because of the LHC? David Côté (CERN) A paradigm shift in physics until 2025 because of the LHC? David Côté (CERN) Overview Brief self-presentation Introduction Physics beyond the Standard Model The Large Hadron Collider (LHC) My research

More information

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London Current and Future Developments in Accelerator Facilities Jordan Nash, Imperial College London Livingston chart (circa 1985) Nearly six decades of continued growth in the energy reach of accelerators Driven

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

Recent Results on New Phenomena and Higgs Searches at DZERO

Recent Results on New Phenomena and Higgs Searches at DZERO Recent Results on New Phenomena and Higgs Searches at DZERO Neeti Parashar Louisiana Tech University Ruston, Louisiana U.S.A. 1 Outline Motivation for DØ Run II Detector at Fermilab The Fermilab Tevatron

More information

Accelerators and Colliders

Accelerators and Colliders Accelerators and Colliders References Robert Mann: An introduction to particle physics and the standard model Tao Han, Collider Phenomenology, http://arxiv.org/abs/hep-ph/0508097 Particle Data Group, (J.

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

New Frontiers in Particle Physics and The Splendors of a Linear Collider

New Frontiers in Particle Physics and The Splendors of a Linear Collider New Frontiers in Particle Physics and The Splendors of a Linear Collider Barry Barish Caltech University of Iowa 16-Sept-02 Developing a Long Range Strategy for Particle Physics A roadmap is an extended

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration LHCb Overview Barbara Storaci on behalf of the LHCb Collaboration CERN Council, December 14 th, 2012 Overview Introduction Collaboration Type of physics considered Detector Detector performances Selection

More information

arxiv: v2 [hep-ex] 21 Feb 2017

arxiv: v2 [hep-ex] 21 Feb 2017 Prospects for beyond Standard Model Higgs boson searches at future LHC runs and other machines arxiv:1701.05124v2 [hep-ex] 21 Feb 2017 Deutsches Elektronen-Synchrotron (DESY) E-mail: krisztian.peters@desy.de

More information

Modern experiments - ATLAS

Modern experiments - ATLAS Modern experiments - ATLAS, paula.eerola [at] hep.lu.se,, 046-222 7695 Outline Introduction why new experiments? The next generation of experiments: ATLAS at the Large Hadron Collider Physics basics luminosity,

More information

Interconnection between Particle Physics and Cosmology at the LHC

Interconnection between Particle Physics and Cosmology at the LHC Interconnection between Particle Physics and Cosmology at the LHC Selections from the Cosmo Secret Cube Catalogue Transformer Cube Standard Model Cube PPC Cube Premiere Props Teruki Kamon Mitchell Institute

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Early physics with Atlas at LHC

Early physics with Atlas at LHC Early physics with Atlas at LHC Bellisario Esposito (INFN-Frascati) On behalf of the Atlas Collaboration Outline Atlas Experiment Physics goals Next LHC run conditions Physics processes observable with

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

Frontiers in Theoretical and Applied Physics 2017, Sharjah UAE

Frontiers in Theoretical and Applied Physics 2017, Sharjah UAE A Search for Beyond the Standard Model Physics Using Final State with Light and Boosted Muon Pairs at CMS Experiment Frontiers in Theoretical and Applied Physics 2017, Sharjah UAE Alfredo Castaneda* On

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany

Heavy Ions at the LHC: Selected Predictions. Georg Wolschin. Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy Ions at the LHC: Selected Predictions Georg Wolschin Institut für Theoretische Physik der Universität, Heidelberg, Germany Heavy-ion collisions at relativistic energy have been investigated for many

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. CMS prospects for heavy flavour physics

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. CMS prospects for heavy flavour physics Available on CMS information server CMS NOTE -2011/008 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 10 November 2011 (v2, 14 November 2011) CMS

More information

Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University

Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University Physics at the Fermilab Tevatron Collider Darien Wood Northeastern University 1 Outline Introduction: collider experiments The Tevatron complex (review) Examples of physics studies at the Tevatron jet

More information

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 LHC Results in 2010-11 Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 1 LHC results after a year of successful data taking Majid Hashemi IPM, 18th May 2011 http://cms.web.cern.ch/cms/timeline/index.html

More information

Proposal for a US strategy towards physics & detectors at future lepton colliders

Proposal for a US strategy towards physics & detectors at future lepton colliders Proposal for a US strategy towards physics & detectors at future lepton colliders Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

LHCb Discovery potential for New Physics

LHCb Discovery potential for New Physics Beam induced splash in LHCb Imperial College London LHCb Discovery potential for New Physics Introduction Physics with LHCb Flavour physics can provide unique input on the type of New Physics If we express

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Conventional neutrino experiments

Conventional neutrino experiments Conventional neutrino experiments Heidi Schellman P5 February 21, 2008 2/21/2008 P5 neutrino session 1 Conventional neutrino experiments @FNAL Fiducial Energy POT, Technology Status Goal mass x DONuT 0.3

More information

MICROPHYSICS AND THE DARK UNIVERSE

MICROPHYSICS AND THE DARK UNIVERSE MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007 20 June 07 Feng 1 WHAT IS THE UNIVERSE MADE OF? Recently there have been remarkable advances

More information

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University Physics at Photon Colliders Prof. Mayda M. Velasco Northwestern University Higgs Boson discovered in 2012 at the LHC using 8 TeV data and is still there at 13 TeV J @LHC the Higgs is better detected in

More information

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential IL NUOVO CIMENTO 4 C (27) 8 DOI.393/ncc/i27-78-7 Colloquia: IFAE 26 Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential M. Testa LNF-INFN - Frascati (RM), Italy

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva LHC Detectors and their Physics Potential Nick Ellis PH Department, CERN, Geneva 1 Part 1 Introduction to the LHC Detector Requirements & Design Concepts 2 What is the Large Hadron Collider? Circular proton-proton

More information

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung e + Z*/γ τ + e - τ Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung 1 Outline Introduction of the International Linear Collider (ILC) Introduction of (g μ -2) in the

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

In Pursuit of Discovery at The Large Hadron Collider

In Pursuit of Discovery at The Large Hadron Collider In Pursuit of Discovery at The Large Hadron Collider Prof. Christopher Neu Department of Physics University of Virginia My name is Chris Neu An Introduction Experimental high energy physics Office: 119

More information

New Physics with a High Intensity PS (in Italy)

New Physics with a High Intensity PS (in Italy) 1 New Physics with a High Intensity PS (in Italy) F. Cervelli I.N.F.N. Pisa 2 At present, in the worldwide requests of constructing a High Intensity Proton Machine are rising. Why? 3 The central issues

More information

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory Future of LHC Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory PiTP, July 2013 1 LHC Run 1: 2009-2012 25 fb -1 of 7+8 TeV pp data Higgs boson found! Looks like SM

More information

PHYS 5326 Lecture #23

PHYS 5326 Lecture #23 PHYS 5326 Lecture #23 Monday, Apr. 21, 2003 Dr. Backgrounds to Higgs Searches Requirement on Experiments for Higgs Searches 1 Announcement Semester project presentation 1:00 4:00pm, Wednesday, May 7 in

More information

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca Moriond QCD La Thuile, March 14 21, 2009 Flavour physics in the LHC era An introduction Clara Matteuzzi INFN and Universita Milano-Bicocca 1 Contents 1. The flavor structure of the Standard Model 2. Tests

More information

Recent results from the LHCb experiment

Recent results from the LHCb experiment Recent results from the LHCb experiment University of Cincinnati On behalf of the LHCb collaboration Brief intro to LHCb The Large Hadron Collider (LHC) proton-proton collisions NCTS Wksp. DM 2017, Shoufeng,

More information

Measurements of the Higgs Boson at the LHC and Tevatron

Measurements of the Higgs Boson at the LHC and Tevatron Measurements of the Higgs Boson at the LHC and Tevatron Somnath Choudhury (for the ATLAS, CMS, DØ and CDF collaborations) 44 th International Symposium on Multiparticle Dynamics 8 12 September 2014, Bologna

More information

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns Compact Muon Solenoid o Results and Plans Stephan Linn - Florida International Univ. on behalf of the CMS Collaboration 1 Large Hadron Collider Diameter 8.5 km Beam energy: 7 TeV Luminosity: 10 34 Protons/bunch:

More information

The Long-Baseline Neutrino Experiment Kate Scholberg, Duke University NOW 2012

The Long-Baseline Neutrino Experiment Kate Scholberg, Duke University NOW 2012 The Long-Baseline Neutrino Experiment Kate Scholberg, Duke University NOW 2012 Oro Hondo??? Physics Motivations - Mass hierarchy and CP violation - Baryon number violation - Atmospheric neutrinos (oscillations)

More information

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron Measurements of the Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron John Ellison University of California, Riverside, USA Selection of and Z events Measurement of the mass Tests of the gauge

More information

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University Results from the Tevatron: Standard Model Measurements and Searches for the Higgs Ashutosh Kotwal Duke University SLAC Summer Institute 31 July 2007 Why Build Accelerators? From Atoms to Quarks Scattering

More information

Whither colliders after the Large Hadron Collider?

Whither colliders after the Large Hadron Collider? PRAMANA c Indian Academy of Sciences Vol. 79, No. 5 journal of November 2012 physics pp. 993 1002 Whither colliders after the Large Hadron Collider? ROLF-DIETER HEUER CERN, CH-1211, Geneva 23, Switzerland

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon. Department of Physics Texas A&M University. Question

Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon. Department of Physics Texas A&M University. Question Dark Puzzles of the Universe Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon Department of Physics Texas A&M University Question March 24, 2007 Dark Puzzles of the Universe 2

More information

Dark Puzzles of the Universe

Dark Puzzles of the Universe Dark Puzzles of the Universe Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon Department of Physics Texas A&M University Question March 24, 2007 Dark Puzzles of the Universe 2

More information

SUSY Search Strategies at Atlas and CMS

SUSY Search Strategies at Atlas and CMS 1 SUSY Search Strategies at Atlas and CMS (Universität Hamburg) for the Atlas and CMS Collaborations All-hadronic SUSY search Leptonic Inclusive SUSY search Reach in the msugra plane supported by: SUSY

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Dark Sectors at the Fermilab SeaQuest Experiment

Dark Sectors at the Fermilab SeaQuest Experiment Dark Sectors at the Fermilab SeaQuest Experiment Stefania Gori University of Cincinnati New Probes for Physics Beyond the Standard Model KITP April 9, 2018 Dark sectors Dark matter (DM) exists! The stronger

More information

LHCb New B physics ideas

LHCb New B physics ideas Imperial College London Beam induced splash in LHCb LHCb New B physics ideas Ulrik Egede @ Interplay of Collider and Flavour Physics, 2 nd meeting 17 March 2009 Introduction 2/21 Physics case for LHCb

More information

Walter Hopkins. February

Walter Hopkins. February B s µ + µ Walter Hopkins Cornell University February 25 2010 Walter Hopkins (Cornell University) Bs µ + µ February 25 2010 1 / 14 Motivation B s µ + µ can only occur through higher order diagrams in Standard

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

DOE Office of Science (SC) Office of High Energy Physics (OHEP)

DOE Office of Science (SC) Office of High Energy Physics (OHEP) DOE Office of Science (SC) Office of High Energy Physics (OHEP) OHEP Mission is to maintain the Nation s competency/leadership in HEP research with responsibilities to establish a strategic plan that address

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era Design of the new ATLAS Inner Tracker for the High Luminosity LHC era Trevor Vickey on behalf of the ATLAS Collaboration University of Sheffield, United Kingdom July 3, 2017 19th iworid Krakow, Poland

More information

LHC: PAST, PRESENT AND FUTURE

LHC: PAST, PRESENT AND FUTURE LHC: PAST, PRESENT AND FUTURE ATLAS CMS www.cea.fr www.cea.fr AERES visit to IRFU Samira Hassani 7 JANUARY 2014 CEA 10 AVRIL 2012 PAGE 1 LHC IS Physics Calibration Reconstruction Simulation R&D Computing

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Top physics at HL-LHC

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Top physics at HL-LHC Available on CMS information server CMS CR -2017/029 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland February 2017 (v3, 14 February 2017)

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

LHCb results and prospects

LHCb results and prospects LHCb results and prospects M. Witek (IFJ PAN Cracow, Poland) On behalf of the LHCb Collaboration Miami 2011 Conference Fort Lauderdale, Florida 800 physicists 15 countries 54 institutes CERN LHC Large

More information

Accelerator development

Accelerator development Future Colliders Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : sboogert@pp.rhul.ac.uk Telephone : 01784 414062 Lectures aims High energy physics

More information

PPAP report + SoI status

PPAP report + SoI status PPAP report + SoI status Philip Burrows John Adams Institute Oxford University The PPAP Philip Burrows (Oxford) chair Cinzia Da Via (Manchester) Tim Gershon (Warwick) Nigel Glover (Durham) Claire Shepherd-Themistocleous

More information

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct Tevatron Physics Prospects Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct. 29 2008 CDF and DØ Operations Fermilab is planning to run CDF and DØ through FY2010. The Tevatron is now delivering

More information