Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Size: px
Start display at page:

Download "Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio"

Transcription

1 Topic 7 Convolution, Filters, Correlation, Representation

2 Short time Fourier Transform Break signal into windows Calculate DFT of each window

3 The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A series of short term DFTs Typically just displays the magnitudes of X from 0 Hz to Nyquist rate

4 Equal Temperament Octave is a relationship by power of 2. There are 12 half-steps in an octave n number of half-steps from the reference pitch frequency of desired pitch f 2 12 f ref frequency of the reference pitch

5 Spiral Pitch representation

6 frequency Chroma: Many to one Chroma = log2(freq) floor(log2(freq)) Chroma periodic in range 0 to (almost) 1 Chroma map on to pitch classes Hz Hz 0.75 CHROMA Hz 100 Hz time 0.5

7 Making a Chromagram Decide how to quantize (bin) the chroma range. 12 pitch classes? 120 bins? Equal temperment? Make a spectrogram For each time-step in the spectrogram find the chroma for each frequency from 0 to N/2 Sum the amplitude of all frequencies with the same chroma bin (Some chromagrams also add in the energy from the odd harmonics) Place that value in the chroma bin

8 Chromagram of Clarinet C C# 2 D D# E F F# G G# A A# B

9 Chromagram of Clarinet

10 Convolution convolution is a mathematical operator which takes two functions f and g and produces a third function that represents the amount of overlap between f and a reversed and translated version of g. Typically, one of the functions is taken to be a fixed filter impulse response, and is known as a kernel. b ( f g)( t) f ( ) g( t ) d Convolution operator a

11 Discrete Convolution convolution is a mathematical operator which takes two functions f and g and produces a third function that represents the amount of overlap between f and a reversed and translated version of g. Typically, one of the functions is taken to be a fixed filter impulse response, and is known as a kernel. ( f g)[ m] f [ n] g[ m n] n

12 Convolution (Time Domain) function C= convolution(a,b) lengtha= length(a); lengthb= length(b); C = zeros(1, lengtha + lengthb - 1); for m = 1:lengthA TIMES! Not Convolution for n = 1:lengthB C(m+n-1) = C(m+n-1) + A(m)*B(n); end end

13 Convolution (Frequency Domain) Convolution is defined in the time domain as and in frequency domain as.. y( t) x( t)* h( t) y( t) x( ) h( t ) d Y( ) X ( ) H ( )

14 Speeding implementation How long does convolution take? Think about these facts FFT(x) takes O(nlog(n)) time y( t) x( t)* h( t) Y( ) X ( ) H( ) Knowing this, how can we speed convolution?

15 Convolution = Filtering (in the time domain) Source Signal x(t) Filter h(t) Output Signal y(t) x( t)* h( t) y( t) Convolution

16 So what? So now you can design a quick-n-dirty bandpass filter H(k)! Steps Decide on the frequency resolution (number of points) Set the amplitudes of the different frequencies as you like Take the inverse FFT of your filter Do convolution with your signal Let s try it!

17 Impulse response An impulse is this signal: () t 1 if t 0 0 else The impulse response h(t) of a filter is what happens when you do convolution of the impulse signal with the filter. The impulse response h(t) of a filter is the same as the IFFT of the transfer function H( ) of that filter.

18 Multiplication = Filtering (in the frequency domain) Source Signal X( ) Filter H( ) Output Signal Y( ) X ( ) H( ) Y( ) Multiplication Transfer function

19 Multiplication (in the frequency domain) X ( ) H( ) X[ k] H[ k] Multiply kth frequency of X by the kth frequency of H This is COMPLEX multiplication Doing X.*H in Matlab takes care of this

20 Estimating H(k) (in the frequency domain) X[ k] H[ k] Y[ k] so... H[ k] Y[ k]/ X[ k]...more or less.

21 Noise and Distortion Source Signal X( ) Filter H( ) Distortion D( ) + Output Signal Y( ) Noise N( ) Distortion and noise make it a lot harder to estimate H

22 Estimating H Hope noise and distortion are not correlated with X. Call noise + distortion N. Then X[ k] H[ k] N[ k] Y[ k]

23 Estimating H Estimate H a lot of times, in the hopes that the noise will wash out in the mix Hˆ [ k ] Y [ k ] X [ k ] / X [ k ] X [ k ] where N Y k X k Y k X k n n N n 1 1 [ ] [ ] [ ] [ ] The average value Over N estimates

24 Caveats This really only works on the frequencies where there was energy in the input signal X. If there wasn t energy well then we re out of luck. So it is best to use broadband white noise for X, if you can help it.

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

Introduction to DFT. Deployment of Telecommunication Infrastructures. Azadeh Faridi DTIC UPF, Spring 2009

Introduction to DFT. Deployment of Telecommunication Infrastructures. Azadeh Faridi DTIC UPF, Spring 2009 Introduction to DFT Deployment of Telecommunication Infrastructures Azadeh Faridi DTIC UPF, Spring 2009 1 Review of Fourier Transform Many signals can be represented by a fourier integral of the following

More information

Audio Features. Fourier Transform. Fourier Transform. Fourier Transform. Short Time Fourier Transform. Fourier Transform.

Audio Features. Fourier Transform. Fourier Transform. Fourier Transform. Short Time Fourier Transform. Fourier Transform. Advanced Course Computer Science Music Processing Summer Term 2010 Fourier Transform Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Audio Features Fourier Transform Fourier

More information

Audio Features. Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform

Audio Features. Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform. Short Time Fourier Transform Advanced Course Computer Science Music Processing Summer Term 2009 Meinard Müller Saarland University and MPI Informatik meinard@mpi-inf.mpg.de Audio Features Fourier Transform Tells which notes (frequencies)

More information

DFT-Based FIR Filtering. See Porat s Book: 4.7, 5.6

DFT-Based FIR Filtering. See Porat s Book: 4.7, 5.6 DFT-Based FIR Filtering See Porat s Book: 4.7, 5.6 1 Motivation: DTFT View of Filtering There are two views of filtering: * Time Domain * Frequency Domain x[ X f ( θ ) h[ H f ( θ ) Y y[ = h[ * x[ f ( θ

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

1. Calculation of the DFT

1. Calculation of the DFT ELE E4810: Digital Signal Processing Topic 10: The Fast Fourier Transform 1. Calculation of the DFT. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform 1 1. Calculation of the DFT! Filter

More information

In this Lecture. Frequency domain analysis

In this Lecture. Frequency domain analysis In this Lecture Frequency domain analysis Introduction In most cases we want to know the frequency content of our signal Why? Most popular analysis in frequency domain is based on work of Joseph Fourier

More information

CS 179: GPU Programming. Lecture 9 / Homework 3

CS 179: GPU Programming. Lecture 9 / Homework 3 CS 179: GPU Programming Lecture 9 / Homework 3 Recap Some algorithms are less obviously parallelizable : Reduction Sorts FFT (and certain recursive algorithms) Parallel FFT structure (radix-2) Bit-reversed

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Processing Prof. Mark Fowler Note Set #21 Using the DFT to Implement FIR Filters Reading Assignment: Sect. 7.3 of Proakis & Manolakis Motivation: DTFT View of Filtering There are

More information

CS 179: GPU Programming. Lecture 9 / Homework 3

CS 179: GPU Programming. Lecture 9 / Homework 3 CS 179: GPU Programming Lecture 9 / Homework 3 Recap Some algorithms are less obviously parallelizable : Reduction Sorts FFT (and certain recursive algorithms) Parallel FFT structure (radix-2) Bit-reversed

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform.

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform. PART 1 Review of DSP Mauricio Sacchi University of Alberta, Edmonton, AB, Canada The Fourier Transform F() = f (t) = 1 2π f (t)e it dt F()e it d Fourier Transform Inverse Transform f (t) F () Part 1 Review

More information

Distortion Analysis T

Distortion Analysis T EE 435 Lecture 32 Spectral Performance Windowing Spectral Performance of Data Converters - Time Quantization - Amplitude Quantization Quantization Noise . Review from last lecture. Distortion Analysis

More information

!Sketch f(t) over one period. Show that the Fourier Series for f(t) is as given below. What is θ 1?

!Sketch f(t) over one period. Show that the Fourier Series for f(t) is as given below. What is θ 1? Second Year Engineering Mathematics Laboratory Michaelmas Term 998 -M L G Oldfield 30 September, 999 Exercise : Fourier Series & Transforms Revision 4 Answer all parts of Section A and B which are marked

More information

Lecture 7: Pitch and Chord (2) HMM, pitch detection functions. Li Su 2016/03/31

Lecture 7: Pitch and Chord (2) HMM, pitch detection functions. Li Su 2016/03/31 Lecture 7: Pitch and Chord (2) HMM, pitch detection functions Li Su 2016/03/31 Chord progressions Chord progressions are not arbitrary Example 1: I-IV-I-V-I (C-F-C-G-C) Example 2: I-V-VI-III-IV-I-II-V

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

Fourier Transform 2D

Fourier Transform 2D Image Processing - Lesson 8 Fourier Transform 2D Discrete Fourier Transform - 2D Continues Fourier Transform - 2D Fourier Properties Convolution Theorem Eamples = + + + The 2D Discrete Fourier Transform

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

Lecture 20: Discrete Fourier Transform and FFT

Lecture 20: Discrete Fourier Transform and FFT EE518 Digital Signal Processing University of Washington Autumn 2001 Dept of Electrical Engineering Lecture 20: Discrete Fourier Transform and FFT Dec 10, 2001 Prof: J Bilmes TA:

More information

Exercises in Digital Signal Processing

Exercises in Digital Signal Processing Exercises in Digital Signal Processing Ivan W. Selesnick September, 5 Contents The Discrete Fourier Transform The Fast Fourier Transform 8 3 Filters and Review 4 Linear-Phase FIR Digital Filters 5 5 Windows

More information

EE422G Homework #13 (12 points)

EE422G Homework #13 (12 points) EE422G Homework #1 (12 poits) 1. (5 poits) I this problem, you are asked to explore a importat applicatio of FFT: efficiet computatio of covolutio. The impulse respose of a system is give by h(t) (.9),1,2,,1

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

Short-Time Fourier Transform and Chroma Features

Short-Time Fourier Transform and Chroma Features Friedrich-Alexander-Universität Erlangen-Nürnberg Lab Course Short-Time Fourier Transform and Chroma Features International Audio Laboratories Erlangen Prof. Dr. Meinard Müller Friedrich-Alexander Universität

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

Information and Communications Security: Encryption and Information Hiding

Information and Communications Security: Encryption and Information Hiding Short Course on Information and Communications Security: Encryption and Information Hiding Tuesday, 10 March Friday, 13 March, 2015 Lecture 5: Signal Analysis Contents The complex exponential The complex

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing

Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing Radar Systems Engineering Lecture Review of Signals, Systems and Digital Signal Processing Dr. Robert M. O Donnell Guest Lecturer Radar Systems Course Review Signals, Systems & DSP // Block Diagram of

More information

Lecture Wigner-Ville Distributions

Lecture Wigner-Ville Distributions Introduction to Time-Frequency Analysis and Wavelet Transforms Prof. Arun K. Tangirala Department of Chemical Engineering Indian Institute of Technology, Madras Lecture - 6.1 Wigner-Ville Distributions

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Assignment 2 Solutions

Assignment 2 Solutions EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Solutions 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

Fourier Analysis of Signals Using the DFT

Fourier Analysis of Signals Using the DFT Fourier Analysis of Signals Using the DFT ECE 535 Lecture April 29, 23 Overview: Motivation Many applications require analyzing the frequency content of signals Speech processing study resonances of vocal

More information

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT

Digital Signal Processing. Lecture Notes and Exam Questions DRAFT Digital Signal Processing Lecture Notes and Exam Questions Convolution Sum January 31, 2006 Convolution Sum of Two Finite Sequences Consider convolution of h(n) and g(n) (M>N); y(n) = h(n), n =0... M 1

More information

MAE143A Signals & Systems, Final Exam - Wednesday March 16, 2005

MAE143A Signals & Systems, Final Exam - Wednesday March 16, 2005 MAE13A Signals & Systems, Final Exam - Wednesday March 16, 5 Instructions This quiz is open book. You may use whatever written materials you choose including your class notes and the textbook. You may

More information

Centre for Mathematical Sciences HT 2017 Mathematical Statistics

Centre for Mathematical Sciences HT 2017 Mathematical Statistics Lund University Stationary stochastic processes Centre for Mathematical Sciences HT 2017 Mathematical Statistics Computer exercise 3 in Stationary stochastic processes, HT 17. The purpose of this exercise

More information

EE422G Homework #9 Solution

EE422G Homework #9 Solution EE4G Homework #9 Solution. (3 points) Sampling and Reconstruction a) Given the following discrete-time input x(n), sketch the outputs reconstructed continuous signal y(t) using Sample-And-Hold and Linear

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Module 3. Convolution. Aim

Module 3. Convolution. Aim Module Convolution Digital Signal Processing. Slide 4. Aim How to perform convolution in real-time systems efficiently? Is convolution in time domain equivalent to multiplication of the transformed sequence?

More information

EE 230 Lecture 43. Data Converters

EE 230 Lecture 43. Data Converters EE 230 Lecture 43 Data Converters Review from Last Time: Amplitude Quantization Unwanted signals in the output of a system are called noise. Distortion Smooth nonlinearities Frequency attenuation Large

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Reference Text: The evolution of Applied harmonics analysis by Elena Prestini

Reference Text: The evolution of Applied harmonics analysis by Elena Prestini Notes for July 14. Filtering in Frequency domain. Reference Text: The evolution of Applied harmonics analysis by Elena Prestini It all started with: Jean Baptist Joseph Fourier (1768-1830) Mathematician,

More information

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals

Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Module 3 : Sampling and Reconstruction Lecture 22 : Sampling and Reconstruction of Band-Limited Signals Objectives Scope of this lecture: If a Continuous Time (C.T.) signal is to be uniquely represented

More information

EE 435. Lecture 32. Spectral Performance Windowing

EE 435. Lecture 32. Spectral Performance Windowing EE 435 Lecture 32 Spectral Performance Windowing . Review from last lecture. Distortion Analysis T 0 T S THEOREM?: If N P is an integer and x(t) is band limited to f MAX, then 2 Am Χ mnp 1 0 m h N and

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

TIME SERIES ANALYSIS

TIME SERIES ANALYSIS 2 WE ARE DEALING WITH THE TOUGHEST CASES: TIME SERIES OF UNEQUALLY SPACED AND GAPPED ASTRONOMICAL DATA 3 A PERIODIC SIGNAL Dots: periodic signal with frequency f = 0.123456789 d -1. Dotted line: fit for

More information

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011

LAB 2: DTFT, DFT, and DFT Spectral Analysis Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 2: DTFT, DFT, and DFT Spectral

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear systems, Fourier and z-transform

CCNY. BME I5100: Biomedical Signal Processing. Linear systems, Fourier and z-transform BME I5100: Biomedical Signal Processing Linear systems, Fourier and z-transform Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff

More information

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi

Signal Modeling Techniques in Speech Recognition. Hassan A. Kingravi Signal Modeling Techniques in Speech Recognition Hassan A. Kingravi Outline Introduction Spectral Shaping Spectral Analysis Parameter Transforms Statistical Modeling Discussion Conclusions 1: Introduction

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith)

Lecture 5. The Digital Fourier Transform. (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) Lecture 5 The Digital Fourier Transform (Based, in part, on The Scientist and Engineer's Guide to Digital Signal Processing by Steven Smith) 1 -. 8 -. 6 -. 4 -. 2-1 -. 8 -. 6 -. 4 -. 2 -. 2. 4. 6. 8 1

More information

Chirp Transform for FFT

Chirp Transform for FFT Chirp Transform for FFT Since the FFT is an implementation of the DFT, it provides a frequency resolution of 2π/N, where N is the length of the input sequence. If this resolution is not sufficient in a

More information

VID3: Sampling and Quantization

VID3: Sampling and Quantization Video Transmission VID3: Sampling and Quantization By Prof. Gregory D. Durgin copyright 2009 all rights reserved Claude E. Shannon (1916-2001) Mathematician and Electrical Engineer Worked for Bell Labs

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

University of Colorado at Boulder ECEN 4/5532. Lab 2 Lab report due on February 16, 2015

University of Colorado at Boulder ECEN 4/5532. Lab 2 Lab report due on February 16, 2015 University of Colorado at Boulder ECEN 4/5532 Lab 2 Lab report due on February 16, 2015 This is a MATLAB only lab, and therefore each student needs to turn in her/his own lab report and own programs. 1

More information

Introduction Basic Audio Feature Extraction

Introduction Basic Audio Feature Extraction Introduction Basic Audio Feature Extraction Vincent Koops (with slides by Meinhard Müller) Sound and Music Technology, December 6th, 2016 1 28 November 2017 Today g Main modules A. Sound and music for

More information

3. Lecture. Fourier Transformation Sampling

3. Lecture. Fourier Transformation Sampling 3. Lecture Fourier Transformation Sampling Some slides taken from Digital Image Processing: An Algorithmic Introduction using Java, Wilhelm Burger and Mark James Burge Separability ² The 2D DFT can be

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

Review of Linear Systems Theory

Review of Linear Systems Theory Review of Linear Systems Theory The following is a (very) brief review of linear systems theory, convolution, and Fourier analysis. I work primarily with discrete signals, but each result developed in

More information

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence.

DFT & Fast Fourier Transform PART-A. 7. Calculate the number of multiplications needed in the calculation of DFT and FFT with 64 point sequence. SHRI ANGALAMMAN COLLEGE OF ENGINEERING & TECHNOLOGY (An ISO 9001:2008 Certified Institution) SIRUGANOOR,TRICHY-621105. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING UNIT I DFT & Fast Fourier

More information

Homework 9 Solutions

Homework 9 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 207 Homework 9 Solutions Part One. (6 points) Compute the convolution of the following continuous-time aperiodic signals. (Hint: Use the

More information

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2

EE 505 Lecture 10. Spectral Characterization. Part 2 of 2 EE 505 Lecture 10 Spectral Characterization Part 2 of 2 Review from last lecture Spectral Analysis If f(t) is periodic f(t) alternately f(t) = = A A ( kω t + ) 0 + Aksin θk k= 1 0 + a ksin t k= 1 k= 1

More information

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response Vibration Testing For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response i) Excitation sources Typically either

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 2: Discrete Fourier Transform CCNY 1 Lucas Parra, CCNY BME 50500: Image and Signal Processing in Biomedicine Lecture 2: Discrete Fourier Transform Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Lecture 7. Fourier Analysis

Lecture 7. Fourier Analysis Lecture 7 Fourier Analysis Summary Lecture 6 Minima and maxima 1 dimension : Bracket minima : 3 values of f(x) : f(2) < f(1) and f(2)

More information

EE 435. Lecture 30. Data Converters. Spectral Performance

EE 435. Lecture 30. Data Converters. Spectral Performance EE 435 Lecture 30 Data Converters Spectral Performance . Review from last lecture. INL Often Not a Good Measure of Linearity Four identical INL with dramatically different linearity X OUT X OUT X REF X

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 BME I5000: Biomedical Imaging Lecture FT Fourier Transform Review Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ Fourier Transform (1D) The Fourier Transform (FT) is

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters

Signals, Instruments, and Systems W5. Introduction to Signal Processing Sampling, Reconstruction, and Filters Signals, Instruments, and Systems W5 Introduction to Signal Processing Sampling, Reconstruction, and Filters Acknowledgments Recapitulation of Key Concepts from the Last Lecture Dirac delta function (

More information

Chapter 3. Data Analysis

Chapter 3. Data Analysis Chapter 3 Data Analysis The analysis of the measured track data is described in this chapter. First, information regarding source and content of the measured track data is discussed, followed by the evaluation

More information

DFT and Matlab with some examples.

DFT and Matlab with some examples. DFT and Matlab with some examples 1 www.icrf.nl Fourier transform Fourier transform is defined as: X + jωt = x( t e dt ( ω ) ) with ω= 2 π f Rad/s And x(t) a signal in the time domain. www.icrf.nl 2 Fourier

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation

Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation Mikkel N. Schmidt and Morten Mørup Technical University of Denmark Informatics and Mathematical Modelling Richard

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

12.1 Fourier Transform of Discretely Sampled Data

12.1 Fourier Transform of Discretely Sampled Data 494 Chapter 12. Fast Fourier Transform now is: The PSD-per-unit-time converges to finite values at all frequencies except those where h(t) has a discrete sine-wave (or cosine-wave) component of finite

More information

Lecture 17: variance in a band = log(s xx (f)) df (2) If we want to plot something that is more directly representative of variance, we can try this:

Lecture 17: variance in a band = log(s xx (f)) df (2) If we want to plot something that is more directly representative of variance, we can try this: UCSD SIOC 221A: (Gille) 1 Lecture 17: Recap We ve now spent some time looking closely at coherence and how to assign uncertainties to coherence. Can we think about coherence in a different way? There are

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation Convolution In this section we consider the problem of determining the response of a linear, time-invariant circuit to an arbitrary input, x(t). This situation is illustrated in Figure 1 where x(t) is

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

A=randn(500,100); mu=mean(a); sigma_a=std(a); std_a=sigma_a/sqrt(500); [std(mu) mean(std_a)] % compare standard deviation of means % vs standard error

A=randn(500,100); mu=mean(a); sigma_a=std(a); std_a=sigma_a/sqrt(500); [std(mu) mean(std_a)] % compare standard deviation of means % vs standard error UCSD SIOC 221A: (Gille) 1 Reading: Bendat and Piersol, Ch. 5.2.1 Lecture 10: Recap Last time we looked at the sinc function, windowing, and detrending with an eye to reducing edge effects in our spectra.

More information

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

! Circular Convolution.  Linear convolution with circular convolution. ! Discrete Fourier Transform.  Linear convolution through circular Previously ESE 531: Digital Signal Processing Lec 22: April 18, 2017 Fast Fourier Transform (con t)! Circular Convolution " Linear convolution with circular convolution! Discrete Fourier Transform " Linear

More information

Vibration Testing. Typically either instrumented hammers or shakers are used.

Vibration Testing. Typically either instrumented hammers or shakers are used. Vibration Testing Vibration Testing Equipment For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response Excitation

More information

9.4 Enhancing the SNR of Digitized Signals

9.4 Enhancing the SNR of Digitized Signals 9.4 Enhancing the SNR of Digitized Signals stepping and averaging compared to ensemble averaging creating and using Fourier transform digital filters removal of Johnson noise and signal distortion using

More information