Biological self-organisation phenomena on weighted networks

Size: px
Start display at page:

Download "Biological self-organisation phenomena on weighted networks"

Transcription

1 Biological self-organisation phenomena on weighted networks Lucilla Corrias (jointly with F. Camilli, Sapienza Università di Roma) Mathematical Modeling in Biology and Medicine Universidad de Oriente, Santiago de Cuba Lucilla Corrias CIMPA 2016 June 13, / 22

2 Self-organization Self-organization of biological populations is a very commun but highly complex phenomenon that can be observed in very different populations, such as the bacteria Escherichia coli (E.coli) (commonly found in the lower human intestine) (Budrene & Berg, Nature, 1991) Lucilla Corrias CIMPA 2016 June 13, / 22

3 Self-organization Self-organization of biological populations is a very commun but highly complex phenomenon that can be observed in very different populations, such as the slime mold Dictyostelium discoideum Dictyostelium discoideum (commonly found in soil and moist leaf litter) aggregate to form fruiting bodies and then spores able to migrate to found more suitable environments Lucilla Corrias CIMPA 2016 June 13, / 22

4 Self-organization Self-organization of biological populations is a very commun but highly complex phenomenon that can be observed in very different populations, such as Endothelial cells (cells lining the interior surface of the blood vessels in vertebrates) Endothelial cells are able to sprout from existing small vessels and self-assembly into a vascular labyrinth (the early formation of blood vessels). Angiogenesis is a primary process in solid tumor growth. Lucilla Corrias CIMPA 2016 June 13, / 22

5 Self-organization Self-organization of biological populations is a very commun but highly complex phenomenon that can be observed in very different populations, such as Physarum polycephalum (it lives in moist areas, decaying leaves and logs and may be seen without a microscope) In its plasmodium phase (the main vegetative phase) P. polycephalum is a network of protoplasmic tubes with many nuclei. During this stage the organism look for food and the network evolves. Lucilla Corrias CIMPA 2016 June 13, / 22

6 Understanding self-organization The understanding of the self-organization phenomena is a challenging issue for biology and mathematical-biology, in particular for the applications in biology and medicine : think to tumor growth, cells differentiation,... Several processes play a crucial role in self-organisation. One of this is the so called chemotaxis process. Chemotaxis is the phenomenon undergone by single-cell or simple multicellular organisms when they direct their movements toward or away a higher concentration of chemical stimuli. The mouvement is toward the chemical stimulus when it is favorable to the survive of the organisme (positive chemotaxis) and away from the chemical stimulus when it is dangerous (negative chemotaxis) Lucilla Corrias CIMPA 2016 June 13, / 22

7 Understanding self-organization There are several models for chemotaxis. Choosing the macroscopic description of the population, considering uniquely the cell density u 0 and the chemical concentration c 0, and assuming that cells move randomly (brownian motion) and are attracted by the chemical signal (direct mouvement) the chemical signal is produced by the cells themselves the population is conserved a corresponding mathematical model is given by the density and concentration balance equations [Keller & Segel, 1970] where ε 0, plus boundary conditions t u = ( u u c) ε t c = c + u α c ε diff. coeff. of u diff. coeff. of c, α 0 Lucilla Corrias CIMPA 2016 June 13, / 22

8 t u = ( u u c) ε t c = c + u α c There is a huge quantity of literature on the mathematical analysis of the Keller-Segel system. Nevertheless, several challenging issues are still open. Depending on the space dimension, on ε 0 and on the initial mass M = u 0 (x)dx, different phenomena can occur. Roughly speaking : dim 1 : global existence (solutions are global and bounded) dim 2 : threshold phenomenon (solution are global if M < M and blow up if M > M) dim 3 : global existence and blow-up (whatever the initial mass is) Lucilla Corrias CIMPA 2016 June 13, / 22

9 The Physarum polycephalum Physarum polycephalum is a myxomycete. It lives in moist areas, decaying leaves and logs. In its plasmodium phase is a network of protoplasmic tubes with many nuclei. During this stage the organism look for food and the network evolves. The are experimental evidences that P. polycephalum is able to sense the environment (chemotactically) and to recover the shortest path between nourishment sources Lucilla Corrias CIMPA 2016 June 13, / 22

10 The network V := {v 1,..., v n } the finite set of vertices in R N E := {e 1,..., e m } the finite set of edges (curves in R N ) whose endpoints are vertices Γ := (V, E) the finite connected network (between every pair of nodes there exists an edge) each edges is parametrized by two homeomorphisms Π ± j : [0, 1] R which give rise to two oriented arcs e ± j denoted a j to each edge e j E is associated a positive weight κ(e j ) > 0 (the network is not homogeneous) E(v i ) := {j : e j is incident to v i V }, i = 1,..., n Lucilla Corrias CIMPA 2016 June 13, / 22

11 Functional spaces on the network Γ a function u defined on Γ is a collection of m functions (u j ) m j=1 such that u j := u ej u j is intended to be (u Π ± j ) for x e j At the vertices we defined the exterior normal derivative u j n (I (a (u Π ± j )(h) (u Π ± j )(0) j)) = lim h 0 + h u j n (T (a (u Π ± j )(1 + h) (u Π ± j )(1) j)) = lim h 0 h with I (a j ) and T (a j ) the initial and terminal endpoint of a j resp. Γ u(x) dx = m j=1 κ(e j) e j u j (x)dx with 1 u j (x)dx := (u Π ± j )(ξ) dξ e j 0 Lucilla Corrias CIMPA 2016 June 13, / 22

12 Functional spaces on the network Γ C 0 (Γ) := {u = (u j ) m j=1 : u j(v i ) = u k (v i ) if j, k E(v i ), i} For p [1, ) : L p (Γ) := {u = (u j ) m j=1 : u p L p (Γ) := m j=1 κ(e j) u j p L p (e j ) < } L (Γ) := {u = (u j ) m j=1 : u L (Γ) := max 1 j m κ(e j ) u j L (e j )} W 1, (Γ) := {u C 0 (Γ) : u L (Γ)} H r (Γ) := {u C 0 (Γ) : u 2 H r (Γ) := m j=1 κ(e j) u j 2 H r (e j ) < } Lucilla Corrias CIMPA 2016 June 13, / 22

13 The system on the network Γ The system t u = ( u u c) ε t c = c + u α c translates into m systems (one for each edge e j ) t u j = xx u j x (u j x c j ) on (0, ) e j, j = 1,..., m, ε t c j = xx c j + u j α c j on (0, ) e j, j = 1,..., m, u j (0, x) = uj 0 (x), x Γ, j = 1,..., m, c j (0, x) = cj 0 (x), x Γ, j = 1,..., m, What about the boundary conditions? Lucilla Corrias CIMPA 2016 June 13, / 22

14 Boundary and transmission conditions Boundary conditions have to be defined on vertices. But not all vertices are necessarily part of the boundary. In some vertices the fluid just flow in or out. Γ := {v i1,..., v ik } V = {v 1,..., v n }, 0 i k n, with the condition : if E(v l ) = 1 then v l Γ On Γ we consider u j n (t, v i) = c j n (t, v i) = 0, v i Γ The remaining vertices are the transition vertices V T := V \ Γ In the transition vertices we consider the Kirchhoff type conditions (implying the conservation of the total flux) j E(v i ) κ(e j )[ u j n u c j j n ](t, v i) = 0, v i V T Lucilla Corrias CIMPA 2016 June 13, / 22

15 The system on the network Γ t u j = xx u j x (u j x c j ) on (0, ) e j, j = 1,..., m, ε t c j = xx c j + u j α c j on (0, ) e j, j = 1,..., m, u j (0, x) = uj 0 (x), x Γ, j = 1,..., m, c j (0, x) = cj 0 (x), x Γ, j = 1,..., m, u j n (t, v i) = 0, c j n (t, v i) = 0, j E(v i ) κ(e j )[ u j n u j c j n ](t, v i) = 0, t > 0, v i Γ t > 0, v i Γ t > 0, v i V T Lucilla Corrias CIMPA 2016 June 13, / 22

16 The fundamental solution of the heat equation Let G(t, z) = 1 4π t e z2 4 t. The fundamental solution of the heat equation on Γ is ([Roth, 1984]) where L(t, x, y) = H(t, x, y) = δ i, j κ 1 (e i ) G(t, d(x, y)) + L(t, x, y) (k+2) L(x,y) C C k+2 (x,y) κ 1 (e i ) ɛ(c) G(t, d C (x, y)) and C k (x, y) is the set of oriented paths joining x to y, with length k L(x, y) is the length of any geodesic path joining x to y ɛ(c) is the weight of the path C Lucilla Corrias CIMPA 2016 June 13, / 22

17 The fundamental solution of the heat equation H(t, x, y) =δ i, j κ 1 (e i ) G(t, d(x, y)) + (k+2) L(x,y) C C k+2 (x,y) κ 1 (e i ) ɛ(c) G(t, d C (x, y)) δ i,j is the usual Kronecker s delta function d(x, y) = (Π ± (x) (Π ± (y) The first term is the fundamental solution of the heat equation on each edge e j The second term takes into account the instantaneous propagation of the heat along all the possible infinite many paths joining x to y on the network d C (x, y) is the distance between x and y along the path C d C (x, y) = d(x, T (a j1 )) + d(x, I (a jk )) + C 2 Lucilla Corrias CIMPA 2016 June 13, / 22

18 The fundamental solution of the heat equation For all f C 0 (Γ), the function P t f (y) = (H(t) f )(y) := H(t, x, y)f (x)dx, Γ (t, y) (0, ) Γ with P 0 f = f is the unique continuous solution of the initial valued problem t u j = xx u j u j (0) = f j on (0, ) e j, j = 1,..., m on e j, j = 1,..., m u j (t, v i ) = u k (t, v i ), j, k E(v i ), i = 1,..., n, t > 0 κ(e j ) u j n (t, v i) = 0, i = 1,..., n, t > 0 j E(v i ) Lucilla Corrias CIMPA 2016 June 13, / 22

19 The solution on the network u(t, y) = P t u 0 (y) t c(t, y) = e (α/ε)t P (t/ε) c 0 (y) + 1 ε where Theorem (Camilli, C.) 0 P (t s) x (u(s) x c(s))(y)ds P t f (y) := Γ t 0 e (α/ε)(t s) P ((t s)/ε) u(s)(y)ds H(t, x, y)f (x)dx Assume u 0 L (Γ) and c 0 W 1, (Γ). Then, for any T > 0 there exists a unique integral solution of the system with u L ((0, T ); C 0 (Γ)), c L ((0, T ); W 1, (Γ)). Moreover, if the initial data (u 0, c 0 ) are nonnegative, the solution (u, c) is nonnegative. Lucilla Corrias CIMPA 2016 June 13, / 22

20 Proof The ingredients of the proof are : the properties of the fundamental solution H H(t, x, y)dy = 1, (t, x) (0, ) Γ sup x Γ Γ sup H(t, x, ) L 1 (Γ) C 1 x Γ H(t) L (Γ Γ) C 2 (1 + t 1/2 ) y H(t, x, ) L 1 (Γ) + sup y H(t,, y) L 1 (Γ) C 3 (1 + t 1/2 ) y Γ y H(t) L (Γ Γ) C 4 (1 + t 1 ) A fixed point theorem for the local in time existence : u c ψ(u) A continuation argument for the global existence Lucilla Corrias CIMPA 2016 June 13, / 22

21 Conclusions and Perspectives We have shown the well-posedness of the problem This problem seems more challenging than the same problem solved over R : blow-up as t is not excluded Analyse the asymptotic behavior of the solution as t. There is a numerical evidence that the density fill the edges along the shortest path between two sources [Borsche, Göttlich, Klar, Schillen 2014]. Do this model recover really the shortest paths between (say) two vertices? and for which kind of networks? Lucilla Corrias CIMPA 2016 June 13, / 22

22 Thank you for your attention Lucilla Corrias CIMPA 2016 June 13, / 22

Mathematical models for cell movement Part I

Mathematical models for cell movement Part I Mathematical models for cell movement Part I FABIO A. C. C. CHALUB Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa Mathematical models for cell movementpart I p. Overview Biological

More information

Models of Biological Movements: Analysis and Numerical Simulations. Cristiana Di Russo. CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1

Models of Biological Movements: Analysis and Numerical Simulations. Cristiana Di Russo. CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1 Models of Biological Movements: Analysis and Numerical Simulations Cristiana Di Russo CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1 Journées de l'anr MONUMENTALG June 30th, 2011 C.Di Russo

More information

Adventures in Multicellularity

Adventures in Multicellularity Adventures in Multicellularity The social amoeba (a.k.a. slime molds) Dictyostelium discoideum Dictyostelium discoideum the most studied of the social amoebae / cellular slime molds predatory soil amoeba

More information

Conservation and dissipation principles for PDEs

Conservation and dissipation principles for PDEs Conservation and dissipation principles for PDEs Modeling through conservation laws The notion of conservation - of number, energy, mass, momentum - is a fundamental principle that can be used to derive

More information

Taxis Diffusion Reaction Systems

Taxis Diffusion Reaction Systems Chapter 2 Taxis Diffusion Reaction Systems In this chapter we define the class of taxis diffusion reaction (TDR) systems which are the subject of this thesis. To this end, we start in Sec. 2. with the

More information

Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in 1-D

Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in 1-D Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in -D T. Hillen H. A. Levine February 4, 3 Abstract: In this paper we study finite time blow-up of solutions of a hyperbolic model for

More information

Understanding Cell Motion and Electrotaxis with Computational Methods

Understanding Cell Motion and Electrotaxis with Computational Methods Understanding Cell Motion and Electrotaxis with Computational Methods Blake Cook 15th of February, 2018 Outline 1 Biological context 2 Image analysis 3 Modelling membrane dynamics 4 Discussion Outline

More information

Volume Effects in Chemotaxis

Volume Effects in Chemotaxis Volume Effects in Chemotaxis Thomas Hillen University of Alberta supported by NSERC with Kevin Painter (Edinburgh), Volume Effects in Chemotaxis p.1/?? Eschirichia coli Berg - Lab (Harvard) Volume Effects

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

Starvation driven diffusion as a survival strategy of biological organisms

Starvation driven diffusion as a survival strategy of biological organisms Starvation driven diffusion as a survival strategy of biological organisms Eunjoo Cho and Yong-Jung Kim 2 Institute of Molecular Biology and Genetics, Seoul National University, E-mail: ejcho@hotmail.com

More information

Derivation of Hyperbolic Models for Chemosensitive Movement

Derivation of Hyperbolic Models for Chemosensitive Movement Derivation of Hyperbolic Models for Chemosensitive Movement Francis Filbet Philippe Laurençot Benoît Perthame November 7, 23 Abstract A Chapman-Enskog expansion is used to derive hyperbolic models for

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Hybrid Modeling of Tumor Induced Angiogenesis

Hybrid Modeling of Tumor Induced Angiogenesis University of Iceland Reykjavik, Iceland July 9, 25 Hybrid Modeling of Tumor Induced Angiogenesis L. L. Bonilla, M. Alvaro, V. Capasso, M. Carretero, F. Terragni Gregorio Millán Institute for Fluid Dynamics,

More information

Control of interaction strength in a network of the true slime mold by a microfabricated structure

Control of interaction strength in a network of the true slime mold by a microfabricated structure BioSystems 55 (2000) 33 38 www.elsevier.com/locate/biosystems Control of interaction strength in a network of the true slime mold by a microfabricated structure Atsuko Takamatsu a, *, Teruo Fujii a b,

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

Milestone V. Linsey A. Norris Justin Tanjuako Charlotte Wentzien Addison Yanito. December 14, 2006

Milestone V. Linsey A. Norris Justin Tanjuako Charlotte Wentzien Addison Yanito. December 14, 2006 Milestone V Linsey A. Norris Justin Tanjuako Charlotte Wentzien Addison Yanito December 14, 2006 1 Introduction 2 Introduction The plasmodium Physarum polycephalum is a large unicellular,multinuclear amoeba-like

More information

Biology in Time and Space: A Partial Differential Equation Approach. James P. Keener University of Utah

Biology in Time and Space: A Partial Differential Equation Approach. James P. Keener University of Utah Biology in Time and Space: A Partial Differential Equation Approach James P. Keener University of Utah 26 December, 2015 2 Contents I The Text 9 1 Introduction 11 2 Conservation 13 2.1 The Conservation

More information

Heat content asymptotics of some domains with fractal boundary

Heat content asymptotics of some domains with fractal boundary Heat content asymptotics of some domains with fractal boundary Philippe H. A. Charmoy Mathematical Institute, University of Oxford Partly based on joint work with D.A. Croydon and B.M. Hambly Cornell,

More information

Solution of Impulsive Hamilton-Jacobi Equation and Its Applications

Solution of Impulsive Hamilton-Jacobi Equation and Its Applications Nonlinear Analysis and Differential Equations, Vol. 7, 219, no. 1, 1-8 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/nade.219.888 Solution of Impulsive Hamilton-Jacobi Equation and Its Applications

More information

LIFE CYCLE OF DICTYOSTELIUM DISCOIDEUM

LIFE CYCLE OF DICTYOSTELIUM DISCOIDEUM LIFE CYCLE OF DICTYOSTELIUM DISCOIDEUM l 1. HISTORICAL Cellular slime molds were first discovered by Brefeld in 1869 and the uniqueness of their asexual life cycle was first recognized by the french mycologist

More information

Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding

Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding Advances in Applied Mathematics 26, 28 31 (21) doi:1.16/aama.21.721, available online at http://www.idealibrary.com on Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding

More information

Complex flows of an Escherichia coli living culture

Complex flows of an Escherichia coli living culture Complex flows of an Escherichia coli living culture Catarina Leal Raquel Portela, Rita Sobral, Pedro Almeida, Pedro Patrício José Maria Franco Rotational tumbling of Escherichia coli aggregates under shear

More information

Waves in Flows. Global Existence of Solutions with non-decaying initial data 2d(3d)-Navier-Stokes ibvp in half-plane(space)

Waves in Flows. Global Existence of Solutions with non-decaying initial data 2d(3d)-Navier-Stokes ibvp in half-plane(space) Czech Academy of Sciences Czech Technical University in Prague University of Pittsburgh Nečas Center for Mathematical Modelling Waves in Flows Global Existence of Solutions with non-decaying initial data

More information

LECTURE 1 INTRODUCTION TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS I. NONLINEAR DIFFUSION EQUATION

LECTURE 1 INTRODUCTION TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS I. NONLINEAR DIFFUSION EQUATION LECTURE 1 INTRODUCTION TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS I. NONLINEAR DIFFUSION EQUATION UGUR G. ABDULLA I am going to start a series of lectures on nonlinear partial differential equations.

More information

Keller-Segel models for chemotaxis. Jessica Ann Hulzebos. A Creative Component submitted to the graduate faculty

Keller-Segel models for chemotaxis. Jessica Ann Hulzebos. A Creative Component submitted to the graduate faculty Keller-Segel models for chemotaxis by Jessica Ann Hulzebos A Creative Component submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Applied

More information

Slime Mold Lab Report. The Dictyostelium purpureum ( Domain: Eukarya; Phylum: Amoebozoa; Class

Slime Mold Lab Report. The Dictyostelium purpureum ( Domain: Eukarya; Phylum: Amoebozoa; Class [author] 1 [author] [professor] [subject] [date] Slime Mold Lab Report Abstract The Dictyostelium purpureum was plated on different media containing (1) Escherichia coli (2) bread (3) potato (4) banana

More information

CABDyN Toshiyuki NAKAGAKI (Hokkaido University, Japan) Ryo KOBAYASHI (Hiroshima University, Japan)

CABDyN Toshiyuki NAKAGAKI (Hokkaido University, Japan) Ryo KOBAYASHI (Hiroshima University, Japan) CABDyN 20040730 Toshiyuki NAKAGAKI (Hokkaido University, Japan) nakagaki@es.hokudai.ac.jp Ryo KOBAYASHI (Hiroshima University, Japan) True slime mold, the plasmodium of Physarum polycephalum * One system

More information

Professor: Arpita Upadhyaya Physics 131

Professor: Arpita Upadhyaya Physics 131 - Fundamentals of Physics for Biologists i I Professor: Arpita Upadhyaya Quiz 7 Random Motion Diffusion 2 So far we have studied about 1-5 objects. to study cells, fluids,etc LOTS of objects MANY interactions

More information

arxiv: v2 [math.ap] 17 Oct 2015

arxiv: v2 [math.ap] 17 Oct 2015 EXISTENCE OF SOLUTIONS FOR THE KELLER-SEGEL MODEL OF CHEMOTAXIS WITH MEASURES AS INITIAL DATA arxiv:1507.00497v2 [math.ap] 17 Oct 2015 PIOTR BILER AND JACEK ZIENKIEWICZ Abstract. A simple proof of the

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

Introduction to some topics in Mathematical Oncology

Introduction to some topics in Mathematical Oncology Introduction to some topics in Mathematical Oncology Franco Flandoli, University of Pisa y, Finance and Physics, Berlin 2014 The field received considerable attentions in the past 10 years One of the plenary

More information

The Physarum Computer

The Physarum Computer The Physarum Computer Kurt Mehlhorn Max Planck Institute for Informatics and Saarland University joint work with Vincenzo Bonifaci and Girish Varma paper available on my homepage August 30, 2011 The Physarum

More information

Theoretical and numerical results for a chemo-repulsion model with quadratic production

Theoretical and numerical results for a chemo-repulsion model with quadratic production Theoretical and numerical results for a chemo-repulsion model with quadratic production F. Guillén-Gonzalez, M. A. Rodríguez-Bellido & and D. A. Rueda-Gómez Dpto. Ecuaciones Diferenciales y Análisis Numérico

More information

Kinetic models for chemotaxis

Kinetic models for chemotaxis Kinetic models for chemotaxis FABIO A. C. C. CHALUB Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa Kinetic models for chemotaxis p. Main Goal To study two different levels of description

More information

THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS

THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS Journal of Hyperbolic Differential Equations c World Scientific Publishing Company THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS LOBNA DERBEL Laboratoire d Ingénierie Mathématique,

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

In the Stone Age. Stephan Holzer. Yuval Emek - Technion Roger Wattenhofer - ETH Zürich

In the Stone Age. Stephan Holzer. Yuval Emek - Technion Roger Wattenhofer - ETH Zürich The Power of a Leader In the Stone Age - MIT Yuval Emek - Technion Roger Wattenhofer - ETH Zürich 2nd Workshop on Biological Distributed Algorithms, October 11-12, 2014 in Austin, Texas USA The Power of

More information

Analysis-3 lecture schemes

Analysis-3 lecture schemes Analysis-3 lecture schemes (with Homeworks) 1 Csörgő István November, 2015 1 A jegyzet az ELTE Informatikai Kar 2015. évi Jegyzetpályázatának támogatásával készült Contents 1. Lesson 1 4 1.1. The Space

More information

BIOLOGY. What exactly is biology anyway?

BIOLOGY. What exactly is biology anyway? BIOLOGY What exactly is biology anyway? Biology has to do with.. Living things, of course!! Don t forget things that are not alive (nonliving)! What about things too small to see (microscopic)? And how

More information

5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results

5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results 5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results There is an obvious case for studying bacteria. For example, bacteria are responsible for a large number of diseases and they

More information

Salmon: Lectures on partial differential equations

Salmon: Lectures on partial differential equations 6. The wave equation Of the 3 basic equations derived in the previous section, we have already discussed the heat equation, (1) θ t = κθ xx + Q( x,t). In this section we discuss the wave equation, () θ

More information

MATH 220 solution to homework 5

MATH 220 solution to homework 5 MATH 220 solution to homework 5 Problem. (i Define E(t = k(t + p(t = then E (t = 2 = 2 = 2 u t u tt + u x u xt dx u 2 t + u 2 x dx, u t u xx + u x u xt dx x [u tu x ] dx. Because f and g are compactly

More information

Takens embedding theorem for infinite-dimensional dynamical systems

Takens embedding theorem for infinite-dimensional dynamical systems Takens embedding theorem for infinite-dimensional dynamical systems James C. Robinson Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. E-mail: jcr@maths.warwick.ac.uk Abstract. Takens

More information

Anatomy of Plants Student Notes

Anatomy of Plants Student Notes Directions: Fill in the blanks. Anatomy of Plants Student Notes Plant Cell Biology Segment 1. Plants Plants are organisms are incapable of movement produce food through 2. Animals Animals are multicellular

More information

Method of infinite system of equations for problems in unbounded domains

Method of infinite system of equations for problems in unbounded domains Method of infinite system of equations for problems in unbounded domains Dang Quang A Institute of Information Technology 18 Hoang Quoc Viet, Cau giay, Hanoi, Vietnam Innovative Time Integration, May 13-16,

More information

Free energy estimates for the two-dimensional Keller-Segel model

Free energy estimates for the two-dimensional Keller-Segel model Free energy estimates for the two-dimensional Keller-Segel model dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine in collaboration with A. Blanchet (CERMICS, ENPC & Ceremade) & B.

More information

Numerical Analysis: Interpolation Part 1

Numerical Analysis: Interpolation Part 1 Numerical Analysis: Interpolation Part 1 Computer Science, Ben-Gurion University (slides based mostly on Prof. Ben-Shahar s notes) 2018/2019, Fall Semester BGU CS Interpolation (ver. 1.00) AY 2018/2019,

More information

Biology. Slide 1 of 34. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 34. End Show. Copyright Pearson Prentice Hall Biology 1 of 34 2 of 34 What are the similarities and differences between funguslike protists and fungi? 3 of 34 Funguslike protists are heterotrophs that absorb nutrients from dead or decaying organic

More information

ADVANCES IN BACTERIA MOTILITY MODELLING VIA DIFFUSION ADAPTATION

ADVANCES IN BACTERIA MOTILITY MODELLING VIA DIFFUSION ADAPTATION ADVANCES IN BACTERIA MOTILITY MODELLING VIA DIFFUSION ADAPTATION Sadaf Monajemi a, Saeid Sanei b, and Sim-Heng Ong c,d a NUS Graduate School for Integrative Sciences and Engineering, National University

More information

Propagation in a Fisher-KPP equation with non-local advection

Propagation in a Fisher-KPP equation with non-local advection Propagation in a Fisher-KPP equation with non-local advection François Hamel a and Christopher Henderson b arxiv:79.93v [math.ap] 4 Sep 7 a Aix Marseille Univ, CNS, Centrale Marseille, IM, Marseille, France

More information

Simplified models of Dictyostelium discoideum aggregation and slug migration

Simplified models of Dictyostelium discoideum aggregation and slug migration Simplified models of Dictyostelium discoideum aggregation and slug migration Marcin L. Pilat Department of Computer Science, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada

More information

Unit 1 ~ Scientific Reasoning & Logic

Unit 1 ~ Scientific Reasoning & Logic Unit 1 ~ Scientific Reasoning & Logic A) An Introduction to Biology What is the study of Biology? Every thing can be classified into one of 3 groups... o _ o _ o _ Why do people study it?... Or better

More information

für Mathematik in den Naturwissenschaften Leipzig

für Mathematik in den Naturwissenschaften Leipzig ŠܹÈÐ Ò ¹ÁÒ Ø ØÙØ für Mathematik in den Naturwissenschaften Leipzig Simultaneous Finite Time Blow-up in a Two-Species Model for Chemotaxis by Elio Eduardo Espejo Arenas, Angela Stevens, and Juan J.L.

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

Traveling Waves and Steady States of S-K-T Competition Model

Traveling Waves and Steady States of S-K-T Competition Model Traveling Waves and Steady States of S-K-T Competition Model with Cross diffusion Capital Normal University, Beijing, China (joint work with Wei-Ming Ni, Qian Xu, Xuefeng Wang and Yanxia Wu) 2015 KAIST

More information

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t))

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t)) Notations In this chapter we investigate infinite systems of interacting particles subject to Newtonian dynamics Each particle is characterized by its position an velocity x i t, v i t R d R d at time

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

Applied Numerical Mathematics. High-order numerical schemes based on difference potentials for 2D elliptic problems with material interfaces

Applied Numerical Mathematics. High-order numerical schemes based on difference potentials for 2D elliptic problems with material interfaces Applied Numerical Mathematics 111 (2017) 64 91 Contents lists available at ScienceDirect Applied Numerical Mathematics www.elsevier.com/locate/apnum High-order numerical schemes based on difference potentials

More information

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws Stefano Bianchini and Alberto Bressan S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy. E-mail addresses: bianchin@mis.mpg.de,

More information

Kinetic swarming models and hydrodynamic limits

Kinetic swarming models and hydrodynamic limits Kinetic swarming models and hydrodynamic limits Changhui Tan Department of Mathematics Rice University Young Researchers Workshop: Current trends in kinetic theory CSCAMM, University of Maryland October

More information

From microscopic to macroscopic descriptions of cell

From microscopic to macroscopic descriptions of cell Bulletin of Mathematical Biology manuscript No. (will be inserted by the editor) From microscopic to macroscopic descriptions of cell migration on growing domains Ruth E. Baker 1, Christian A. Yates 1,

More information

2 Domains and Kingdoms

2 Domains and Kingdoms CHAPTER 11 2 s and Kingdoms SECTION Classification 7.1.a, 7.3.d California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: Which domains are

More information

Optimal stopping time formulation of adaptive image filtering

Optimal stopping time formulation of adaptive image filtering Optimal stopping time formulation of adaptive image filtering I. Capuzzo Dolcetta, R. Ferretti 19.04.2000 Abstract This paper presents an approach to image filtering based on an optimal stopping time problem

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Introduction to Fluid Dynamics

Introduction to Fluid Dynamics Introduction to Fluid Dynamics Roger K. Smith Skript - auf englisch! Umsonst im Internet http://www.meteo.physik.uni-muenchen.de Wählen: Lehre Manuskripte Download User Name: meteo Password: download Aim

More information

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1 Lectures - Week 11 General First Order ODEs & Numerical Methods for IVPs In general, nonlinear problems are much more difficult to solve than linear ones. Unfortunately many phenomena exhibit nonlinear

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

Brainless intelligence: the curious case of acellular slime mold Physarum polycephalum

Brainless intelligence: the curious case of acellular slime mold Physarum polycephalum Copyright World Media Foundation Brainless intelligence: the curious case of acellular slime mold Physarum polycephalum Subash K. Ray YRW17, CSCAMM, UMD 12 th October, 2017 Copyright Audrey Dussutour Copyright

More information

Physarum polycephalum as an Active Mechanical Medium 1. Introduction

Physarum polycephalum as an Active Mechanical Medium 1. Introduction Physarum polycephalum as an Active Mechanical Medium 1. Introduction One of the current challenges in Biology is to understand how living systems self-organize to achieve emergent properties that improve

More information

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang)

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang) and of Standing Waves the Fractional Schrödinger Equation Shihui Zhu (joint with J. Zhang) Department of Mathematics, Sichuan Normal University & IMS, National University of Singapore P1 iu t ( + k 2 )

More information

CELL DENSITY DEPENDENCE OF THE AGGREGATION CHARACTERISTICS OF THE CELLULAR SLIME MOULD DICTYOSTELIUM DISCOIDEUM

CELL DENSITY DEPENDENCE OF THE AGGREGATION CHARACTERISTICS OF THE CELLULAR SLIME MOULD DICTYOSTELIUM DISCOIDEUM J. Cell Sci. 19, 215-229 (1975) 215 Printed in Great Britain CELL DENSITY DEPENDENCE OF THE AGGREGATION CHARACTERISTICS OF THE CELLULAR SLIME MOULD DICTYOSTELIUM DISCOIDEUM Y. HASHIMOTO,* M. H. COHEN AND

More information

Introduction to stochastic multiscale modelling of tumour growth

Introduction to stochastic multiscale modelling of tumour growth Introduction to stochastic multiscale modelling of tumour growth Tomás Alarcón ICREA & Centre de Recerca Matemàtica T. Alarcón (ICREA & CRM, Barcelona, Spain) Lecture 1 CIMPA, Santiago de Cuba, June 2016

More information

Lecture 5. Potentials

Lecture 5. Potentials Lecture 5 Potentials 51 52 LECTURE 5. POTENTIALS 5.1 Potentials In this lecture we will solve Schrödinger s equation for some simple one-dimensional potentials, and discuss the physical interpretation

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Partial differential equations arise in a number of physical problems, such as fluid flow, heat transfer, solid mechanics and biological processes. These

More information

e (x y)2 /4kt φ(y) dy, for t > 0. (4)

e (x y)2 /4kt φ(y) dy, for t > 0. (4) Math 24A October 26, 2 Viktor Grigoryan Heat equation: interpretation of the solution Last time we considered the IVP for the heat equation on the whole line { ut ku xx = ( < x

More information

The Navier Stokes Equations for Incompressible Flows: Solution Properties at Potential Blow Up Times

The Navier Stokes Equations for Incompressible Flows: Solution Properties at Potential Blow Up Times The Navier Stokes Equations for Incompressible Flows: Solution Properties at Potential Blow Up Times Jens Lorenz Department of Mathematics and Statistics, UNM, Albuquerque, NM 873 Paulo Zingano Dept. De

More information

Multiscale Analysis in Biology

Multiscale Analysis in Biology Multiscale Analysis in Biology Some successes and open problems Hans G. Othmer School of Mathematics University of Minnesota 1/54 Why understanding motility is important... Movement is an essential component

More information

General Theory of Large Deviations

General Theory of Large Deviations Chapter 30 General Theory of Large Deviations A family of random variables follows the large deviations principle if the probability of the variables falling into bad sets, representing large deviations

More information

adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG)

adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG) FOSS Living Systems Module Glossary 3 rd Edition 2012 adaptation a structure, feature, or behavior that helps an organism survive and/or reproduce (IG) algae a large plantlike group of water organisms

More information

Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation

Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation Peter Howard, Texas A&M University University of Louisville, Oct. 19, 2007 References d = 1: Commun. Math. Phys. 269 (2007) 765

More information

arxiv: v1 [q-bio.to] 14 Jun 2016

arxiv: v1 [q-bio.to] 14 Jun 2016 A revised model of fluid transport optimization in Physarum polycephalum Vincenzo Bonifaci arxiv:606.045v [q-bio.to] 4 Jun 06 Abstract Optimization of fluid transport in the slime mold Physarum polycephalum

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

Moving Finite Elements; From Shallow Water equations to Aggregation of microglia in Alzheimer s disease

Moving Finite Elements; From Shallow Water equations to Aggregation of microglia in Alzheimer s disease Moving Finite Elements; From Shallow Water equations to Aggregation of microglia in Alzheimer s disease Abigail Wacher Past collaborators on this topic: Ian Sobey (Oxford Computing Laboratory) Keith Miller

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

A survey on l 2 decoupling

A survey on l 2 decoupling A survey on l 2 decoupling Po-Lam Yung 1 The Chinese University of Hong Kong January 31, 2018 1 Research partially supported by HKRGC grant 14313716, and by CUHK direct grants 4053220, 4441563 Introduction

More information

Pattern Formation in Chemotaxis

Pattern Formation in Chemotaxis Pattern Formation in Chemotaxis Thomas Hillen University of Alberta, Edmonton (with K. Painter, Heriot-Watt) Pattern Formation in Chemotaxis p.1/28 Outline (1) The Minimal Model (M1) Pattern Formation

More information

A Semi-Lagrangian discretization of non linear fokker Planck equations

A Semi-Lagrangian discretization of non linear fokker Planck equations A Semi-Lagrangian discretization of non linear fokker Planck equations E. Carlini Università Sapienza di Roma joint works with F.J. Silva RICAM, Linz November 2-25, 206 / 3 Outline A Semi-Lagrangian scheme

More information

Superiorized Inversion of the Radon Transform

Superiorized Inversion of the Radon Transform Superiorized Inversion of the Radon Transform Gabor T. Herman Graduate Center, City University of New York March 28, 2017 The Radon Transform in 2D For a function f of two real variables, a real number

More information

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2)

THE WAVE EQUATION. d = 1: D Alembert s formula We begin with the initial value problem in 1 space dimension { u = utt u xx = 0, in (0, ) R, (2) THE WAVE EQUATION () The free wave equation takes the form u := ( t x )u = 0, u : R t R d x R In the literature, the operator := t x is called the D Alembertian on R +d. Later we shall also consider the

More information

SINGLE-ELECTRON CIRCUITS PERFORMING DENDRITIC PATTERN FORMATION WITH NATURE-INSPIRED CELLULAR AUTOMATA

SINGLE-ELECTRON CIRCUITS PERFORMING DENDRITIC PATTERN FORMATION WITH NATURE-INSPIRED CELLULAR AUTOMATA International Journal of Bifurcation and Chaos, Vol. 7, No. (7) 365 3655 c World Scientific Publishing Company SINGLE-ELECTRON CIRCUITS PERFORMING DENDRITIC PATTERN FORMATION WITH NATURE-INSPIRED CELLULAR

More information

Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D

Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D Z. angew. Math. Phys. 54 (003) 1 30 0044-75/03/050001-30 DOI 10.1007/s00033-003-1013-3 c 003 Birkhäuser Verlag, Basel Zeitschrift für angewandte Mathematik und Physik ZAMP Blow-up and pattern formation

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL

INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL PATRICK DE LEENHEER, JAY GOPALAKRISHNAN, AND ERICA ZUHR Abstract. We present a generalized Keller-Segel model where an arbitrary number of chemical compounds

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

arxiv:quant-ph/ v1 17 Oct 1995

arxiv:quant-ph/ v1 17 Oct 1995 PHYSICS AND CONSCIOUSNESS Patricio Pérez arxiv:quant-ph/9510017v1 17 Oct 1995 Departamento de Física, Universidad de Santiago de Chile Casilla 307, Correo 2, Santiago, Chile ABSTRACT Some contributions

More information

The Mean Value Theorem. Oct

The Mean Value Theorem. Oct The Mean Value Theorem Oct 14 2011 The Mean Value Theorem Theorem Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f exists on the open interval (a, b). Then there

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information