A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS

Size: px
Start display at page:

Download "A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS"

Transcription

1 Novi Sad J. Math. Vol., No. 2, 200, A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS Emin Kasap 1 Abstract. A non-linear differential equation is analyzed to determine the geodesic curves on ruled surfaces with time-like rulings in R 1. When it is assumed that curvature and torsion of the base curve and components with respect to Frenet s frame of time-like straight-line are constants, for a special integration constant, it appears that the resulting non-linear differential equation can be integrated exactly. Finally, examples are given to show the geodesic curve on ruled surfaces with time-like rulings. AMS Mathematics Subject Classification 2000): 8E10 Key words and phrases: Geodesic curve, Non-Linear differential equation, Time-like ruled surface 1. Introduction Most people have heard the phrase: A straight line is the shortest distance between two points. But in differential geometry, they say the same in a different language. They say instead: Geodesics for the Euclidean metric are straight lines. A geodesic is a curve that represents the extremal value of a distance function in some space. In the Euclidean space, extremal means minimal, so geodesics are paths of minimal arc length. In the -dimensional Minkowski space, the extremal paths are actually maximal arc length. Geodesics are important in the relativistic description of gravity. Einstein s Principle of Equivalence, part of the General Theory of Relativity, tells us that geodesics represent the paths of freely-falling particles in a given space. Freelyfalling in this context means moving only under the influence of gravity, with no other forces involved.) Geodesics are the curves along which geodesic curvature vanishes. This is of course where the geodesic curvature name comes from. Since Lorentzian metric is not positive definite metric, the distance function ds 2 can be positive, negative or zero, whereas the distance function in the Euclidean space can only be positive. Thus, we have to separate our geodesics on the basis of whether the distance function is positive, negative or zero. The geodesics with ds 2 < 0 are called space-like geodesics. The geodesics with ds 2 > 0 are called time-like geodesics, while geodesics with ds 2 = 0 are called null geodesics. 1 Ondokuz Mayıs University, Faculty of Arts & Sciences, Department of Mathematics, Samsun -TURKEY, kasape@omu.edu.tr

2 104 E. Kasap In this article, the basic concepts of -dimensional Minkowski space have been first given. Using geodesic curvature, the differential equation of the geodesics on a time-like ruled surface with time-like rulings has been obtained and solved under some conditions. Finally, examples have been given related to the subject. 2. Preliminaries Let us consider the Minkowski -space R 1[R, +, +, )] and let the Lorentzian inner product of X = x 1, x 2, x ) and Y = y 1, y 2, y ) R be < X, Y > = x 1 y 1 + x 2 y 2 x y. A vector X R 1 is called a space-like vector when < X, X > > 0 or X = 0. It is called time-like and null lightlike) vector in case of < X, X > < 0 and < X, X > = 0 for X 0, respectively. The norm of X R 1 is denoted by X and defined as X < = X, X. > For a regular curve in R 1, if its tangent vector at every point is space-like, it is called space-like curve. Similarly, if its tangent vector is time-like and null vector, it is called time-like and null curve, respectively,[]. Let X = x 1, x 2, x ) and Y = y 1, y 2, y ) be any two vectors in R 1. The cross product of X and Y is defined by 1) X Y = x 2 y x y 2, x y 1 x 1 y, x 2 y 1 x 1 y 2 ), [1]. A surface in R 1 is called a time-like surface if the induced metric on the surface is a Lorentz metric, i.e. the normal vector on the time-like surface is a space-like vector, [2]. Let α = αs) be a unit speed space-like curve in R 1. Consider the orthonormal Frenet frame { e 1, e 2, e } associated with the curve α = αs), such that e 1 = e 1 s), e 2 = e 2 s) and e = e s) are the tangent vector field, the principal vector field and the binormal vector field, respectively. In this study, e = e s) will be taken as time-like. If one takes it space-like, similar procedures will be applied. The Frenet formulas are given by 2) e 1 s) = κs) e2 s), e 2 s) = κs) e1 s) + τs) e s), e s) = τs) e2 s) where κs) and τs) are the curvature and torsion of αs), respectively. It is easy to see from 1) that ) e 1 e 2 = e, e 1 e = e 2, e 2 e = e 1 A time-like straight line X in R 1, such that it is strictly connected to Frenet s frame of the space-like curve α = αs), is represented uniquely with respect to this frame, in the form

3 A method of the determination of a geodesic curve ) Xs) = x i s) e i s), < Xs), Xs) > < 0 i=1 As X moves along α = αs) it generates a time-like ruled surface given by the regular parametrization ϕs,v) = αs) + v Xs) x x 2 2 x 2 = 1, X s) 0 where the components x i s) i = 1, 2, ) are scalar functions of the arc-length parameter of the curve α = αs) This ruled surface will be denoted by M. The curve α = αs) is called a base curve and the various positions of the generating line X are called the rulings of the surface M. If consecutive rulings of a ruled surface in R 1 intersect, then the surface is said to be developable. All other ruled surfaces are called skew surfaces. If there exists a common perpendicular to two constructive rulings in the skew surface, then the foot of the common perpendicular on the main ruling is called a striction point. The set of striction points on a ruled surface defines the striction curve, []. The striction curve, β = βs), can be written in terms of the base curve αs) as βs) = αs) φs) Xs) where ) φs) = x 1 x 2 κ < X, X > The unit normal vector n on the time-like ruled surface M is given by 6) n = α s) Xs) + vx s) Xs) α s) Xs) + vx s) Xs) From ) and 4) the unit normal vector to the ruled surface M at the point s, o ) is ns, o ) = x e 2 + x 2 e x 2 2 x 2 Thus, if x 2 = 0, x 0 then the base curve of M is a geodesic curve. In this paper, the striction curve of the ruled surface M will be taken as the base curve. In this case, for the parametric equation of M, we can write ϕs,v) = αs) + v Xs), X s) 0 x x 2 2 x 2 = 1, x 1 x 2 κ = 0

4 106 E. Kasap. Geodesic Curvature Let γ = γs) be a curve on the ruled surface M. Then it can be written as 7) γs) = αs) + vs) Xs) Using 2), for the unit tangent vector along the curve γ γs), we get where T s) = γ s) γ s) = η 1 e 1 + η 2 e 2 + η e R η 1 = 1 + v x 1, η 2 = v x 2 + vϕ 1, η = v x + vϕ 2 ϕ 1 = x 2 + x 1 κ + x τ, ϕ 2 = x + x 2 τ and R = η η2 2 η 2. Thus, we obtain T [ ] s) = R /2 η 1 η 2 κ) e 1 + η 2 + η 1 κ + η τ) e 2 + η + η 2 τ) e R R 2 η 1 e 1 + η 2 e 2 + η e ) ) From 6), the unit normal vector field on the ruled surface M along the curve γ = γs) is ns, vs) ) = vx ϕ 1 x 2 ϕ 2 ) e 1 + x + vx 1 ϕ 2 ) e 2 + x 2 + vx 1 ϕ 1 ) e v2 x ϕ 1 x 2 ϕ 2 ) 2 + x + vx 1 ϕ 2 ) 2 x 2 + vx 1 ϕ 1 ) 2 Hence, the geodesic curvature of the curve γ = γs) is obtained as 1 8) k g = R ns, vs) ) η 1 η 2 η η 1 η 2 κ η 2 + η 1 κ + η τ η + η 2 τ vx ϕ 1 x 2 ϕ 2 ) x + vx 1 ϕ 2 x 2 + vx 1 ϕ 1 Then, the differential equation of the geodesic curves on the ruled surface M is given by 9) fs, v)v + hs, v)v ) 2 + gs, v)v + rs, v)v x 2 κ = 0, where fs, v) = 1 [ + x v 2 ϕ 2 1 ϕ 2 2), ] hs, v) = v ϕ 2 2 ϕ 2 1 x 2ϕ 1 + x ϕ 2 + x 2 τϕ 2 x 1 κ + x τ)ϕ 1, gs, v) = vx 1 [x 2ϕ 1 x 2 ϕ 1 + x ϕ 2 x ϕ 2 2τx 2 ϕ 2 x ϕ 1 ) + 2x 1 κϕ 1 + ϕ 2 1 ϕ v 2 ϕ 2 ϕ 2 ϕ 1 ϕ 1) x 1 x 2 κ ]

5 A method of the determination of a geodesic curve and rs, v) = x 2 ϕ 1 + x ϕ 2 + x 1 κϕ 1 x 2 τϕ 2 + x τϕ 1 [ ] + v x 1 ϕ 1 ϕ 1 ϕ 2 ϕ 2) + x 2 κϕ 2 2 ϕ 2 1) 10) [ + v 2 ϕ 2ϕ 1 ϕ 2 ϕ 1)x ϕ 1 x 2 ϕ 2 ) ] + ϕ 1 ϕ 1 ϕ 2 2)x 1 κ + x τ) + x 2 τϕ 2 ϕ 2 1ϕ 2 ) If κ = 0, then α = αs) is a line. In this case, since the ruled surface M is a part of Lorentzian plane, the geodesics on the surface M are straight lines. In this paper we assume that κ 0. In general, the non-linear differential equation 9) can not be solved analytically. Moreover, since we do not have any boundary condition, we can not use any numerical method. Hence, let curvature and torsion of the base curve α = αs) be constants and X be fixed in { e 1, e 2, e } such that x 1 = 0. Under this assumption, the differential equation 9) takes the form 11) where fv)v + hv)v ) 2 + rv)v = 0 12) fv) = 1 + v 2 ϕ 2 1, hv) = 2vϕ 2 1, rv) = ϕ v 2 ϕ 2 1), ϕ1 = x τ If τ = 0, from 11) we obtain v = as + b, a, b R. Therefore, from 7) the equation of a geodesic curve on the space-like ruled surface M is γs) = αs) + as + b) Xs) We assume that τ 0. By using the substitution p = pv) = v takes the form = dv ds, we find that equation 11) 1) fv)p dp dv + hv)p2 + rv)v = 0 Putting 2 hv) rv) fv) = Hv) and 2 fv) v = Rv) in 1), we have the following representation for 1): 2p dp dv + Hv)p2 = Rv) Now, by making the substitution q = p 2, we have that the last equation reduces to 14) dq + Hv)q = Rv) dv

6 108 E. Kasap This is a linear differential equation. It is well known that solution of the equation 14) is q = e [ Hv)dv c 1 + Rv)e ] Hv)dv dv,where c 1 is an arbitrary constant. Since Hv)dv = ln1 + v 2 ϕ 2 1) 2 and Hv)dv 1 Rv)e dv =, we 1+v 2 ϕ 2 1 obtain the following solution for the differential equation 11): 1) s = ± dv c1 1 + v 2 ϕ 2 1 ) v 2 ϕ 2 1 ) It is well known that the left-hand side of 1) is the elliptic integral see for example [4]) which can not be integrated exactly except for the following case: If case c 1 = 0, we have 16) v = ± 1 ϕ 1 sinhϕ 1 s) From 7) and 1), the equation of a geodesic curve on the surface M is 17) γs) = α s) + 1 ϕ 1 sinhϕ 1 s) Xs) Since the tangent vector of the geodesic curve γ = γs) is γs = e 1 + vϕ 1 e 2 + v x e, we have the following result: Corollary 1. i) If 1 + v 2 ϕ 2 1 x 2 v ) 2 > 0, then γ = γs) is a space-like curve, ii) If 1 + v 2 ϕ 2 1 x 2 v ) 2 < 0, then γ = γs) is a time-like curve, iii) If 1 + v 2 ϕ 2 1 x 2 v ) 2 = 0, then γ = γs) is a null curve. Example 1. Let α s) = 2 s, cosh s), sinh s) )be a space-like curve such that κ = 1/ and τ = 2 /. The short calculations give e 1 = and e = 2, sinh s), cosh ), s) e 2 =, 2 sinh s), 2 cosh ). s) 0, cosh s), sinh s) ) Let 0, 0, 1) be expression of unit time-like vector X = Xs) with respect to the orthonormal frame { e 1, e 2, e }. Therefore, we have a ruled surface given by the parametric equation ϕ 1 s, v) = 2 s v, cosh s) v 2 sinh s), sinh s) v 2 cosh s)) It is clear that ϕ is a time-like ruled surface with time-like rulings. From 16), it follows that the equation of a geodesic curve on the surface ϕ is

7 A method of the determination of a geodesic curve γs) = 2 s sinh 2 sinh2 s), cosh s) sinh 2 s) cosh s) sinh 2 s) sinh s)) Because of Corollary 1, γ = γ s) is a null curve Fig. 1). s), Fig. 1. Ruled surface ϕ 1 and its geodesic curve Example 2. ϕ 2 s, v) = cosh 2 s) + v sinh2 s), s v 2, sinh 2 s) + v cosh2 s)) is a time-like ruled surface with time-like rulings. surface ϕ 2 is A geodesic curve on the γs) = cosh 2 s) + sinh 2 s) + 2 sinh6 2 sinh6 s) sinh2 s) cosh2 s)) s), s Because of Corollary 1, γ = γ s) is a null curve Fig. 2). sinh6 s),

8 110 E. Kasap References Fig. 2. Ruled surface ϕ 2 and its geodesic curve [1] Akutagawa, K., Nishikawa, S., The Gauss Map and Space-like Surfaces with Prescribed Mean Curvature in Minkowski -Space. Tohoku Math. J ), [2] Beem, J. K., Ehrlich, P. E.,Global Lorentzian Geometry. New York: Marcel Dekker. Inc [] O Neill, B., Semi Riemannian Geometry. New York, London: Accedemic Press 198. [4] Gradshteyn, I. S., Ryzhık, I. M., Table of Integrals, Series and Products. New York: Academic Press 1980 [] Turgut, A., Hacisalihoğlu, H. H., Time-like Ruled Surfaces in the Minkowski -Space. Far East J. Math. Sci. Vol. No ), Received by the editors April 11, 200

THE BERTRAND OFFSETS OF RULED SURFACES IN R Preliminaries. X,Y = x 1 y 1 + x 2 y 2 x 3 y 3.

THE BERTRAND OFFSETS OF RULED SURFACES IN R Preliminaries. X,Y = x 1 y 1 + x 2 y 2 x 3 y 3. ACTA MATHEMATICA VIETNAMICA 39 Volume 31, Number 1, 2006, pp. 39-48 THE BERTRAND OFFSETS OF RULED SURFACES IN R 3 1 E. KASAP AND N. KURUOĞLU Abstract. The problem of finding a curve whose principal normals

More information

Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space

Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space Transversal Surfaces of Timelike Ruled Surfaces in Minkowski -Space Mehmet Önder Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, 45047, Muradiye, Manisa,

More information

Fathi M. Hamdoon and A. K. Omran

Fathi M. Hamdoon and A. K. Omran Korean J. Math. 4 (016), No. 4, pp. 613 66 https://doi.org/10.11568/kjm.016.4.4.613 STUDYING ON A SKEW RULED SURFACE BY USING THE GEODESIC FRENET TRIHEDRON OF ITS GENERATOR Fathi M. Hamdoon and A. K. Omran

More information

THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE

THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE International Electronic Journal of Geometry Volume 6 No.2 pp. 88 99 (213) c IEJG THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE SÜLEYMAN

More information

Existence Theorems for Timelike Ruled Surfaces in Minkowski 3-Space

Existence Theorems for Timelike Ruled Surfaces in Minkowski 3-Space Existence Theorems for Timelike Ruled Surfaces in Minkowski -Space Mehmet Önder Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, 45047 Muradiye, Manisa,

More information

On Natural Lift of a Curve

On Natural Lift of a Curve Pure Mathematical Sciences, Vol. 1, 2012, no. 2, 81-85 On Natural Lift of a Curve Evren ERGÜN Ondokuz Mayıs University, Faculty of Arts and Sciences Department of Mathematics, Samsun, Turkey eergun@omu.edu.tr

More information

Surfaces Family with Common Smarandache Geodesic Curve According to Bishop Frame in Euclidean Space

Surfaces Family with Common Smarandache Geodesic Curve According to Bishop Frame in Euclidean Space MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 4 (1 164-174 (016 c MSAEN Surfaces Family with Common Smarandache Geodesic Curve According to Bishop Frame in Euclidean Space Gülnur Şaffak Atalay* and Emin

More information

Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space

Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space Nihat Ayyildiz, A. Ceylan Çöken, Ahmet Yücesan Abstract In this paper, a system of differential equations

More information

The Natural Lift of the Fixed Centrode of a Non-null Curve in Minkowski 3-Space

The Natural Lift of the Fixed Centrode of a Non-null Curve in Minkowski 3-Space Malaya J Mat 4(3(016 338 348 The Natural Lift of the Fixed entrode of a Non-null urve in Minkowski 3-Space Mustafa Çalışkan a and Evren Ergün b a Faculty of Sciences epartment of Mathematics Gazi University

More information

Non-null weakened Mannheim curves in Minkowski 3-space

Non-null weakened Mannheim curves in Minkowski 3-space An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) Tomul LXIII, 2017, f. 2 Non-null weakened Mannheim curves in Minkowski 3-space Yilmaz Tunçer Murat Kemal Karacan Dae Won Yoon Received: 23.IX.2013 / Revised:

More information

ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2

ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2 Novi Sad J. Math. Vol. 48, No. 1, 2018, 9-20 https://doi.org/10.30755/nsjom.05268 ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2 Kazım İlarslan 1, Makoto Sakaki 2 and Ali Uçum 34 Abstract.

More information

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME Bull. Korean Math. Soc. 49 (), No. 3, pp. 635 645 http://dx.doi.org/.434/bkms..49.3.635 A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME N ihat Ayyildiz and Tunahan Turhan

More information

Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere

Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 4 () -3 (06) c MSAEN Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere Tanju Kahraman* and Hasan Hüseyin Uğurlu (Communicated

More information

ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE

ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE TWMS J. App. Eng. Math. V.6, N.1, 2016, pp. 22-29. ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE BURAK SAHINER 1, MUSTAFA KAZAZ 1, HASAN HUSEYIN UGURLU 3, Abstract. This

More information

SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME

SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME International Electronic Journal of Geometry Volume 7 No. 1 pp. 26-35 (2014) c IEJG SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME KAZIM İLARSLAN AND EMILIJA NEŠOVIĆ Dedicated

More information

Some Characterizations of Partially Null Curves in Semi-Euclidean Space

Some Characterizations of Partially Null Curves in Semi-Euclidean Space International Mathematical Forum, 3, 28, no. 32, 1569-1574 Some Characterizations of Partially Null Curves in Semi-Euclidean Space Melih Turgut Dokuz Eylul University, Buca Educational Faculty Department

More information

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 5 (016, No., 51-61 SPLIT QUATERNIONS and CANAL SURFACES in MINKOWSKI 3-SPACE SELAHATTIN ASLAN and YUSUF YAYLI Abstract. A canal surface is the envelope of a one-parameter

More information

TRANSVERSAL SURFACES OF TIMELIKE RULED SURFACES IN MINKOWSKI 3-SPACE IR

TRANSVERSAL SURFACES OF TIMELIKE RULED SURFACES IN MINKOWSKI 3-SPACE IR IJRRAS () November 0 wwwarpapresscom/volumes/volissue/ijrras 08pf TRANSVERSAL SURFACES OF TIMELIKE RULED SURFACES IN MINKOWSKI -SPACE Mehmet Öner Celal Bayar University, Faculty of Science an Arts, Department

More information

Null Bertrand curves in Minkowski 3-space and their characterizations

Null Bertrand curves in Minkowski 3-space and their characterizations Note di Matematica 23, n. 1, 2004, 7 13. Null Bertrand curves in Minkowski 3-space and their characterizations Handan Balgetir Department of Mathematics, Firat University, 23119 Elazig, TURKEY hbalgetir@firat.edu.tr

More information

On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve

On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve Ahmet Yücesan, A. Ceylan Çöken and Nihat Ayyildiz Abstract In this paper, the Dual Darboux rotation axis for timelike dual space curve

More information

Characterizations of the Spacelike Curves in the 3-Dimentional Lightlike Cone

Characterizations of the Spacelike Curves in the 3-Dimentional Lightlike Cone Prespacetime Journal June 2018 Volume 9 Issue 5 pp. 444-450 444 Characterizations of the Spacelike Curves in the 3-Dimentional Lightlike Cone Mehmet Bektas & Mihriban Kulahci 1 Department of Mathematics,

More information

k type partially null and pseudo null slant helices in Minkowski 4-space

k type partially null and pseudo null slant helices in Minkowski 4-space MATHEMATICAL COMMUNICATIONS 93 Math. Commun. 17(1), 93 13 k type partially null and pseudo null slant helices in Minkowski 4-space Ahmad Tawfik Ali 1, Rafael López and Melih Turgut 3, 1 Department of Mathematics,

More information

On the Fundamental Forms of the B-scroll with Null Directrix and Cartan Frame in Minkowskian 3-Space

On the Fundamental Forms of the B-scroll with Null Directrix and Cartan Frame in Minkowskian 3-Space Applied Mathematical Sciences, Vol. 9, 015, no. 80, 3957-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5330 On the Fundamental Forms of the B-scroll with Null Directrix and Cartan

More information

On the Invariants of Mannheim Offsets of Timelike Ruled Surfaces with Timelike Rulings

On the Invariants of Mannheim Offsets of Timelike Ruled Surfaces with Timelike Rulings Gen Math Notes, Vol, No, June 04, pp 0- ISSN 9-784; Copyright ICSRS Publication, 04 wwwi-csrsorg Available free online at http://wwwgemanin On the Invariants of Mannheim Offsets of Timelike Ruled Surfaces

More information

Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space

Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space CMMA 1, No. 2, 58-65 (2016) 58 Communication in Mathematical Modeling and Applications http://ntmsci.com/cmma Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space Emad

More information

ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE. 1. Introduction

ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE. 1. Introduction International Electronic Journal of Geometry Volume 6 No.2 pp. 110 117 (2013) c IEJG ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE ŞEYDA KILIÇOĞLU, H. HILMI HACISALIHOĞLU

More information

Spherical Images and Characterizations of Time-like Curve According to New Version of the Bishop Frame in Minkowski 3-Space

Spherical Images and Characterizations of Time-like Curve According to New Version of the Bishop Frame in Minkowski 3-Space Prespacetime Journal January 016 Volume 7 Issue 1 pp. 163 176 163 Article Spherical Images and Characterizations of Time-like Curve According to New Version of the Umit Z. Savcı 1 Celal Bayar University,

More information

SLANT HELICES IN MINKOWSKI SPACE E 3 1

SLANT HELICES IN MINKOWSKI SPACE E 3 1 J. Korean Math. Soc. 48 (2011), No. 1, pp. 159 167 DOI 10.4134/JKMS.2011.48.1.159 SLANT HELICES IN MINKOWSKI SPACE E 3 1 Ahmad T. Ali and Rafael López Abstract. We consider a curve α = α(s) in Minkowski

More information

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR Commun. Korean Math. Soc. 31 016), No., pp. 379 388 http://dx.doi.org/10.4134/ckms.016.31..379 CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR Kadri Arslan, Hüseyin

More information

Mannheim partner curves in 3-space

Mannheim partner curves in 3-space J. Geom. 88 (2008) 120 126 0047 2468/08/010120 7 Birkhäuser Verlag, Basel, 2008 DOI 10.1007/s00022-007-1949-0 Mannheim partner curves in 3-space Huili Liu and Fan Wang Abstract. In this paper, we study

More information

Timelike Constant Angle Surfaces in Minkowski Space IR

Timelike Constant Angle Surfaces in Minkowski Space IR Int. J. Contemp. Math. Sciences, Vol. 6, 0, no. 44, 89-00 Timelike Constant Angle Surfaces in Minkowski Space IR Fatma Güler, Gülnur Şaffak and Emin Kasap Department of Mathematics, Arts and Science Faculty,

More information

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE International Electronic Journal of Geometry Volume 7 No. 1 pp. 44-107 (014) c IEJG DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE RAFAEL LÓPEZ Dedicated to memory of Proffessor

More information

Natural Lifts and Curvatures, Arc-Lengths of the Spherical Indicatries of the Evolute Curve in E 3

Natural Lifts and Curvatures, Arc-Lengths of the Spherical Indicatries of the Evolute Curve in E 3 International Mathematical Forum, Vol. 9, 214, no. 18, 857-869 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/imf.214.448 Natural Lifts and Curvatures, Arc-Lengths of the Spherical Indicatries

More information

Arbitrary-Speed Curves

Arbitrary-Speed Curves Arbitrary-Speed Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 12, 2017 The Frenet formulas are valid only for unit-speed curves; they tell the rate of change of the orthonormal vectors T, N, B with respect

More information

On constant isotropic submanifold by generalized null cubic

On constant isotropic submanifold by generalized null cubic On constant isotropic submanifold by generalized null cubic Leyla Onat Abstract. In this paper we shall be concerned with curves in an Lorentzian submanifold M 1, and give a characterization of each constant

More information

Parallel Transport Frame in 4 dimensional Euclidean Space E 4

Parallel Transport Frame in 4 dimensional Euclidean Space E 4 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611 CJMS. 3(1)(2014), 91-103 Parallel Transport Frame in 4 dimensional Euclidean

More information

CURVATURE VIA THE DE SITTER S SPACE-TIME

CURVATURE VIA THE DE SITTER S SPACE-TIME SARAJEVO JOURNAL OF MATHEMATICS Vol.7 (9 (20, 9 0 CURVATURE VIA THE DE SITTER S SPACE-TIME GRACIELA MARÍA DESIDERI Abstract. We define the central curvature and the total central curvature of a closed

More information

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map Filomat 29:3 (205), 38 392 DOI 0.2298/FIL50338B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Timelike Rotational Surfaces of

More information

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE *

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE * Iranian Journal of Science & Technology, Transaction A, ol., No. A Printed in the Islamic Republic of Iran, 009 Shiraz University -TYPE AND BIHARMONIC FRENET CURES IN LORENTZIAN -SPACE * H. KOCAYIGIT **

More information

C.B.U. Fen-Edebiyat Fakiiltesi Matematik Boliimii MANisA.

C.B.U. Fen-Edebiyat Fakiiltesi Matematik Boliimii MANisA. Mathematical & Computational Applications, Vol. 1, No.2, pp 133-141, 1996 Associatioo. for Scientific Research HE FRENE AND DARBOUX INSANfANEOUS ROAION VECORS OF CURVES ON IME-LIKE SURFACE H.Hiiseyin UGURLU

More information

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE iauliai Math. Semin., 7 15), 2012, 4149 BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE Murat Kemal KARACAN, Yilmaz TUNÇER Department of Mathematics, Usak University, 64200 Usak,

More information

arxiv: v1 [math.dg] 12 Jun 2015

arxiv: v1 [math.dg] 12 Jun 2015 arxiv:1506.03938v1 [math.dg] 1 Jun 015 NOTES ON W-DIRECTION CURVES IN EUCLIDEAN 3-SPACE İlkay Arslan Güven 1,, Semra Kaya Nurkan and İpek Ağaoğlu Tor 3 1,3 Department of Mathematics, Faculty of Arts and

More information

Generalized Null 2-Type Surfaces in Minkowski 3-Space

Generalized Null 2-Type Surfaces in Minkowski 3-Space Article Generalized Null 2-Type Surfaces in Minkowski 3-Space Dae Won Yoon 1, Dong-Soo Kim 2, Young Ho Kim 3 and Jae Won Lee 1, * 1 Department of Mathematics Education and RINS, Gyeongsang National University,

More information

The Ruled Surfaces According to Type-2 Bishop Frame in E 3

The Ruled Surfaces According to Type-2 Bishop Frame in E 3 International Mathematical Forum, Vol. 1, 017, no. 3, 133-143 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/imf.017.610131 The Ruled Surfaces According to Type- Bishop Frame in E 3 Esra Damar Department

More information

Linear Ordinary Differential Equations

Linear Ordinary Differential Equations MTH.B402; Sect. 1 20180703) 2 Linear Ordinary Differential Equations Preliminaries: Matrix Norms. Denote by M n R) the set of n n matrix with real components, which can be identified the vector space R

More information

Killing Magnetic Curves in Three Dimensional Isotropic Space

Killing Magnetic Curves in Three Dimensional Isotropic Space Prespacetime Journal December l 2016 Volume 7 Issue 15 pp. 2015 2022 2015 Killing Magnetic Curves in Three Dimensional Isotropic Space Alper O. Öğrenmiş1 Department of Mathematics, Faculty of Science,

More information

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space arxiv:50.05245v [math.dg 2 Jan 205, 5 pages. DOI:0.528/zenodo.835456 Smarandache Curves and Spherical Indicatrices in the Galilean 3-Space H.S.Abdel-Aziz and M.Khalifa Saad Dept. of Math., Faculty of Science,

More information

Qing-Ming Cheng and Young Jin Suh

Qing-Ming Cheng and Young Jin Suh J. Korean Math. Soc. 43 (2006), No. 1, pp. 147 157 MAXIMAL SPACE-LIKE HYPERSURFACES IN H 4 1 ( 1) WITH ZERO GAUSS-KRONECKER CURVATURE Qing-Ming Cheng and Young Jin Suh Abstract. In this paper, we study

More information

How big is the family of stationary null scrolls?

How big is the family of stationary null scrolls? How big is the family of stationary null scrolls? Manuel Barros 1 and Angel Ferrández 2 1 Departamento de Geometría y Topología, Facultad de Ciencias Universidad de Granada, 1807 Granada, Spain. E-mail

More information

THE NATURAL LIFT CURVE OF THE SPHERICAL INDICATRIX OF A TIMELIKE CURVE IN MINKOWSKI 4-SPACE

THE NATURAL LIFT CURVE OF THE SPHERICAL INDICATRIX OF A TIMELIKE CURVE IN MINKOWSKI 4-SPACE Journal of Science Arts Year 5, o (, pp 5-, 5 ORIGIAL PAPER HE AURAL LIF CURVE OF HE SPHERICAL IDICARIX OF A IMELIKE CURVE I MIKOWSKI -SPACE EVRE ERGÜ Manuscript received: 65; Accepted paper: 55; Published

More information

On a family of surfaces with common asymptotic curve in the Galilean space G 3

On a family of surfaces with common asymptotic curve in the Galilean space G 3 Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 2016), 518 523 Research Article On a family of surfaces with common asymptotic curve in the Galilean space G 3 Zühal Küçükarslan Yüzbaşı Fırat

More information

An Introduction to Gaussian Geometry

An Introduction to Gaussian Geometry Lecture Notes in Mathematics An Introduction to Gaussian Geometry Sigmundur Gudmundsson (Lund University) (version 2.068-16th of November 2017) The latest version of this document can be found at http://www.matematik.lu.se/matematiklu/personal/sigma/

More information

ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE. 1. Introduction

ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE. 1. Introduction J. Korean Math. Soc. 43 (2006), No. 6, pp. 1339 1355 ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE N ihat Ayyıldız and Ahmet Yücesan Abstract.

More information

An Optimal Control Problem for Rigid Body Motions in Minkowski Space

An Optimal Control Problem for Rigid Body Motions in Minkowski Space Applied Mathematical Sciences, Vol. 5, 011, no. 5, 559-569 An Optimal Control Problem for Rigid Body Motions in Minkowski Space Nemat Abazari Department of Mathematics, Ardabil Branch Islamic Azad University,

More information

Solutions for Math 348 Assignment #4 1

Solutions for Math 348 Assignment #4 1 Solutions for Math 348 Assignment #4 1 (1) Do the following: (a) Show that the intersection of two spheres S 1 = {(x, y, z) : (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 = r 2 1} S 2 = {(x, y, z) : (x x 2 ) 2

More information

Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve. Key Words: Smarandache Curves, Sabban Frame, Geodesic Curvature, Fixed Pole Curve

Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve. Key Words: Smarandache Curves, Sabban Frame, Geodesic Curvature, Fixed Pole Curve Bol. Soc. Paran. Mat. s. v. 4 06: 5 6. c SPM ISSN-75-88 on line ISSN-00787 in press SPM: www.spm.uem.br/bspm doi:0.569/bspm.v4i.75 Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve Süleyman

More information

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds Eikonal slant helices and eikonal Darboux helices in -dimensional pseudo-riemannian maniolds Mehmet Önder a, Evren Zıplar b a Celal Bayar University, Faculty o Arts and Sciences, Department o Mathematics,

More information

Hamdy N. Abd-Ellah and Abdelrahim Khalifa Omran

Hamdy N. Abd-Ellah and Abdelrahim Khalifa Omran Korean J. Math. 5 (017), No. 4, pp. 513 535 https://doi.org/10.11568/kjm.017.5.4.513 STUDY ON BCN AND BAN RULED SURFACES IN E 3 Hamdy N. Abd-Ellah and Abdelrahim Khalifa Omran Abstract. As a continuation

More information

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana University of Groningen Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

On the curvatures of spacelike circular surfaces

On the curvatures of spacelike circular surfaces Kuwait J. Sci. 43 (3) pp. 50-58, 2016 Rashad A. Abdel-Baky 1,2, Yasin Ünlütürk 3,* 1 Present address: Dept. of Mathematics, Sciences Faculty for Girls, King Abdulaziz University, P.O. Box 126300, Jeddah

More information

D Tangent Surfaces of Timelike Biharmonic D Helices according to Darboux Frame on Non-degenerate Timelike Surfaces in the Lorentzian Heisenberg GroupH

D Tangent Surfaces of Timelike Biharmonic D Helices according to Darboux Frame on Non-degenerate Timelike Surfaces in the Lorentzian Heisenberg GroupH Bol. Soc. Paran. Mat. (3s.) v. 32 1 (2014): 35 42. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v32i1.19035 D Tangent Surfaces of Timelike Biharmonic D

More information

N C Smarandache Curve of Bertrand Curves Pair According to Frenet Frame

N C Smarandache Curve of Bertrand Curves Pair According to Frenet Frame International J.Math. Combin. Vol.1(016), 1-7 N C Smarandache Curve of Bertrand Curves Pair According to Frenet Frame Süleyman Şenyurt, Abdussamet Çalışkan and Ünzile Çelik (Faculty of Arts and Sciences,

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

ON BOUNDED AND UNBOUNDED CURVES DETERMINED BY THEIR CURVATURE AND TORSION

ON BOUNDED AND UNBOUNDED CURVES DETERMINED BY THEIR CURVATURE AND TORSION ON BOUNDED AND UNBOUNDED CURVES DETERMINED BY THEIR CURVATURE AND TORSION OLEG ZUBELEVICH DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA,

More information

TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3. Talat Korpinar, Essin Turhan, Iqbal H.

TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3. Talat Korpinar, Essin Turhan, Iqbal H. Acta Universitatis Apulensis ISSN: 1582-5329 No. 29/2012 pp. 227-234 TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3 Talat Korpinar, Essin Turhan, Iqbal H. Jebril

More information

LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON LORENTZIAN PLANE. Kırıkkale University, Turkey

LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON LORENTZIAN PLANE. Kırıkkale University, Turkey GLASNIK MATEMATIČKI Vol. 41(61)(2006), 329 334 LORENTZIAN MATRIX MULTIPLICATION AND THE MOTIONS ON LORENTZIAN PLANE Halı t Gündoğan and Osman Keçı lı oğlu Kırıkkale University, Turkey Abstract. In this

More information

Some Geometric Applications of Timelike Quaternions

Some Geometric Applications of Timelike Quaternions Some Geometric Applications of Timelike Quaternions M. Özdemir, A.A. Ergin Department of Mathematics, Akdeniz University, 07058-Antalya, Turkey mozdemir@akdeniz.edu.tr, aaergin@akdeniz.edu.tr Abstract

More information

PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE

PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE S. IZUMIYA, A. C. NABARRO AND A. J. SACRAMENTO Abstract. In this paper we introduce the notion of

More information

Geometry of Cylindrical Curves over Plane Curves

Geometry of Cylindrical Curves over Plane Curves Applied Mathematical Sciences, Vol 9, 015, no 113, 5637-5649 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/ams01556456 Geometry of Cylindrical Curves over Plane Curves Georgi Hristov Georgiev, Radostina

More information

On T-slant, N-slant and B-slant Helices in Pseudo-Galilean Space G 1 3

On T-slant, N-slant and B-slant Helices in Pseudo-Galilean Space G 1 3 Filomat :1 (018), 45 5 https://doiorg/1098/fil180145o Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat On T-slant, N-slant and B-slant

More information

CHARACTERIZATION OF TOTALLY GEODESIC SUBMANIFOLDS IN TERMS OF FRENET CURVES HIROMASA TANABE. Received October 4, 2005; revised October 26, 2005

CHARACTERIZATION OF TOTALLY GEODESIC SUBMANIFOLDS IN TERMS OF FRENET CURVES HIROMASA TANABE. Received October 4, 2005; revised October 26, 2005 Scientiae Mathematicae Japonicae Online, e-2005, 557 562 557 CHARACTERIZATION OF TOTALLY GEODESIC SUBMANIFOLDS IN TERMS OF FRENET CURVES HIROMASA TANABE Received October 4, 2005; revised October 26, 2005

More information

M -geodesic in [5]. The anologue of the theorem of Sivridağ and Çalışkan was given in Minkowski 3-space by Ergün

M -geodesic in [5]. The anologue of the theorem of Sivridağ and Çalışkan was given in Minkowski 3-space by Ergün Scholars Journal of Phsics Mathematics Statistics Sch. J. Phs. Math. Stat. 5; ():- Scholars Academic Scientific Publishers (SAS Publishers) (An International Publisher for Academic Scientific Resources)

More information

A Study on Motion of a Robot End-Effector Using the Curvature Theory of Dual Unit Hyperbolic Spherical Curves

A Study on Motion of a Robot End-Effector Using the Curvature Theory of Dual Unit Hyperbolic Spherical Curves Filomat 30:3 (206), 79 802 DOI 0.2298/FIL60379S Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A Study on Motion of a Robot End-Effector

More information

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a MATEMATIQKI VESNIK 65, 2 (2013), 242 249 June 2013 originalni nauqni rad research paper THE EULER THEOREM AND DUPIN INDICATRIX FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN

More information

Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair

Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair Süleyman Şenyurt, Yasin Altun, and Ceyda Cevahir Citation: AIP Conference Proceedings 76, 00045 06;

More information

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity.

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Minkowski spacetime Pham A. Quang Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Contents 1 Introduction 1 2 Minkowski spacetime 2 3 Lorentz transformations

More information

DUAL SMARANDACHE CURVES AND SMARANDACHE RULED SURFACES

DUAL SMARANDACHE CURVES AND SMARANDACHE RULED SURFACES Mathematical Sciences And Applications E-Notes Volume No pp 8 98 04) c MSAEN DUAL SMARANDACHE CURVES AND SMARANDACHE RULED SURFACES TANJU KAHRAMAN AND HASAN HÜSEYİN UĞURLU Communicated by Johann DAVIDOV)

More information

Meridian Surfaces on Rotational Hypersurfaces with Lightlike Axis in E 4 2

Meridian Surfaces on Rotational Hypersurfaces with Lightlike Axis in E 4 2 Proceedings Book of International Workshop on Theory of Submanifolds (Volume: 1 (016)) June 4, 016, Istanbul, Turkey. Editors: Nurettin Cenk Turgay, Elif Özkara Canfes, Joeri Van der Veken and Cornelia-Livia

More information

On bounded and unbounded curves in Euclidean space

On bounded and unbounded curves in Euclidean space On bounded and unbounded curves in Euclidean space Oleg Zubelevich Abstract. We provide sufficient conditions for curves in R 3 to be unbounded in terms of its curvature and torsion. We present as well

More information

8. THE FARY-MILNOR THEOREM

8. THE FARY-MILNOR THEOREM Math 501 - Differential Geometry Herman Gluck Tuesday April 17, 2012 8. THE FARY-MILNOR THEOREM The curvature of a smooth curve in 3-space is 0 by definition, and its integral w.r.t. arc length, (s) ds,

More information

SPLIT QUATERNIONS AND SPACELIKE CONSTANT SLOPE SURFACES IN MINKOWSKI 3-SPACE

SPLIT QUATERNIONS AND SPACELIKE CONSTANT SLOPE SURFACES IN MINKOWSKI 3-SPACE INTERNATIONAL JOURNAL OF GEOMETRY Vol. (13), No. 1, 3-33 SPLIT QUATERNIONS AND SPACELIKE CONSTANT SLOPE SURFACES IN MINKOWSKI 3-SPACE MURAT BABAARSLAN AND YUSUF YAYLI Abstract. A spacelike surface in the

More information

ON THE DETERMINATION OF A DEVELOPABLE TIMELIKE RULED SURFACE. Mustafa KAZAZ, Ali ÖZDEMİR, Tuba GÜROĞLU

ON THE DETERMINATION OF A DEVELOPABLE TIMELIKE RULED SURFACE. Mustafa KAZAZ, Ali ÖZDEMİR, Tuba GÜROĞLU SDÜ FEN EDEBİYAT FAKÜLTESİ FEN DERGİSİ (E-DERGİ). 008, (), 7-79 ON THE DETERMINATION OF A DEVELOPABLE TIMELIKE RULED SURFACE Mustafa KAZAZ, Ali ÖZDEMİR, Tuba GÜROĞLU Department of Mathematics, Faculty

More information

Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3

Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3 Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3 Osmar Aléssio Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP

More information

A Note About the Torsion of Null Curves in the 3-Dimensional Minkowski Spacetime and the Schwarzian Derivative

A Note About the Torsion of Null Curves in the 3-Dimensional Minkowski Spacetime and the Schwarzian Derivative Filomat 9:3 05), 553 56 DOI 0.98/FIL503553O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A Note About the Torsion of Null Curves

More information

arxiv: v1 [math.dg] 22 Aug 2015

arxiv: v1 [math.dg] 22 Aug 2015 arxiv:1508.05439v1 [math.dg] 22 Aug 2015 ON CHARACTERISTIC CURVES OF DEVELOPABLE SURFACES IN EUCLIDEAN 3-SPACE FATIH DOĞAN Abstract. We investigate the relationship among characteristic curves on developable

More information

ON BOUNDEDNESS OF THE CURVE GIVEN BY ITS CURVATURE AND TORSION

ON BOUNDEDNESS OF THE CURVE GIVEN BY ITS CURVATURE AND TORSION ON BOUNDEDNESS OF THE CURVE GIVEN BY ITS CURVATURE AND TORSION OLEG ZUBELEVICH DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA, 9899, MOSCOW,

More information

Available online at J. Math. Comput. Sci. 6 (2016), No. 5, ISSN:

Available online at   J. Math. Comput. Sci. 6 (2016), No. 5, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 6 (2016), No. 5, 706-711 ISSN: 1927-5307 DARBOUX ROTATION AXIS OF A NULL CURVE IN MINKOWSKI 3-SPACE SEMRA KAYA NURKAN, MURAT KEMAL KARACAN, YILMAZ

More information

On the dual Bishop Darboux rotation axis of the dual space curve

On the dual Bishop Darboux rotation axis of the dual space curve On the dual Bishop Darboux rotation axis of the dual space curve Murat Kemal Karacan, Bahaddin Bukcu and Nural Yuksel Abstract. In this paper, the Dual Bishop Darboux rotation axis for dual space curve

More information

is constant [3]. In a recent work, T. IKAWA proved the following theorem for helices on a Lorentzian submanifold [1].

is constant [3]. In a recent work, T. IKAWA proved the following theorem for helices on a Lorentzian submanifold [1]. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLVI, s.i a, Matematică, 2000, f.2. ON GENERAL HELICES AND SUBMANIFOLDS OF AN INDEFINITE RIEMANNIAN MANIFOLD BY N. EKMEKCI Introduction. A regular

More information

INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3

INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3 TWMS J. App. Eng. Math. V.6, N.2, 2016, pp. 175-184 INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3 HANDAN ÖZTEKIN 1, HÜLYA GÜN BOZOK 2, Abstract. In this paper,

More information

On Indefinite Almost Paracontact Metric Manifold

On Indefinite Almost Paracontact Metric Manifold International Mathematical Forum, Vol. 6, 2011, no. 22, 1071-1078 On Indefinite Almost Paracontact Metric Manifold K. P. Pandey Department of Applied Mathematics Madhav Proudyogiki Mahavidyalaya Bhopal,

More information

Normal Curvature, Geodesic Curvature and Gauss Formulas

Normal Curvature, Geodesic Curvature and Gauss Formulas Title Normal Curvature, Geodesic Curvature and Gauss Formulas MATH 2040 December 20, 2016 MATH 2040 Normal and Geodesic Curvature December 20, 2016 1 / 12 Readings Readings Readings: 4.4 MATH 2040 Normal

More information

Geometric Modelling Summer 2016

Geometric Modelling Summer 2016 Geometric Modelling Summer 2016 Exercises Benjamin Karer M.Sc. http://gfx.uni-kl.de/~gm Benjamin Karer M.Sc. Geometric Modelling Summer 2016 1 Dierential Geometry Benjamin Karer M.Sc. Geometric Modelling

More information

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction ACTA MATHEMATICA VIETNAMICA 205 Volume 29, Number 2, 2004, pp. 205-216 GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE HANDAN BALGETIR AND MAHMUT ERGÜT Abstract. In this paper, we define

More information

THE CHARACTERIZATIONS OF GENERAL HELICES IN THE 3-DIMEMSIONAL PSEUDO-GALILEAN SPACE

THE CHARACTERIZATIONS OF GENERAL HELICES IN THE 3-DIMEMSIONAL PSEUDO-GALILEAN SPACE SOOCHOW JOURNAL OF MATHEMATICS Volume 31, No. 3, pp. 441-447, July 2005 THE CHARACTERIZATIONS OF GENERAL HELICES IN THE 3-DIMEMSIONAL PSEUDO-GALILEAN SPACE BY MEHMET BEKTAŞ Abstract. T. Ikawa obtained

More information

Contents. 1. Introduction

Contents. 1. Introduction FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES KAIXIN WANG Abstract. In this expository paper, we present the fundamental theorem of the local theory of curves along with a detailed proof. We first

More information

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE International lectronic Journal of eometry Volume 7 No 2 pp 61-71 (2014) c IJ TH DARBOUX TRIHDRONS OF RULAR CURVS ON A RULAR SURFAC MRAH TUNÇ AND MİN OZYILMAZ (Communicated by Levent KULA) Abstract In

More information

THE FUNDAMENTAL THEOREM OF SPACE CURVES

THE FUNDAMENTAL THEOREM OF SPACE CURVES THE FUNDAMENTAL THEOREM OF SPACE CURVES JOSHUA CRUZ Abstract. In this paper, we show that curves in R 3 can be uniquely generated by their curvature and torsion. By finding conditions that guarantee the

More information

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric.

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric. DIFFERENTIAL GEOMETRY HW 4 CLAY SHONKWILER Show that a catenoid and helicoid are locally isometric. 3 Proof. Let X(u, v) = (a cosh v cos u, a cosh v sin u, av) be the parametrization of the catenoid and

More information