arxiv: v1 [math.nt] 26 Jun 2015

Size: px
Start display at page:

Download "arxiv: v1 [math.nt] 26 Jun 2015"

Transcription

1 A -DIGITAL BINOMIAL THEOREM TOUFIK MANSOUR AND HIEU D. NGUYEN arxiv: v1 [math.nt] 26 Jun 2015 Abstract. We present a multivariable generalization of the digital binomial theorem from which a -analog is derived as a special case. 1. Introduction The classical binomial theorem is amportant fundamental result in mathematics: n ( n (x+y n x y n. 0 In 2006, Callan [5] found a digital version of the binomial theorem (see also [8] and one of us [9] recently found a non-binary extension of Callan s result. Theorem 1 (digital binomial theorem [5, 8]. Let n be a non-negative integer. Then (x+y s(n x s(m y s(n m. (1 (m,n m carry-free In (1, s(m denotes the binary sum-of-digits function. Moreover, a pair of non-negative integers (j, is said to be carry-free if their sum in binary involves no carries. In this paper, we establish a -analog of the digital binomial theorem: Theorem 2 (-digital binomial theorem. Let n be a non-negative integer with binary expansion n n 2 + +n Then ( x+ i y + 1 (m,n m carry-free zn(m x s(m y s(n m. (2 In (2, z n (m is a function that counts (in a weighted manner those digits in the N-bit binary expansion of m that are less than the corresponding digits of n (see Definition 7. In the special case where n 2 N 1, euation (2 simplifies to n (x+y(x+y (x+ y zn(m x s(m y s(n m. (3 Date: Mathematics Subject Classification. Primary 11B65; Secondary 28A80. Key words and phrases. binomial theorem, Sierpińsi matrix, sum-of-digits, -binomial coefficient. 1

2 Observe that (3 is a variation of the well-nown terminating -binomial theorem attributed to H. A. Rothe [10] (see [2, Cor (c, p. 490] or [3, E. 1.13, p. 15]: N ( N (x+y(x+y (x+ y ( 1/2 x N y, (4 0 where ( N denotes the -binomial coefficient given by (see [1, Def. 3.1, p. 35] or [6, Exercise 1.2, p. 24] ( N (1 N (1 (1 N +1 (1 (1 2 (1 for 0 N. As an application, we set x 1 in both (3 and (4 and euate coefficients corresponding to lie powers of y to obtain the following formula for -binomial coefficients: Theorem 3. For any 0 N, ( 1/2 ( N s(m zn(n m. (5 For example, if N 3 so that n 2 N 1 7, then we obtain from (5 nown values for the -binomial coefficients ( 3 z7(7 1 0 ( 3 z7(6 + z7(5 + z7( ( (z 7(4 + z7(2 + z7(1 1 ( ( z 7(0 1. Other identities can be derived from (3 as follows: 1. Setting x y 1, we obtain n zn(m 2(1+ ( Differentiating respect to x and setting x y 1, we obtain n Then setting 1 gives s(m zn(m 2(1+ ( i. n s(m N 2. 2 j0

3 3. Differentiating respect to and setting 1, we obtain n ( N z m (mx s(m y s(n m y(x+y. 2 We shall derive Theorem 2 as a special case of the following multivariable generalization of the digital binomial theorem, which extends the main result in [9]. Our notation for the generalized binomial coefficients appearing in (6 is given Definition 8. Theorem 4. Let n be a non-negative integer with base b expansion n n b + +n 0 b 0. Then ( xi +y i ;r i ( ( xi ;r i ( yi ;r i, (6 m i 0 m b n where m m b + +m 0 b 0 and m b n denotes the fact that each digit of m is less or eual to each corresponding digit of n base b (see Definition 6. In particular, Theorem 2 now follows by setting b 2, x i x, y i i y, and r i 1 in (6. By maing the substitutions x i p i x, y i i y, and r i r in (6, we also obtain the following three-parameter version of the digital binomial theorem. Theorem 5. Let n be a non-negative integer with base b expansion n n b + +n 0 b 0. Then ( p i x+ i y;r ( ( p i x;r ( i y;r, (7 m i m i where m m b + +m 0 b 0. 0 m b n The proof of Theorem 4 will be given Section 2, where we develop a multivariable generalization of the Sierpińsi matrix and use its multiplicative property to derive (6. m i 2. Multivariable Sierpinsi Matrices We begin with some preliminary definitions and assume throughout this paper that b is anteger greater than 1. Our first definitionvolves the notion of digital dominance (see [4, 9]. Definition 6. Let m and n be non-negative integers with base b expansions m m b + +m 0 b 0 and n n b + +n 0 b 0, respectively. We denote m b n to mean that m is digitally less than n base b, i.e., m n for all 0,...,N 1. Observe that m digitally less than s euivalent to the pair (m,n m being carry-free, i.e., the sum of m and n m involves no carries when performed in base b. This is also euivalent to the euality (see [4] s b (m+s b (n m s b (n, where s b (m is the base b sum-of-digits function. Definition 7. Let m and n be non-negative integers and assume m b n. We define z n (m;b 0 3 (1 δ(n,m, (8

4 where δ is the Kronecer delta function: δ(i,j 1 if i j; otherwise, δ(i,j 0. NOTE: If b 2 (binary, we denote z n (m : z n (m;2. Definition 8. We define the generalized binomial coefficient ( x;r d by ( x;r x(x+r (x+(d 1r, (9 d d! where we set ( x;r 1. 0 Observe that if r 1, then ( ( x;1 d gives the ordinary binomial coefficient x+d 1. The following identity will be useful later in our paper. Lemma 9. Let p and be non-negative integers with p. Then p ( ( ( x;r y;r x+y;r. (10 p v v p v Proof. This identity can be obtained as a special case of the Chu-Vandemonde convolution formula for ordinary binomial coefficients (see [7, E. (3, p. 84] or [9, Lemma 7]: p ( ( ( x+p v 1 y +v 1 x+y +p 1. (11 p v v p v It suffices to mae the change of variables x x/r and y y/r in (11 and use the relation ( x/r +d 1 1 ( x;r d r d d to obtain (10. Next, we define a multivariable analog of the Sierpińsi matrix. Definition 10. Let N be a non-negative integer. Denote x N (x 0,...,x and r N (r 0,...,r. For N > 0, we define the N-variable Sierpińsi matrix of dimension b N b N by α N (j,,x N,r N S b,n (x N,r N (α N (j,,x N,r N ( xi ;r i if 0 j b N 1 d i and b j; 0, otherwise, where j d 0 b 0 +d 1 b d b is the base-b expansion of j. If N 0, we set S b,0 (x 0,r 0 1. The following lemma gives a recurrence for S b,n (x N,r N. 4 d (12

5 Lemma 11. The Sierpińsi matrix S b,n (x N,r N satisfies the recurrence where we define S b,1 (x,r S b,n+1 (x N+1,r N+1 S b,1 (x N,r N S b,n (x N,r N, ( ( x;r (. x;r ( x;r b 2 b 3 1 ( x;r ( x;r ( x;r b 1 { ( x;r j, if 0 j b 1; 0, otherwise. Proof. We argue by induction on N. The recurrence clearly holds for N 0. Next, assume that the recurrence holds for arbitraryn. We shall prove that the recurrence holds for N+1. Since S N+1 (x N+1,r N+1 is a suare matrix of size b N+1, we can write it as a b b matrix of blocs (A p, 0 p, b 1, that is A 0,0... A 0,b 1 S N+1 (x N+1,r N , A b 1,0... A b 1,b 1 where each A p, is a suare matrix of size b N. Let A p, be an arbitrary bloc. We consider two cases: Case 1. p <. Then by definition of S b,n+1 (x N,r N we have that A p, 0. Case 2. p. Let α N+1 (j,,x N,r N be an arbitrary entry of A p,. Then pb N j (p + 1b N 1 and b N ( + 1b N 1. Set j j pb N and b N. If j <, then α N+1 (j,,x N,r N 0 by definition. Therefore, assume j. Let j d 0 b 0 +d 1 b 1 + +d N b N, where d N p. Then j d 0 b 0 +d 1 b 1 + +d b. Since b j if and only if b j, it follows that N α N+1 (j,,x N+1,r N+1 0 otherwise. ( xn ;r N α b,n (j,,x N,r N. d N ( xi ;r i d i if 0 j b N+1 1 and b j; Thus, ( xn ;r N A p, S b,n (x N,r N, p (14 or euivalently, S b,n+1 (x N+1,r N+1 S b,1 (x N,r N S b,n (x N,r N. We now demonstrate that our Sierpińsi matrices are multiplicative. Theorem 12. Let N be a non-negative integer. Then where we define S b,n (x N,r N S b,n (y N,r N S b,n (x N +y N,r N, (15 x N +y N (x 0 +y 0,x 1 +y 1,...,x +y. 5

6 Proof. We argue by induction on N. By definition, (15 clearly holds for N 0. For N 1, let β(j, denote the (j,-entry of T S b,1 (x 1,r 1 S b,1 (y 1,r 1. Since T is lower-triangular, we have that β(j, 0 if j <. Therefore, we assume j. Then β(j, j i which follows from Lemma 9. Thus, ( x0 ;r 0 j i ( y0 ;r 0 i ( x0 +y 0 ;r 0 j S b,1 (x 1,r 1 S b,1 (y 1,r 1 S b,1 (x 1 +y 1,r 1,, (16 which shows that (15 holds for N 1. Next, assume that (15 holds for arbitrary N. We intend to prove that (15 holds for N +1. By Lemma 11 and the mixed-property of a Kronecer product, we have S b,n+1 (x N+1,r N+1 S b,n+1 (y N+1,r N+1 (S b,1 (x N,r N S b,n (x N,r N (S b,1 (y N,r N S b,n (y N,r N (S b,1 (x N,r N S b,1 (y N,r N (S b,n (x N,r N S b,n (y N,r N. Hence, by the induction hypothesis and Lemma 11 again, we obtain This proves that (15 holds for N +1. S b,n+1 (x N+1,r N+1 S b,n+1 (y N+1,r N+1 S b,1 (x N +y N,r N S b,n (x N +y N,r N S b,n+1 (x N+1 +y N+1,r N+1. Proof of Theorem 4. We euate the matrix entries at position (n,0 in both sides of (15 to obtain ( ( xi ;r i ( yi ;r i ( xi +y i ;r i. m i m i 0 m b n It remains to switch the roles of x and y to obtain (6 as desired. Proof of Theorem 2. We set b 2, x i x, y i i y, and r i 1 in (6 to obtain ( ( x+ i y + 1 ( x+mi 1 ( i y + m i 1. m i (m,n m carry-free Observe that since the digits m i and can only tae on the values 0 or 1 with m i, we have ( x+mi 1 x m i x s(m and where m i m i ( i y + m i 1 C y s(n m, m i C i( m i z n (m. 6

7 It follows that This proves (2. ( x+ i y + 1 (m,n m carry-free zn(m x s(m y s(n m. We conclude by observing that many other variations of euation (3 can be obtained by maing appropriate substitutions for the variables in Theorems 2 and 4. For example, euation (3 can be extended to obtain a p,-analog of the digital binomial theorem by replacing y with yp 1 N, with p, and then multiplying through by p (N/2 : n (p x+y(p N 2 x+y (x+ y p wn(m zn(m x s(m y s(n m. Here, w n (m (N 1δ(n,m (N 1s(m z n (n m 0 is a reverse-weighted sum of the positions of the digit 1 in the N-bit binary expansion of m. References [1] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, [2] G. E. Andrews, R. Asey, R. Roy, Special Functions, Cambridge University Press, [3] R. Asey, A brief introduction to the world of, Symmetries and Integrability of Difference Euations, D. Levi, L. Vinet and P. Winternitz (editors, CRM Proceedings and Lecture Notes, Amer. Math. Soc., [4] T. Ball, T. Edgar, and D. Juda, Dominance orders, generalized binomial coefficients, and Kummer s theorem, Math. Mag. 87 (2014, [5] D. Callan, Sierpinsi s triangle and the Prouhet-Thue-Morse word, preprint, [6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, Vol. 96, Cambridge University Press, [7] H. W. Gould, Some generalizations of Vandermonde s convolution, Amer. Math. Monthly 63 (1956, [8] H. D. Nguyen, A digital binomial theorem, preprint, [9] H. D. Nguyen, A generalization of the digital binomial theorem, J. Integer Se. 18 (2015, Article [10] H. A. Rothe, Systematisches Lehrbuch der Arithmeti, Leipzig, Department of Mathematics, University of Haifa, Haifa, Israel address: toufi@math.haifa.ac.il Department of Mathematics, Rowan University, Glassboro, NJ, USA address: nguyen@rowan.edu 7

Two finite forms of Watson s quintuple product identity and matrix inversion

Two finite forms of Watson s quintuple product identity and matrix inversion Two finite forms of Watson s uintuple product identity and matrix inversion X. Ma Department of Mathematics SuZhou University, SuZhou 215006, P.R.China Submitted: Jan 24, 2006; Accepted: May 27, 2006;

More information

AN ALGEBRAIC INTERPRETATION OF THE q-binomial COEFFICIENTS. Michael Braun

AN ALGEBRAIC INTERPRETATION OF THE q-binomial COEFFICIENTS. Michael Braun International Electronic Journal of Algebra Volume 6 (2009) 23-30 AN ALGEBRAIC INTERPRETATION OF THE -BINOMIAL COEFFICIENTS Michael Braun Received: 28 February 2008; Revised: 2 March 2009 Communicated

More information

Sierpinski's Triangle and the Prouhet-Thue-Morse Word DAVID CALLAN. Department of Statistics University Ave. November 18, 2006.

Sierpinski's Triangle and the Prouhet-Thue-Morse Word DAVID CALLAN. Department of Statistics University Ave. November 18, 2006. Sierpinski's Triangle and the Prouhet-Thue-Morse Word DAVID CALLAN Department of Statistics University of Wisconsin-Madison 300 University Ave Madison, WI 53706-532 callan@stat.wisc.edu November 8, 2006

More information

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China Ramanuan J. 40(2016, no. 3, 511-533. CONGRUENCES INVOLVING g n (x n ( n 2 ( 2 0 x Zhi-Wei Sun Deartment of Mathematics, Naning University Naning 210093, Peole s Reublic of China zwsun@nu.edu.cn htt://math.nu.edu.cn/

More information

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES ABDUL HASSEN AND HIEU D. NGUYEN Abstract. There are two analytic approaches to Bernoulli polynomials B n(x): either by way of the generating function

More information

On integral representations of q-gamma and q beta functions

On integral representations of q-gamma and q beta functions On integral representations of -gamma and beta functions arxiv:math/3232v [math.qa] 4 Feb 23 Alberto De Sole, Victor G. Kac Department of Mathematics, MIT 77 Massachusetts Avenue, Cambridge, MA 239, USA

More information

Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers

Generalized Akiyama-Tanigawa Algorithm for Hypersums of Powers of Integers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 16 (2013, Article 1332 Generalized Aiyama-Tanigawa Algorithm for Hypersums of Powers of Integers José Luis Cereceda Distrito Telefónica, Edificio Este

More information

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM q-hypergeometric PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM S OLE WARNAAR Abstract We present alternative, q-hypergeometric

More information

q-pell Sequences and Two Identities of V. A. Lebesgue

q-pell Sequences and Two Identities of V. A. Lebesgue -Pell Seuences and Two Identities of V. A. Lebesgue José Plínio O. Santos IMECC, UNICAMP C.P. 6065, 13081-970, Campinas, Sao Paulo, Brazil Andrew V. Sills Department of Mathematics, Pennsylvania State

More information

arxiv: v2 [math.co] 17 Mar 2016

arxiv: v2 [math.co] 17 Mar 2016 COUNTING ZERO KERNEL PAIRS OVER A FINITE FIELD SAMRITH RAM arxiv:1509.08053v2 [math.co] 17 Mar 2016 Abstract. Helmke et al. have recently given a formula for the number of reachable pairs of matrices over

More information

NOTES Edited by Sergei Tabachnikov. Probabilistic Proofs of a Binomial Identity, Its Inverse, and Generalizations

NOTES Edited by Sergei Tabachnikov. Probabilistic Proofs of a Binomial Identity, Its Inverse, and Generalizations NOTES Edited by Sergei Tabachniov Probabilistic Proofs of a Binomial Identity, Its Inverse, and Generalizations Michael Z Spivey Abstract We give elementary probabilistic proofs of a binomial identity,

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

Linear Recurrence Relations for Sums of Products of Two Terms

Linear Recurrence Relations for Sums of Products of Two Terms Linear Recurrence Relations for Sums of Products of Two Terms Yan-Ping Mu College of Science, Tianjin University of Technology Tianjin 300384, P.R. China yanping.mu@gmail.com Submitted: Dec 27, 2010; Accepted:

More information

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS MIN-JOO JANG AND JEREMY LOVEJOY Abstract. We prove several combinatorial identities involving overpartitions whose smallest parts are even. These

More information

= (q) M+N (q) M (q) N

= (q) M+N (q) M (q) N A OVERPARTITIO AALOGUE OF THE -BIOMIAL COEFFICIETS JEHAE DOUSSE AD BYUGCHA KIM Abstract We define an overpartition analogue of Gaussian polynomials (also known as -binomial coefficients) as a generating

More information

EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS

EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS EVALUATION OF A FAMILY OF BINOMIAL DETERMINANTS CHARLES HELOU AND JAMES A SELLERS Abstract Motivated by a recent work about finite sequences where the n-th term is bounded by n, we evaluate some classes

More information

Two truncated identities of Gauss

Two truncated identities of Gauss Two truncated identities of Gauss Victor J W Guo 1 and Jiang Zeng 2 1 Department of Mathematics, East China Normal University, Shanghai 200062, People s Republic of China jwguo@mathecnueducn, http://mathecnueducn/~jwguo

More information

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS GEORGE E ANDREWS 1 AND S OLE WARNAAR 2 Abstract An empirical exploration of five of Ramanujan s intriguing false theta function identities leads to unexpected

More information

arxiv: v5 [math.nt] 23 May 2017

arxiv: v5 [math.nt] 23 May 2017 TWO ANALOGS OF THUE-MORSE SEQUENCE arxiv:1603.04434v5 [math.nt] 23 May 2017 VLADIMIR SHEVELEV Abstract. We introduce and study two analogs of one of the best known sequence in Mathematics : Thue-Morse

More information

Enumerating Binary Strings

Enumerating Binary Strings International Mathematical Forum, Vol. 7, 2012, no. 38, 1865-1876 Enumerating Binary Strings without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University Melbourne,

More information

arxiv:math/ v1 [math.co] 13 Jul 2005

arxiv:math/ v1 [math.co] 13 Jul 2005 A NEW PROOF OF THE REFINED ALTERNATING SIGN MATRIX THEOREM arxiv:math/0507270v1 [math.co] 13 Jul 2005 Ilse Fischer Fakultät für Mathematik, Universität Wien Nordbergstrasse 15, A-1090 Wien, Austria E-mail:

More information

Applicable Analysis and Discrete Mathematics available online at ABEL S METHOD ON SUMMATION BY PARTS.

Applicable Analysis and Discrete Mathematics available online at   ABEL S METHOD ON SUMMATION BY PARTS. Applicable Analysis and Discrete Mathematics available online at http://pefmathetfrs Appl Anal Discrete Math 4 010), 54 65 doi:1098/aadm1000006c ABEL S METHOD ON SUMMATION BY PARTS AND BALANCED -SERIES

More information

ON THE NUMBER OF HYPER m-ary PARTITIONS. Tom Edgar Department of Mathematics, Pacific Lutheran University, Tacoma, Washington

ON THE NUMBER OF HYPER m-ary PARTITIONS. Tom Edgar Department of Mathematics, Pacific Lutheran University, Tacoma, Washington #A47 INTEGERS 18 (2018) ON THE NUMBER OF HPER m-ar PARTITIONS Tom Edgar Department of Mathematics, Pacific Lutheran University, Tacoma, Washington edgartj@plu.edu.edu Received: 8/11/17, Accepted: 5/13/18,

More information

arxiv: v1 [math.ca] 17 Feb 2017

arxiv: v1 [math.ca] 17 Feb 2017 GENERALIZED STIELTJES CONSTANTS AND INTEGRALS INVOLVING THE LOG-LOG FUNCTION: KUMMER S THEOREM IN ACTION OMRAN KOUBA arxiv:7549v [mathca] 7 Feb 7 Abstract In this note, we recall Kummer s Fourier series

More information

On q-series Identities Arising from Lecture Hall Partitions

On q-series Identities Arising from Lecture Hall Partitions On q-series Identities Arising from Lecture Hall Partitions George E. Andrews 1 Mathematics Department, The Pennsylvania State University, University Par, PA 16802, USA andrews@math.psu.edu Sylvie Corteel

More information

arxiv: v1 [math.nt] 10 Dec 2014

arxiv: v1 [math.nt] 10 Dec 2014 A DIGITAL BINOMIAL THEOREM HIEU D. NGUYEN arxiv:42.38v [math.nt] 0 Dec 204 Abstract. We preset a triagle of coectios betwee the Sierpisi triagle, the sum-of-digits fuctio, ad the Biomial Theorem via a

More information

Hankel Operators plus Orthogonal Polynomials. Yield Combinatorial Identities

Hankel Operators plus Orthogonal Polynomials. Yield Combinatorial Identities Hanel Operators plus Orthogonal Polynomials Yield Combinatorial Identities E. A. Herman, Grinnell College Abstract: A Hanel operator H [h i+j ] can be factored as H MM, where M maps a space of L functions

More information

arxiv: v1 [math.ds] 5 Oct 2014

arxiv: v1 [math.ds] 5 Oct 2014 NEW APPROXIMATIONS FOR THE AREA OF THE MANDELBROT SET DANIEL BITTNER, LONG CHEONG, DANTE GATES, AND HIEU D. NGUYEN arxiv:1410.11v1 [math.ds 5 Oct 014 Abstract. Due to its fractal nature, much about the

More information

arxiv: v1 [math.ca] 7 Mar 2013

arxiv: v1 [math.ca] 7 Mar 2013 A SIMPLE PROOF OF ANDREWS S 5 F 4 EVALUATION IRA M. GESSEL arxiv:1303.1757v1 [math.ca] 7 Mar 2013 Department of Mathematics Brandeis University Waltham, MA 02453 gessel@brandeis.edu Abstract. We give a

More information

arxiv: v1 [math.nt] 27 May 2014

arxiv: v1 [math.nt] 27 May 2014 A MIXING OF PROUHET-THUE-MORSE SEQUENCES AND RADEMACHER FUNCTIONS HIEU D. NGUYEN arxiv:1405.6958v1 [math.nt] 7 May 014 Abstract. A novel generalization of the Prouhet-Thue-Morse sequence to binary ±1-weight

More information

A q-analogue OF THE GENERALIZED FACTORIAL NUMBERS

A q-analogue OF THE GENERALIZED FACTORIAL NUMBERS J. Korean Math. Soc. 47 (2010), No. 3, pp. 645 657 DOI 10.4134/JKMS.2010.47.3.645 A q-analogue OF THE GENERALIZED FACTORIAL NUMBERS Seok-Zun Song, Gi-Sang Cheon, Young-Bae Jun, and LeRoy B. Beasley Abstract.

More information

Refining the Stern Diatomic Sequence

Refining the Stern Diatomic Sequence Refining the Stern Diatomic Sequence Richard P. Stanley Massachusetts Institute of Technology Cambridge, MA 0139-4307 Herbert S. Wilf University of Pennsylvania Philadelphia, PA 19104-6395

More information

CHAPTER 3 Further properties of splines and B-splines

CHAPTER 3 Further properties of splines and B-splines CHAPTER 3 Further properties of splines and B-splines In Chapter 2 we established some of the most elementary properties of B-splines. In this chapter our focus is on the question What kind of functions

More information

THREE IDENTITIES BETWEEN STIRLING NUMBERS AND THE STABILIZING CHARACTER SEQUENCE

THREE IDENTITIES BETWEEN STIRLING NUMBERS AND THE STABILIZING CHARACTER SEQUENCE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 60, October 1976 THREE IDENTITIES BETWEEN STIRLING NUMBERS AND THE STABILIZING CHARACTER SEQUENCE MICHAEL GILPIN Abstract. Let x denote the stabilizing

More information

Some Congruences for the Partial Bell Polynomials

Some Congruences for the Partial Bell Polynomials 3 47 6 3 Journal of Integer Seuences, Vol. 009), Article 09.4. Some Congruences for the Partial Bell Polynomials Miloud Mihoubi University of Science and Technology Houari Boumediene Faculty of Mathematics

More information

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava NEW ZEALAND JOURNAL OF MATHEMATICS Volume 36 (2007), 287 294 MOCK THETA FUNCTIONS AND THETA FUNCTIONS Bhaskar Srivastava (Received August 2004). Introduction In his last letter to Hardy, Ramanujan gave

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

Transformations Preserving the Hankel Transform

Transformations Preserving the Hankel Transform 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol 10 (2007), Article 0773 Transformations Preserving the Hankel Transform Christopher French Department of Mathematics and Statistics Grinnell College Grinnell,

More information

arxiv: v4 [math.nt] 31 Jul 2017

arxiv: v4 [math.nt] 31 Jul 2017 SERIES REPRESENTATION OF POWER FUNCTION arxiv:1603.02468v4 [math.nt] 31 Jul 2017 KOLOSOV PETRO Abstract. In this paper described numerical expansion of natural-valued power function x n, in point x = x

More information

Positivity of Turán determinants for orthogonal polynomials

Positivity of Turán determinants for orthogonal polynomials Positivity of Turán determinants for orthogonal polynomials Ryszard Szwarc Abstract The orthogonal polynomials p n satisfy Turán s inequality if p 2 n (x) p n 1 (x)p n+1 (x) 0 for n 1 and for all x in

More information

SOME RESULTS ON q-analogue OF THE BERNOULLI, EULER AND FIBONACCI MATRICES

SOME RESULTS ON q-analogue OF THE BERNOULLI, EULER AND FIBONACCI MATRICES SOME RESULTS ON -ANALOGUE OF THE BERNOULLI, EULER AND FIBONACCI MATRICES GERALDINE M. INFANTE, JOSÉ L. RAMÍREZ and ADEM ŞAHİN Communicated by Alexandru Zaharescu In this article, we study -analogues of

More information

Doppler Tolerance, Complementary Code Sets and Generalized Thue-Morse Sequences

Doppler Tolerance, Complementary Code Sets and Generalized Thue-Morse Sequences Doppler Tolerance, Complementary Code Sets and Generalized Thue-Morse Sequences Hieu D. Nguyen Department of Mathematics, Rowan University, Glassboro, NJ Gregory E. Coxson Naval Research Laboratory, Washington

More information

The Gaussian coefficient revisited

The Gaussian coefficient revisited The Gaussian coefficient revisited Richard EHRENBORG and Margaret A. READDY Abstract We give new -(1+)-analogue of the Gaussian coefficient, also now as the -binomial which, lie the original -binomial

More information

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From q-series Michael Gri th History and q-integers The idea of q-series has existed since at least Euler. In constructing the generating function for the partition function, he developed the basic idea of

More information

A Digit Reversal Property for an Analogue of Stern s Sequence

A Digit Reversal Property for an Analogue of Stern s Sequence arxiv:1709.05651v1 [math.nt] 17 Sep 2017 A Digit Reversal Property for an Analogue of Stern s Seuence Lukas Spiegelhofer Institute of Discrete Mathematics and Geometry Vienna University of Technology Wiedner

More information

RHOMBUS TILINGS OF A HEXAGON WITH TWO TRIANGLES MISSING ON THE SYMMETRY AXIS

RHOMBUS TILINGS OF A HEXAGON WITH TWO TRIANGLES MISSING ON THE SYMMETRY AXIS RHOMBUS TILINGS OF A HEXAGON WITH TWO TRIANGLES MISSING ON THE SYMMETRY AXIS THERESIA EISENKÖLBL Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. E-mail: Theresia.Eisenkoelbl@univie.ac.at

More information

arxiv: v2 [math.gn] 27 Sep 2010

arxiv: v2 [math.gn] 27 Sep 2010 THE GROUP OF ISOMETRIES OF A LOCALLY COMPACT METRIC SPACE WITH ONE END arxiv:0911.0154v2 [math.gn] 27 Sep 2010 ANTONIOS MANOUSSOS Abstract. In this note we study the dynamics of the natural evaluation

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

Newton, Fermat, and Exactly Realizable Sequences

Newton, Fermat, and Exactly Realizable Sequences 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.2 Newton, Fermat, and Exactly Realizable Sequences Bau-Sen Du Institute of Mathematics Academia Sinica Taipei 115 TAIWAN mabsdu@sinica.edu.tw

More information

arxiv: v1 [math.nt] 23 Jan 2019

arxiv: v1 [math.nt] 23 Jan 2019 SOME NEW q-congruences FOR TRUNCATED BASIC HYPERGEOMETRIC SERIES arxiv:1901.07962v1 [math.nt] 23 Jan 2019 VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER Abstract. We provide several new q-congruences for truncated

More information

Algebraic Structures of Numbers. Andrejs Treibergs. September 8, 2009

Algebraic Structures of Numbers. Andrejs Treibergs. September 8, 2009 Math 3210 2. Algebraic Structures of Numbers Andrejs Treibergs University of Utah September 8, 2009 2. Peano Axioms Here are the basic axioms for the Natural Numbers N = {1, 2, 3,...}. N1. There is an

More information

Some Combinatorial and Analytical Identities

Some Combinatorial and Analytical Identities Some Combinatorial and Analytical Identities Mourad EH Ismail Dennis Stanton November 6, 200 Abstract We give new proofs and explain the origin of several combinatorial identities of Fu and Lascoux, Dilcher,

More information

Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums

Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums Bull. Math. Soc. Sci. Math. Roumanie Tome 55(103 No. 1, 01, 51 61 Some Generalized Fibonomial Sums related with the Gaussian q Binomial sums by Emrah Kilic, Iler Aus and Hideyui Ohtsua Abstract In this

More information

arxiv: v1 [math.co] 24 Jan 2017

arxiv: v1 [math.co] 24 Jan 2017 CHARACTERIZING THE NUMBER OF COLOURED m ARY PARTITIONS MODULO m, WITH AND WITHOUT GAPS I. P. GOULDEN AND PAVEL SHULDINER arxiv:1701.07077v1 [math.co] 24 Jan 2017 Abstract. In a pair of recent papers, Andrews,

More information

k 2r n k n n k) k 2r+1 k 2r (1.1)

k 2r n k n n k) k 2r+1 k 2r (1.1) J. Number Theory 130(010, no. 1, 701 706. ON -ADIC ORDERS OF SOME BINOMIAL SUMS Hao Pan and Zhi-Wei Sun Abstract. We prove that for any nonnegative integers n and r the binomial sum ( n k r is divisible

More information

Largest Values of the Stern Sequence, Alternating Binary Expansions and Continuants

Largest Values of the Stern Sequence, Alternating Binary Expansions and Continuants 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 0 (017), Article 17..8 Largest Values of the Stern Sequence, Alternating Binary Expansions Continuants Rol Paulin Max-Planck-Institut für Mathematik Vivatsgasse

More information

ON THE SLACK EULER PAIR FOR VECTOR PARTITION

ON THE SLACK EULER PAIR FOR VECTOR PARTITION #A7 INTEGERS 18 (2018 ON THE SLACK EULER PAIR FOR VECTOR PARTITION Shishuo Fu College of Mathematics and Statistics, Chongqing University, Huxi Campus, Chongqing, P.R. China. fsshuo@cqu.edu.cn Ting Hua

More information

arxiv: v2 [math.fa] 27 Sep 2016

arxiv: v2 [math.fa] 27 Sep 2016 Decomposition of Integral Self-Affine Multi-Tiles Xiaoye Fu and Jean-Pierre Gabardo arxiv:43.335v2 [math.fa] 27 Sep 26 Abstract. In this paper we propose a method to decompose an integral self-affine Z

More information

#A31 INTEGERS 18 (2018) A NOTE ON FINITE SUMS OF PRODUCTS OF BERNSTEIN BASIS POLYNOMIALS AND HYPERGEOMETRIC POLYNOMIALS

#A31 INTEGERS 18 (2018) A NOTE ON FINITE SUMS OF PRODUCTS OF BERNSTEIN BASIS POLYNOMIALS AND HYPERGEOMETRIC POLYNOMIALS #A31 INTEGERS 18 (2018) A NOTE ON FINITE SUMS OF PRODUCTS OF BERNSTEIN BASIS POLYNOMIALS AND HYPERGEOMETRIC POLYNOMIALS Steven P. Clar Department of Finance, University of North Carolina at Charlotte,

More information

Two-boundary lattice paths and parking functions

Two-boundary lattice paths and parking functions Two-boundary lattice paths and parking functions Joseph PS Kung 1, Xinyu Sun 2, and Catherine Yan 3,4 1 Department of Mathematics, University of North Texas, Denton, TX 76203 2,3 Department of Mathematics

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 233 2010) 1554 1561 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: wwwelseviercom/locate/cam

More information

arxiv: v1 [math.nt] 4 Mar 2014

arxiv: v1 [math.nt] 4 Mar 2014 VARIATIONS ON A GENERATINGFUNCTIONAL THEME: ENUMERATING COMPOSITIONS WITH PARTS AVOIDING AN ARITHMETIC SEQUENCE arxiv:403.0665v [math.nt] 4 Mar 204 MATTHIAS BECK AND NEVILLE ROBBINS Abstract. A composition

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

arxiv: v1 [math.co] 20 Dec 2016

arxiv: v1 [math.co] 20 Dec 2016 F-POLYNOMIAL FORMULA FROM CONTINUED FRACTIONS MICHELLE RABIDEAU arxiv:1612.06845v1 [math.co] 20 Dec 2016 Abstract. For cluster algebras from surfaces, there is a known formula for cluster variables and

More information

Transformation formulas for the generalized hypergeometric function with integral parameter differences

Transformation formulas for the generalized hypergeometric function with integral parameter differences Transformation formulas for the generalized hypergeometric function with integral parameter differences A. R. Miller Formerly Professor of Mathematics at George Washington University, 66 8th Street NW,

More information

arxiv: v1 [math.cv] 11 Aug 2017

arxiv: v1 [math.cv] 11 Aug 2017 CONSTRUCTION OF TOEPLITZ MATRICES WHOSE ELEMENTS ARE THE COEFFICIENTS OF UNIVALENT FUNCTIONS ASSOCIATED WITH -DERIVATIVE OPERATOR arxiv:1708.03600v1 [math.cv] 11 Aug 017 NANJUNDAN MAGESH 1, ŞAHSENE ALTINKAYA,,

More information

Counting Peaks and Valleys in a Partition of a Set

Counting Peaks and Valleys in a Partition of a Set 1 47 6 11 Journal of Integer Sequences Vol. 1 010 Article 10.6.8 Counting Peas and Valleys in a Partition of a Set Toufi Mansour Department of Mathematics University of Haifa 1905 Haifa Israel toufi@math.haifa.ac.il

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

Combinatorial Analysis of the Geometric Series

Combinatorial Analysis of the Geometric Series Combinatorial Analysis of the Geometric Series David P. Little April 7, 205 www.math.psu.edu/dlittle Analytic Convergence of a Series The series converges analytically if and only if the sequence of partial

More information

Sequences that satisfy a(n a(n)) = 0

Sequences that satisfy a(n a(n)) = 0 Sequences that satisfy a(n a(n)) = 0 Nate Kube Frank Ruskey October 13, 2005 Abstract We explore the properties of some sequences for which a(n a(n)) = 0. Under the natural restriction that a(n) < n the

More information

Binomial coefficients and k-regular sequences

Binomial coefficients and k-regular sequences Binomial coefficients and k-regular sequences Eric Rowland Hofstra University New York Combinatorics Seminar CUNY Graduate Center, 2017 12 22 Eric Rowland Binomial coefficients and k-regular sequences

More information

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS Applicable Analysis and Discrete Mathematics, 1 (27, 371 385. Available electronically at http://pefmath.etf.bg.ac.yu A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS H. W. Gould, Jocelyn

More information

2 J. ZENG THEOREM 1. In the ring of formal power series of x the following identities hold : (1:4) 1 + X n1 =1 S q [n; ]a x n = 1 ax? aq x 2 b x? +1 x

2 J. ZENG THEOREM 1. In the ring of formal power series of x the following identities hold : (1:4) 1 + X n1 =1 S q [n; ]a x n = 1 ax? aq x 2 b x? +1 x THE q-stirling NUMBERS CONTINUED FRACTIONS AND THE q-charlier AND q-laguerre POLYNOMIALS By Jiang ZENG Abstract. We give a simple proof of the continued fraction expansions of the ordinary generating functions

More information

, when k is fixed. We give a number of results in. k q. this direction, some of which involve Eulerian polynomials and their generalizations.

, when k is fixed. We give a number of results in. k q. this direction, some of which involve Eulerian polynomials and their generalizations. SOME ASYMPTOTIC RESULTS ON -BINOMIAL COEFFICIENTS RICHARD P STANLEY AND FABRIZIO ZANELLO Abstract We loo at the asymptotic behavior of the coefficients of the -binomial coefficients or Gaussian polynomials,

More information

MATH 2030: MATRICES ,, a m1 a m2 a mn If the columns of A are the vectors a 1, a 2,...,a n ; A is represented as A 1. .

MATH 2030: MATRICES ,, a m1 a m2 a mn If the columns of A are the vectors a 1, a 2,...,a n ; A is represented as A 1. . MATH 030: MATRICES Matrix Operations We have seen how matrices and the operations on them originated from our study of linear equations In this chapter we study matrices explicitely Definition 01 A matrix

More information

Homework 10 Solution

Homework 10 Solution CS 174: Combinatorics and Discrete Probability Fall 2012 Homewor 10 Solution Problem 1. (Exercise 10.6 from MU 8 points) The problem of counting the number of solutions to a napsac instance can be defined

More information

Using q-calculus to study LDL T factorization of a certain Vandermonde matrix

Using q-calculus to study LDL T factorization of a certain Vandermonde matrix Using q-calculus to study LDL T factorization of a certain Vandermonde matrix Alexey Kuznetsov May 2, 207 Abstract We use tools from q-calculus to study LDL T decomposition of the Vandermonde matrix V

More information

Generalized Near-Bell Numbers

Generalized Near-Bell Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 12 2009, Article 09.5.7 Generalized Near-Bell Numbers Martin Griffiths Department of Mathematical Sciences University of Esse Wivenhoe Par Colchester

More information

GENERATING SERIES FOR IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

GENERATING SERIES FOR IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS GENERATING SERIES FOR IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS ARNAUD BODIN Abstract. We count the number of irreducible polynomials in several variables of a given degree over a finite field. The results

More information

The Bhargava-Adiga Summation and Partitions

The Bhargava-Adiga Summation and Partitions The Bhargava-Adiga Summation and Partitions By George E. Andrews September 12, 2016 Abstract The Bhargava-Adiga summation rivals the 1 ψ 1 summation of Ramanujan in elegance. This paper is devoted to two

More information

(q n a; q) = ( a) n q (n+1 2 ) (q/a; q)n (a; q). For convenience, we employ the following notation for multiple q-shifted factorial:

(q n a; q) = ( a) n q (n+1 2 ) (q/a; q)n (a; q). For convenience, we employ the following notation for multiple q-shifted factorial: ARCHIVUM MATHEMATICUM (BRNO) Tomus 45 (2009) 47 58 SEVERAL q-series IDENTITIES FROM THE EULER EXPANSIONS OF (a; q) AND (a;q) Zhizheng Zhang 2 and Jizhen Yang Abstract In this paper we first give several

More information

On m-ary Overpartitions

On m-ary Overpartitions On m-ary Overpartitions Øystein J. Rødseth Department of Mathematics, University of Bergen, Johs. Brunsgt. 1, N 5008 Bergen, Norway E-mail: rodseth@mi.uib.no James A. Sellers Department of Mathematics,

More information

arxiv: v1 [math.co] 22 May 2014

arxiv: v1 [math.co] 22 May 2014 Using recurrence relations to count certain elements in symmetric groups arxiv:1405.5620v1 [math.co] 22 May 2014 S.P. GLASBY Abstract. We use the fact that certain cosets of the stabilizer of points are

More information

Beukers integrals and Apéry s recurrences

Beukers integrals and Apéry s recurrences 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 (25), Article 5.. Beukers integrals and Apéry s recurrences Lalit Jain Faculty of Mathematics University of Waterloo Waterloo, Ontario N2L 3G CANADA lkjain@uwaterloo.ca

More information

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA.

ON DIVISIBILITY OF SOME POWER SUMS. Tamás Lengyel Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (007, #A4 ON DIVISIBILITY OF SOME POWER SUMS Tamás Lengyel Department of Mathematics, Occidental College, 600 Campus Road, Los Angeles, USA

More information

On Certain Sums of Stirling Numbers with Binomial Coefficients

On Certain Sums of Stirling Numbers with Binomial Coefficients 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 18 (2015, Article 15.9.6 On Certain Sums of Stirling Numbers with Binomial Coefficients H. W. Gould Department of Mathematics West Virginia University

More information

A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)!

A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)! 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3 A Combinatorial Interpretation of the Numbers 6 (2n)! /n! (n + 2)! Ira M. Gessel 1 and Guoce Xin Department of Mathematics Brandeis

More information

Applications of Riordan matrix functions to Bernoulli and Euler polynomials

Applications of Riordan matrix functions to Bernoulli and Euler polynomials Illinois Wesleyan University From the SelectedWors of Tian-Xiao He 06 Applications of Riordan matrix functions to Bernoulli and Euler polynomials Tian-Xiao He Available at: https://worsbepresscom/tian_xiao_he/78/

More information

arxiv: v2 [math.fa] 11 Nov 2016

arxiv: v2 [math.fa] 11 Nov 2016 PARTITIONS OF EQUIANGULAR TIGHT FRAMES JAMES ROSADO, HIEU D. NGUYEN, AND LEI CAO arxiv:1610.06654v [math.fa] 11 Nov 016 Abstract. We present a new efficient algorithm to construct partitions of a special

More information

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION

HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION ISSN 2066-6594 Ann Acad Rom Sci Ser Math Appl Vol 10, No 1/2018 HIGHER-ORDER DIFFERENCES AND HIGHER-ORDER PARTIAL SUMS OF EULER S PARTITION FUNCTION Mircea Merca Dedicated to Professor Mihail Megan on

More information

COMPOSITIONS WITH A FIXED NUMBER OF INVERSIONS

COMPOSITIONS WITH A FIXED NUMBER OF INVERSIONS COMPOSITIONS WITH A FIXED NUMBER OF INVERSIONS A. KNOPFMACHER, M. E. MAYS, AND S. WAGNER Abstract. A composition of the positive integer n is a representation of n as an ordered sum of positive integers

More information

On an identity of Gessel and Stanton and the new little Göllnitz identities

On an identity of Gessel and Stanton and the new little Göllnitz identities On an identity of Gessel and Stanton and the new little Göllnitz identities Carla D. Savage Dept. of Computer Science N. C. State University, Box 8206 Raleigh, NC 27695, USA savage@csc.ncsu.edu Andrew

More information

= i 0. a i q i. (1 aq i ).

= i 0. a i q i. (1 aq i ). SIEVED PARTITIO FUCTIOS AD Q-BIOMIAL COEFFICIETS Fran Garvan* and Dennis Stanton** Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved

More information

Permutations with Inversions

Permutations with Inversions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 4 2001, Article 01.2.4 Permutations with Inversions Barbara H. Margolius Cleveland State University Cleveland, Ohio 44115 Email address: b.margolius@csuohio.edu

More information

Laura Chihara* and Dennis Stanton**

Laura Chihara* and Dennis Stanton** ZEROS OF GENERALIZED KRAWTCHOUK POLYNOMIALS Laura Chihara* and Dennis Stanton** Abstract. The zeros of generalized Krawtchouk polynomials are studied. Some interlacing theorems for the zeros are given.

More information

Hypergeometric series and the Riemann zeta function

Hypergeometric series and the Riemann zeta function ACTA ARITHMETICA LXXXII.2 (997) Hypergeometric series and the Riemann zeta function by Wenchang Chu (Roma) For infinite series related to the Riemann zeta function, De Doelder [4] established numerous

More information

A NOTE ON RAMUS IDENTITY AND ASSOCIATED RECURSION RELATIONS

A NOTE ON RAMUS IDENTITY AND ASSOCIATED RECURSION RELATIONS A NOTE ON RAMUS IDENTITY AND ASSOCIATED RECURSION RELATIONS CHARLES S. KAHANE Abstract. A system of recursion relations is used to establish Ramus identity for sums of binomial coefficients in arithmetic

More information

Counting k-marked Durfee Symbols

Counting k-marked Durfee Symbols Counting k-marked Durfee Symbols Kağan Kurşungöz Department of Mathematics The Pennsylvania State University University Park PA 602 kursun@math.psu.edu Submitted: May 7 200; Accepted: Feb 5 20; Published:

More information

and the compositional inverse when it exists is A.

and the compositional inverse when it exists is A. Lecture B jacques@ucsd.edu Notation: R denotes a ring, N denotes the set of sequences of natural numbers with finite support, is a generic element of N, is the infinite zero sequence, n 0 R[[ X]] denotes

More information

arxiv: v1 [math.co] 3 Nov 2014

arxiv: v1 [math.co] 3 Nov 2014 SPARSE MATRICES DESCRIBING ITERATIONS OF INTEGER-VALUED FUNCTIONS BERND C. KELLNER arxiv:1411.0590v1 [math.co] 3 Nov 014 Abstract. We consider iterations of integer-valued functions φ, which have no fixed

More information