For Goodness Sake, Let me Examine the Evidence, Ayhan!!!

Size: px
Start display at page:

Download "For Goodness Sake, Let me Examine the Evidence, Ayhan!!!"

Transcription

1 For Goodness Sake, Let me Examine the Evidence, Ayhan!!!

2 Deformation Belts and Fracture Belts along Earthquake Ruptures: INTRODUCTION The Ayhan and Arvid Comedy Hour and a Half!!! 13 February 2006

3 Kaynaşlı, Turkey Deformation Belts Along Earthquake Ruptures Damage Structures Phenomenon of Permanent Ground Distortion in an earthquake deformation belt, essentially a static phenomenon, can also damage structures. Such belts were recognized long ago, at least as early as the 1906 San Francisco, California, earthquake by G. K. Gilbert. A few earthquake geologists are rediscovering deformation belts today. Landers, California

4 1971 San Fernando E.Q Landers E.Q.

5 The Landers Johnson Valley Fault Emerson Lake Fault Homestead Valley Fault Rupture: A collage of old faults?

6 1992 EARTHQUAKE RUPTURES AT LANDERS

7 Happy Trail Fracture Zone

8 Setting of Happy Trail Fracture Zone

9 Happy Trail Fracture Zone N N

10 Types of Fractures at Happy Trail

11 Sequence of Fracture Events at Happy Trail 1. The fracture zone originated as N-S tension cracks caused by right lateral shearing, presumably over a shear zone or fault at depth. 2. Most of the tension cracks transformed into Mode I/Mode II, complex, left-lateral fractures, also a result of shearing below. 3. Also, as the separated blocks rotated, they were jammed against the ground on either side of the shear zone, producing small thrust faults and buckles. 4. Finally, a small, narrow right-lateral shear zone or fault formed last in the Happy Trail shear zone, cutting across the tension cracks and left-lateral complex fractures.

12 Back to Nov 1999 Dücze Earthquake

13 Back to Findikli

14 We saw this earlier (in Introduction to 1999 Dücze Earthquake Rupture)

15 Rupture Belt at Findikli (same place)

16 View East below View West along Rupture Belt at Findikli

17 Now, to the Deformation Zone at Kaynaşlı Viaduct

18 Viaduct Meets Fault! 360,000 Fault November 1999 Rupture To Istanbul and Duzce Dariyeri Kaynaşlı Viaduct Mahallesi 40 15' 500 Kaynasli km Contour Interval = 50 m

19 Piers of Viaduct within Deformation Zone

20 View East. Main Rupture Pier 44 R Pier 45 L Pier 45 R Pier 46 R

21 Main Trace Under the Viaduct

22 View West. One rupture under viaduct. Two beside the viaduct. Bolu Two Ruptures One Rupture

23 View West. Pair of fractures near piers 39, 40 and 41. Bolu 39 R 40 R 41 R 41 R 39 L 40 L

24 Survey Stations on a Pier Bolu PROJECT DIRECTION

25 Adjacent Piers Form a Surveyor s Quadrilateral (view south) Bolu a b d c

26 D d 44 L Left Pier a 45 L A Bolu c 44 R Right Pier C Footing b B 45 R A Quadri- lateral of Piers

27 Calculation of Deformation within Belt beneath Viaduct

28 Strain Measurements (Points) Compared to Strain Theory (Curved Line) Quad Strain (%) Quad Azimuth ( ) Quad Strain (%) Azimuth Strain (%) Azimuth

29 Strain Magnitudes of Maximum (extension) and Minimum (compression) along Viaduct Principal Strains along Viaduct 6E-02 5E-02 Maxumum Strain 4E-02 3E-02 Quad 45 2E-02 Quad 39 1E-02 Quad 35 Quad 50 0E+00-1E E E-02-4E-02 Minimum Strain Distance from Pier 38 (in m)

30 Directions of Maximum (extension) Directions of Maximum (extension) Strain along Viaduct LEFT-LATERAL SHEAR ZONE (ELASTIC REBOUND) RIGHT-LATERAL SHEAR ZONE (PLASTIC DEFORMATION) 44 LEFT-LATERAL SHEAR ZONE (ELASTIC REBOUND) N m

31 Strains within Pier Quadrilaterals

32 Piers of Viaduct within Deformation Zone

33 Magnitude of Maximum Shear Strain as Function of Distance along the Viaduct Maxumum Shear Strain Pier Number

34 Magnitude of Shear Strain as Function Across the Viaduct Distance Normal to Fault (m) Shearing Strain Pier No.

35 Summary of Interpretations of Deformation Belt at Viaduct: The earthquake deformation belt at Kaynaşlı is ~100 m wide. The belt has a zone of LARGE DEFORMATIONS, with a maximum width of ~35 m along the south side of the belt. (The estimated width of the zone of large strains is too high because of the large spacing of piers. The actual large strains are probably much m larger and the actual zone is probably much narrower (a few m) than could be measured.) Within this zone of large deformations, a little more than half of the offset (1.15 m) occurred along the main rupture, which is perhaps 3 to 5 m wide; the rest (0.9 m) was distributed in some fashion through the rest of the 100-m wide belt. The belt has a zone of smaller, but significant strains, across 65 to 95 m of the belt. (The strains were large enough to fracture brittle soil at Landers or brittle concrete or rock, but not the soft sand and gravel of the riverbed at Kaynasli.)

36 θ Deformation Belt along 1906 San Francisco EQ Rupture. At San Andreas Reservoir, a few km south of S.F. A A z C ψ c b SAN ANDREAS RESERVOIR crack fault line N m Brick Forebay crack Details of originally circular, now roughly elliptical, brick forebay and larger fractures within deformation belt.. C x Concrete Forebay crack Line of hole Brick Forebay Fault Concrete Shaft tunnel crack B 0 10 m

37 Are the Observations of Deformation Belts Consistent with Elastic Rebound?

38 ELASTIC REBOUND THEORY We go back to the ideas of elastic rebound theory introduced, perhaps, by G. K. Gilbert (1875?;1907) and Harry Reid (1910). In their early papers, an earthquake is considered to be a result of sudden slip on a fault in elastic ground that is under high enough stress to fail. It is supposed to be a result of a stress drop at a fault.

39 Let the dashed line in the figure below represent the trace on a map of a strike-slip slip fault and the solid line represent a passive marker inscribed across the fault just before earthquake rupture. When the traction on the fault suddenly drops, the ground will shake due to radiated energy, and the ground on either side of the fault will deform elastically.

40 After the earthquake, the passive marker will appear as two deformed line segments broken by the fault. Note that the offset on the fault is right-lateral lateral,, but the deformed line indicates that the rock on either side of the fault was distorted in a left-lateral lateral sense, due to the elastic rebound.

41 Thus, the Diagrams Below Represent the Idealized Concept of Elastic Rebound

42 Supposed Corollaries of Elastic Rebound Theory There are only three causes of earthquake damage worth consideration: Shaking of structures in excess of their design capabilities (Only cause considered by most structural engineers and geophysicists). Collapse of ground beneath structures due to landsliding or liquefaction of soil generated by shaking (Most important cause considered by (Most important cause considered by geotech engrs and engineering geologists). Direct offset across a line of the fault rupture (An important, but unlikely, cause according to all three groups of professionals).

43 Sketches of our disgusting interpretations of field measurements and observations.

44 Disgusting Implications: Elastic rebound, in some form, may be a good approximation, for now, to what happens near the hypocenter. The fault (or other source) fails catastrophically, generating the earthquake waves that are so dear to seismologists. If an earthquake rupture reaches the ground surface, however, there appears to be a belt of permanent deformation on either side or on only one side of a main rupture. The sense of permanent deformation is analogous to the sense of shift on the main rupture. Outside the belt of permanent deformation, there is elastic-like like deformation. The sense is opposite that of the shift across the main rupture.

45 Ooops W. does not like this or climate change!

46 End to Introduction to Belts of Permanent Deformation

DEFORMATION ZONES ALONG STRIKE SLIP AND DIP-SLIP FAULTS. Wen-Jeng Huang. and. Arvid M. Johnson

DEFORMATION ZONES ALONG STRIKE SLIP AND DIP-SLIP FAULTS. Wen-Jeng Huang. and. Arvid M. Johnson 1 DEFORMATION ZONES ALONG STRIKE SLIP AND DIP-SLIP FAULTS 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 by Wen-Jeng Huang and Arvid M. Johnson Wen-Jeng Huang Department of Geological

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

4. Geotechnical and Geological Aspects. 4.1 Geotechnical Aspects

4. Geotechnical and Geological Aspects. 4.1 Geotechnical Aspects 4. Geotechnical and Geological Aspects 4.1 Geotechnical Aspects A preliminary reconnaissance of the geotechnical conditions of Duzce, Kaynasli, and Bolu urban areas was done during the Turkey Expedition

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Taiwan, (Sathiyam.tv)

Taiwan, (Sathiyam.tv) Taiwan, 1999. (Sathiyam.tv) This document was modified and supplemented by BYU-Idaho faculty. All illustrations are from USGS unless otherwise noted. Learning Objectives Your goals in studying this chapter

More information

Read & Learn Earthquakes & Faults

Read & Learn Earthquakes & Faults Read Earthquakes & Faults Read the provided article. Use the information in the reading to answer the questions on the task cards on your answer sheet. Make sure your answers are in the correct spot on

More information

Earthquakes and Faulting

Earthquakes and Faulting Earthquakes and Faulting Crustal Strength Profile Quakes happen in the strong, brittle layers Great San Francisco Earthquake April 18, 1906, 5:12 AM Quake lasted about 60 seconds San Francisco was devastated

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Earthquakes How and Where Earthquakes Occur

Earthquakes How and Where Earthquakes Occur Earthquakes How and Where Earthquakes Occur PPT Modified from Troy HS Is there such thing as earthquake weather? Absolutely NOT!!! Geologists believe that there is no connection between weather and earthquakes.

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

21. Earthquakes I (p ; 306)

21. Earthquakes I (p ; 306) 21. Earthquakes I (p. 296-303; 306) How many people have been killed by earthquakes in the last 4,000 years? How many people have been killed by earthquakes in the past century? What two recent earthquakes

More information

UNIT - 7 EARTHQUAKES

UNIT - 7 EARTHQUAKES UNIT - 7 EARTHQUAKES WHAT IS AN EARTHQUAKE An earthquake is a sudden motion or trembling of the Earth caused by the abrupt release of energy that is stored in rocks. Modern geologists know that most earthquakes

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 3 Understanding Earthquakes and Earthquake Hazards Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information:

More information

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength. Earthquakes Vocabulary: Stress Strain Elastic Deformation Plastic Deformation Fault Seismic Wave Primary Wave Secondary Wave Focus Epicenter Define stress and strain as they apply to rocks. Distinguish

More information

Dangerous tsunami threat off U.S. West Coast

Dangerous tsunami threat off U.S. West Coast Earthquakes Ch. 12 Dangerous tsunami threat off U.S. West Coast Earthquakes What is an Earthquake? It s the shaking and trembling of the Earth s crust due to plate movement. The plates move, rocks along

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Seismic Waves. 1. Seismic Deformation

Seismic Waves. 1. Seismic Deformation Types of Waves 1. Seismic Deformation Seismic Waves When an earthquake fault ruptures, it causes two types of deformation: static; and dynamic. Static deformation is the permanent displacement of the ground

More information

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of.

Name Date Class. radiate in all directions, carrying some of the. of plate boundaries have different usual patterns of. Chapter Outline Earthquakes CHAPTER 6 Lesson 1: Earthquakes and Plate Boundaries A. What is an earthquake? 1. A(n) is the rupture and sudden movement of rocks along a fault. A fault is a fracture surface

More information

Structural Geology and Geology Maps Lab

Structural Geology and Geology Maps Lab Structural Geology and Geology Maps Lab Mesa College Geology 101 Lab Ray Rector: Instructor Structural Geology Lab Pre-Lab Resources Pre-Lab Internet Links 1) Fundamentals of Structural Geology 2) Visualizing

More information

Apparent and True Dip

Apparent and True Dip Apparent and True Dip Cross-bedded building stone. The contact immediately below A appears to dip gently to the right, but at B, the contact appears to dip to the left. But it's not a syncline! Both of

More information

C2.2 The physics of Earthquakes

C2.2 The physics of Earthquakes C2.2 The physics of Earthquakes C2.2.1 Stress axes and faults Most earthquakes occur because of the mechanical failure on brittle faults. The type of faulting is a consequence of the stress pattern causing

More information

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment

Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard. Earthquake Environment Part 2 - Engineering Characterization of Earthquakes and Seismic Hazard Ultimately what we want is a seismic intensity measure that will allow us to quantify effect of an earthquake on a structure. S a

More information

Once you have opened the website with the link provided choose a force: Earthquakes

Once you have opened the website with the link provided choose a force: Earthquakes Name: Once you have opened the website with the link provided choose a force: Earthquakes When do earthquakes happen? On the upper left menu, choose number 1. Read What is an Earthquake? Earthquakes happen

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information.

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information. P a g e 1 Name A Fault Model Purpose: To explore the types of faults and how they affect the geosphere Background Information: A fault is an area of stress in the earth where broken rocks slide past each

More information

Chapt pt 15 er EARTHQUAKES! BFRB P 215 ages -226

Chapt pt 15 er EARTHQUAKES! BFRB P 215 ages -226 Chapter 15 EARTHQUAKES! BFRB Pages 215-226226 Earthquake causes An earthquake is the shaking of the Earth s crust caused by a release of energy The movement of the Earth s plates causes most earthquakes

More information

Earthquakes = shaking of Earth because of a rapid release of energy

Earthquakes = shaking of Earth because of a rapid release of energy There are more than 30,000 earthquakes worldwide each year! Earthquakes = shaking of Earth because of a rapid release of energy usually because of movement of tectonic plates Most earthquakes last for

More information

Earthquakes Modified

Earthquakes Modified Plate Tectonics Earthquakes Modified Recall that the earth s crust is broken into large pieces called. These slowly moving plates each other, each other, or from each other. This causes much on the rocks.

More information

Elastic rebound theory

Elastic rebound theory Elastic rebound theory Focus epicenter - wave propagation Dip-Slip Fault - Normal Normal Fault vertical motion due to tensional stress Hanging wall moves down, relative to the footwall Opal Mountain, Mojave

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes... CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY Earth Formation... 1-2 Plate Tectonics... 1-2 Sources of Earthquakes... 1-3 Earth Faults... 1-4 Fault Creep... 1-5 California Faults... 1-6 Earthquake

More information

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis)

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis) Geology 101 Staple this part to part one of lab 6 and turn in Lab 6, part two: Structural geology (analysis) Recall that the objective of this lab is to describe the geologic structures of Cougar Mountain

More information

Objectives. Vocabulary

Objectives. Vocabulary Forces Within Earth Objectives Define stress and strain as they apply to rocks. Distinguish among the three types of faults. Contrast three types of seismic waves. Vocabulary stress strain fault primary

More information

Earthquakes and Earth s Interior

Earthquakes and Earth s Interior - What are Earthquakes? Earthquakes and Earth s Interior - The shaking or trembling caused by the sudden release of energy - Usually associated with faulting or breaking of rocks - Continuing adjustment

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

An entire branch of Earth science, called, is devoted to the study of earthquakes.

An entire branch of Earth science, called, is devoted to the study of earthquakes. Lesson One Essential Question Where do earthquakes take place? What causes earthquakes? What are three different types of faults that occur at plate boundaries? How does energy from earthquakes travels

More information

on the earthquake's strength. The Richter scale is a rating of an earthquake s magnitude based on the size of the

on the earthquake's strength. The Richter scale is a rating of an earthquake s magnitude based on the size of the Earthquakes and Seismic Waves An earthquake is the shaking and trembling that results from the movement of rock beneath Earth's surface. The point beneath Earth s surface where rock under stress breaks

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction

Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction M. Ashtiani & A. Ghalandarzadeh Faculty of Civil Engineering, University of Tehran, Iran SUMMARY: The 1999 earthquakes in Turkey

More information

1. occurs when the oceanic crust slides under the continental crust.

1. occurs when the oceanic crust slides under the continental crust. 1. occurs when the oceanic crust slides under the continental crust. 2. What type of stress is shown? 3. Where two plates slide past one another is called a boundary. 4. What type of stress is shown? 5.

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Introduction Faults blind attitude strike dip

Introduction Faults blind attitude strike dip Chapter 5 Faults by G.H. Girty, Department of Geological Sciences, San Diego State University Page 1 Introduction Faults are surfaces across which Earth material has lost cohesion and across which there

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lecture 20, 30 Nov. 2017 www.geosc.psu.edu/courses/geosc508 Seismic Spectra & Earthquake Scaling laws. Seismic Spectra & Earthquake Scaling laws. Aki, Scaling law

More information

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise Strain Analysis Introduction Name: The earthquake cycle can be viewed as a process of slow strain accumulation

More information

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION 6-1 6: EARTHQUAKE FOCAL MECHANISMS AND PLATE MOTIONS Hebgen Lake, Montana 1959 Ms 7.5 1 Stein & Wysession, 2003 Owens Valley, California 1872 Mw ~7.5 EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE

More information

Earthquake prediction. Southwest BC: Our local dangerous fault zones

Earthquake prediction. Southwest BC: Our local dangerous fault zones Earthquake prediction Prediction: specifies that an earthquake of a specific magnitude will occur in a defined region during a particular period: There will be a M 7 or larger earthquake in southern California

More information

Slide 1. Earth Science. Chapter 5 Earthquakes

Slide 1. Earth Science. Chapter 5 Earthquakes Slide 1 Earth Science Chapter 5 Earthquakes Slide 2 Forces in Earth's Crust A force that acts on rock to change its shape or volume is stress 3 types of stress acting on rock layers Tension pulls on the

More information

Forces in Earth s Crust

Forces in Earth s Crust Name Date Class Earthquakes Section Summary Forces in Earth s Crust Guide for Reading How does stress in the crust change Earth s surface? Where are faults usually found, and why do they form? What land

More information

Name: KEY. Examine all possible answers; some may not satisfy the question criteria and should be left blank. mica crystals big enough to see

Name: KEY. Examine all possible answers; some may not satisfy the question criteria and should be left blank. mica crystals big enough to see GE 50 Exam #3, FS07 Name: KEY_ Examine all possible answers; some may not satisfy the question criteria and should be left blank. 1. Match the metamorphic rock with its foliated texture. [10 pts] slate

More information

Strike & Dip. Structural Geology I: Folds & Faults 2009 Lect. 18, J. Steven Kite, West Virginia University

Strike & Dip. Structural Geology I: Folds & Faults 2009 Lect. 18, J. Steven Kite, West Virginia University 2 Apr Structural Geology I: Folds & Faults 2009 Lect. 18, J. Steven Kite, West Virginia University Steeply dipping axial plane cleavage. These folded sedimentary layers exposed near Sullivan River in southeastern

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake? Earthquakes Building Earth s Surface, Part 2 Science 330 Summer 2005 What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all

More information

Foldable Fault Blocks Lesson Plans and Activities

Foldable Fault Blocks Lesson Plans and Activities Foldable Fault Blocks Lesson Plans and Activities By Polly R. Sturgeon Targeted Age: Elementary to High School Activity Structure: Individual assignment Indiana Standards and Objectives: 3.PS.1, 4.ESS.2,

More information

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac THE NATURE OF SITE RESPONSE DURING EARTHQUAKES Mihailo D. Trifunac Dept. of Civil Eng., Univ. of Southern California, Los Angeles, CA 90089, U.S.A. http://www.usc.edu/dept/civil_eng/earthquale_eng/ What

More information

EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION

EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION EXAMINATION ON CONSECUTIVE RUPTURING OF TWO CLOSE FAULTS BY DYNAMIC SIMULATION M. Muto 1, K. Dan 1, H. Torita 1, Y. Ohashi 1, and Y. Kase 2 1 Ohsaki Research Institute, Inc., Tokyo, Japan 2 National Institute

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake? 1 2 3 4 5 6 7 8 9 10 Earthquakes Earth, 9 th edition, Chapter 11 Key Concepts Earthquake basics. "" and locating earthquakes.. Destruction resulting from earthquakes. Predicting earthquakes. Earthquakes

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

Learning Objectives (LO) What we ll learn today:!

Learning Objectives (LO) What we ll learn today:! Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the

More information

Earthquakes.

Earthquakes. Earthquakes http://thismodernworld.com/comic-archive Elastic rebound http://projects.crustal.ucsb.edu/understanding/elastic/rebound.html Elastic rebound Rocks store energy elastically When stored stress

More information

Chapter 8. Foundations of Geology

Chapter 8. Foundations of Geology Chapter 8 Foundations of Geology Structure of the Earth The earth can be divided into three parts: Crust Mantle Core The Earth s Crust The crust is the part of the earth we are most familiar with It is

More information

Earthquakes.

Earthquakes. Earthquakes http://quake.usgs.gov/recenteqs/latestfault.htm An earthquake is a sudden motion or shaking of the Earth's crust, caused by the abrupt release of stored energy in the rocks beneath the surface.

More information

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT

IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT A. Giannakou 1, J. Chacko 2 and W. Chen 3 ABSTRACT

More information

Earth Science 1.3 The San Andreas Presearch SA2: Earthquake Faults in California

Earth Science 1.3 The San Andreas Presearch SA2: Earthquake Faults in California Earth Science 1.3 The San Andreas Presearch SA2: Earthquake Faults in California I was awakened by a tremendous earthquake, and though I hadn t ever before enjoyed a storm of this sort, the strange thrilling

More information

Earthquakes. Pt Reyes Station 1906

Earthquakes. Pt Reyes Station 1906 Earthquakes Pt Reyes Station 1906 Earthquakes Ground shaking caused by the sudden release of accumulated strain by an abrupt shift of rock along a fracture in the earth. You Live in Earthquake Country

More information

S e i s m i c W a v e s

S e i s m i c W a v e s Project Report S e i s m i c W a v e s PORTLAND STATE UNIVERSITY PHYSICS 213 SPRING TERM 2005 Instructor: Dr. Andres La Rosa Student Name: Prisciliano Peralta-Ramirez Table Of Contents 1. Cover Sheet 2.

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

GEOLOGY, SOILS, AND SEISMICITY

GEOLOGY, SOILS, AND SEISMICITY 4.9 GEOLOGY, SOILS, AND SEISMICITY 4.9.1 Introduction Information about the geological conditions and seismic hazards in the study area was summarized in the FEIR, and was based on the Geotechnical Exploration

More information

The Earthquake Machine: What 1906 taught us about how earthquakes work

The Earthquake Machine: What 1906 taught us about how earthquakes work A Series of Ten Short Articles for Students, Teachers, and Families 1 Earthquake Science Feature 1 of 10 The Earthquake Machine: What 1906 taught us about how earthquakes work On April 18, 1906, the earth

More information

Earthquakes and Earth s Chapter. Interior

Earthquakes and Earth s Chapter. Interior Earthquakes and Earth s Chapter Interior 8.1 What Is an Earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Focus and Epicenter Focus is the point within Earth

More information

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia.

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. An earthquake is a movement of Earth s lithosphere that occurs when rocks in the lithosphere

More information

Determining the Earthquake Epicenter: Japan

Determining the Earthquake Epicenter: Japan Practice Name: Hour: Determining the Earthquake Epicenter: Japan Measuring the S-P interval There are hundreds of seismic data recording stations throughout the United States and the rest of the world.

More information

Chapter 6: Earthquakes

Chapter 6: Earthquakes Section 1 (Forces in Earth s Crust) Chapter 6: Earthquakes 8 th Grade Stress a that acts on rock to change its shape or volume Under limited stress, rock layers can bend and stretch, but return to their

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 8 Earthquakes and Earth s Interior 8.1 What Is an Earthquake? Earthquakes An earthquake is the vibration of Earth produced by the rapid release of energy

More information

Instructor: Ms. Terry J. Boroughs Geology 305 Restless/Dynamic EARTH: Geologic Structures (Folds & faults); Earthquakes; and the Earth s Interior

Instructor: Ms. Terry J. Boroughs Geology 305 Restless/Dynamic EARTH: Geologic Structures (Folds & faults); Earthquakes; and the Earth s Interior DATE DUE: Instructor: Ms. Terry J. Boroughs Geology 305 Name: Restless/Dynamic EARTH: Geologic Structures (Folds & faults); Earthquakes; and the Earth s Interior Instructions: Read each question carefully

More information

Surface Faulting and Deformation Assessment & Mitigation

Surface Faulting and Deformation Assessment & Mitigation Surface Faulting and Deformation Assessment & Mitigation Summary of a Shlemon Specialty Conference sponsored by the Association of Environmental & Engineering Geologists convened on February 19 & 20, 2009

More information

Earthquake prediction. Earthquake prediction: animals?

Earthquake prediction. Earthquake prediction: animals? Earthquake prediction Prediction: specifies that an earthquake of a specific magnitude will occur in a defined region during a particular period: There will be a M 7 or larger earthquake in southern California

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Lab 6: Plate tectonics, structural geology and geologic maps

Lab 6: Plate tectonics, structural geology and geologic maps Geology 103 Name(s): Lab 6: Plate tectonics, structural geology and geologic maps Objective: To show the effects of plate tectonics on a large-scale set of rocks and to reconstruct the geological history

More information

Important Concepts. Earthquake hazards can be categorized as:

Important Concepts. Earthquake hazards can be categorized as: Lecture 1 Page 1 Important Concepts Monday, August 17, 2009 1:05 PM Earthquake Engineering is a branch of Civil Engineering that requires expertise in geology, seismology, civil engineering and risk assessment.

More information

Plate Tectonics IDEA THAT EARTH S SURFACE IS BROKEN INTO PLATES THAT MOVE AROUND. Fault = fracture in the crust where the movement has occurred

Plate Tectonics IDEA THAT EARTH S SURFACE IS BROKEN INTO PLATES THAT MOVE AROUND. Fault = fracture in the crust where the movement has occurred Warm-up #14 A mountain range found 100 meters above sea level is measured to be 1,000 meters high from its tallest peak. From the top, the first 500 meters are incredibly steep. After this point, the mountain

More information

6.1 Geological Stresses

6.1 Geological Stresses www.ck12.org Chapter 6. Geological Activity from Plate Tectonics Processes 6.1 Geological Stresses Define the types of geological stress and describe their affect on various types of rock under a range

More information

20.1 Earthquakes. Chapter 20 EARTHQUAKES AND VOLCANOES. Earthquakes and plate boundaries 500 UNIT 6 EARTH S STRUCTURE

20.1 Earthquakes. Chapter 20 EARTHQUAKES AND VOLCANOES. Earthquakes and plate boundaries 500 UNIT 6 EARTH S STRUCTURE Chapter 20 EARTHQUAKES AND VOLCANOES 20.1 Earthquakes In Chapter 19, you read about the San Andreas Fault, which lies along the California coast (Figure 20.1). This fault passes right through San Francisco

More information

Science Starter. Describe in your own words what an Earthquake is and what causes it. Answer The MSL

Science Starter. Describe in your own words what an Earthquake is and what causes it. Answer The MSL Science Starter Describe in your own words what an Earthquake is and what causes it. Answer The MSL WHAT IS AN EARTHQUAKE AND HOW DO WE MEASURE THEM? Chapter 8, Section 8.1 & 8.2 Looking Back Deserts Wind-shaped

More information

Module 9 : Foundation on rocks. Content

Module 9 : Foundation on rocks. Content FOUNDATION ON ROCKS Content 9.1 INTRODUCTION 9.2 FOUNDATION TYPES ON ROCKS 9.3 BEARING CAPCITY- SHALLOW FOUNDATION 9.3.1 Ultimate bearing capacity 9.3.2 Safe bearing pressure 9.3.3 Estimation of bearing

More information

INTRODUCTION TO EARTHQUAKES

INTRODUCTION TO EARTHQUAKES INTRODUCTION TO EARTHQUAKES Seismology = Study of earthquakes Seismologists = Scientists who study earthquakes Earthquake = Trembling or shaking of the earth s surface, usually as a result of the movement

More information

Earthquakes. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

Earthquakes. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left. Earthquakes Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Stress that pushes a mass of rock in two opposite directions is called a. shearing. b. tension.

More information

Deformation of the Crust

Deformation of the Crust Deformation of the Crust Review Choose the best response. Write the letter of that choice in the space provided. 1. The state of balance between the thickness of the crust and the depth at which it rides

More information

Plate Tectonics - Demonstration

Plate Tectonics - Demonstration Name: Reference: Prof. Larry Braile - Educational Resources Copyright 2000. L. Braile. Permission granted for reproduction for non-commercial uses. http://web.ics.purdue.edu/~braile/indexlinks/educ.htm

More information

I. What are Earthquakes?

I. What are Earthquakes? I. What are Earthquakes? A. There is more to earthquakes than just the shaking of the ground. An entire branch of Earth science, called seismology, is devoted to the study of earthquakes. B. Earthquakes

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information