Röthlisberger channel model accounting for antiplane shear loading and undeforming bed

Size: px
Start display at page:

Download "Röthlisberger channel model accounting for antiplane shear loading and undeforming bed"

Transcription

1 öthlisberger channel model accounting for antiplane shear loading and undeforming bed Matheus C. Fernandes Colin. Meyer Thibaut Perol James. ice,2 John A. Paulson School of Engineering and Applied Sciences Harvard University - Cambridge MA, USA 2 Department of Earth and Planetary Sciences Harvard University - Cambridge MA, USA International Symposium on the Hydrology of Glaciers and Ice Sheets June 23, 205

2 Questions of interest Introduction For a conduit along the bed, how does antiplane shear and locking affect the channel closure and stresses at the bed? What implications does this have on the diameter of a öthlisberger channel? Create Finite Element Method (FEM) models for 2 separate cases. Compliment and verify Weertman (972) analysis. τ AP u = 0 σ o Antiplane z Locked Bed σ o x τ AP = σ o p fluid u = 0 y M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 2

3 umerical model umerical model description Ice rheology is modeled as a shear thinning fluid with a power law (Glen s law, n = 3) relationship between stress and strain rate given as: ɛ E = AτE n, where ɛ E = 2 ɛ ij ɛ ij and τ E = 2 s ijs ij. The model assumes incompressibility and plane strain described by: ɛ + ɛ θθ = 0 and ɛ zz = 0. Over the span of it s km domain, the numerical model has an average error of 0.42% when benchmarking the ye solution. M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 3

4 Antiplane shear stress Antiplane shear stress Constant shear stress τ AP is applied along the bed and acts in the x-direction. z A pressure difference of = is applied along channel boundary and ice overburden is σ o =. on-dimensionalize stresses by σ o and length scales by channel diameter a. b a a σ o = S AP = τ AP = σ o p fluid Channel Boundary θ u z = 0 ÜAP x y Channel radius a = and domain radius b = 000. M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 4

5 Antiplane shear stress Weertman (972) antiplane model Weertman sees that the presence of large antiplane basal shear stress makes in-plane flow law effectively ewtonian as regards to tunnel closure. Claims that ye solution hoop stresses are tensile if creep rheology exponent n > 2 or compressive if n < 2. Describes radial velocity for τ AP / < by matching two asymptotic solutions divided by a critical radius obtained comparing magnitudes of antiplane to in-plane stresses as: cr = a(/τ AP ) n/2 = as n/2 AP M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 5

6 Antiplane shear stress Antiplane shear - hoop stress along bed Weertman sees that large antiplane shear makes in-plane flow ewtonian. We see that antiplane shear increases compressive stress up to 3 times overburden near channel. Intermediate values for S AP show the growth of a hump in the hoop stress next to the channel indicating possible channel migration. σθθ, hoop stress 3 ye Sol n n=3 ye Sol n n= z S AP =e-04 Ò 2.5 y S AP =5e-02 x S AP =2e-0 uz=0 S AP =5e-0 ÜAP 2 S AP =2e distance from center of channel M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 6

7 Antiplane shear stress Weertman antiplane shear model ur ur 0 3 S AP =e S AP =5e umerical Sol n ye Sol n Weertman Sol n 0 3 S AP =3e S AP =9e cr =S 3/2 AP For small S AP Weertman s model follows the ye solution as do the numerical results. Weertman s solution follows the numerical results for S AP 0.3. Weertman assumes that there to be a transition in the domain between the two dominant regimes. umerical results suggest that the magnitude of the entire domain shifts, as expected given that the shear stress is applied uniformly along the bed. M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 7

8 Antiplane shear stress Antiplane shear - channel opening ucreep/uye x z Ò y uz=0 ÜAP S AP = τ AP S 2 AP umerical Sol n Weertman Approx S AP For S AP 0 2 the channel opening is described by the ye solution. For S AP > (antiplane shear greater than channel pressure) and constant, the channel closure rate scales with τ 2 AP. Weertman s solution suggests that for large S AP, u creep u ye n n (τ AP /) n. M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 8

9 Antiplane shear stress öthlisberger Channel Implications The öthlisberger channel diameter is described by: ( ρice L u creep n m D = 4 ρ w g sin 3/2 (α) Ice stream shear margins can have S AP up to O(). Mountain glaciers can have S AP up to O(0 ). ) 3/5 DAP/Dye 0 2 Mountain Glaciers 0 S AP = τ AP Ice Stream Shear Margins S 6/5 AP S AP M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 9

10 Antiplane and undeforming bed channel model Ice locking along undeforming bed In-plane shear stress and locking bed Consider the extreme case in which no slippage occurs at the bed, namely u(θ = 0, π) = 0. x z y Apply an overburden stress σ o =. Let pressure difference in the channel be =. Weertman s 972 attempt used in-plane shear. b a a σ o = = σ o p fluid Channel Boundary θ u= 0 L o c k e d Bed M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 0

11 Ice locking along undeforming bed In-plane shear - displacement along bed For large S IP, u r /2 not u r as claimed by Weertman. adial creep rate does not decay to 0 away from the channel, as the shear becomes prevalent. ur S IP=e-03 umerical Sol n ye Sol n S IP=e S IP=3e S IP=e+00 0 Furthermore, the magnitude of radial creep rate also scales as S 3 IP. ur S IP = τip M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205

12 Ice locking along undeforming bed In-plane shear - hoop stress along bed Weertman predicts a hoop stress along the bed as σ θθ 2. Hoop stress does not scale as ye solution and is heavily influenced by the shear along bed. σθθ, hoop stress.2 S IP =e umerical Sol n ye Sol n S IP =e S IP =e S IP =e+00 When shear along the bed is the same magnitude as pressure difference, the hoop stress can increase up to 0 times overburden pressure near channel. σθθ, hoop stress M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 2

13 Antiplane and undeforming bed channel model Ice locking along undeforming bed Locked bed - hoop stress along bed σθθ, hoop stress x u=0 Locked Bed umerical Sol n ye Sol n Distance from center of channel z Ò y If the channel is locked the hoop stress is nearly overburden across the entire length of the bed. esults are very different than applying a constant shear stress. Singular tensile stress occurs near the channel as a result of constraining the displacement and imposing a closing stress boundary condition. M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 3

14 Locked bed - channel opening Ice locking along undeforming bed Highest value of creep closure is equivalent to 0.73 times the ye closure rate. Total channel closing rate is 0.67 the ye solution. Independent in magnitude of. Also very different than applying a constant shear stress along the bed. Locking the bed, changes -channel diameter by a factor of ucreep/uye u mean 0.67 y x 0 0 /4 /2 θ(π) x z 0.73 Ò y u=0 Locked Bed M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 4

15 Conclusions Conclusion öthlisberger channels in ice stream shear margins, where antiplane stresses are significantly contribute to the in-plane viscosity, may see up to a factor of 6 change in -channel diameter. Channels in mountain glaciers are not expected to be affected by antiplane shear. Although Weertman s scaling for channel opening matches the numerical results, we do not see a transition between asymptotic solutions over the displacement along the bed. Applying an in-plane shear stress at the bed is not equivalent to locking the bed. A locked bed can change -channel diameter by a factor of M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 5

16 eferences eferences Bartholomous, T. C., Anderson,. S., and Anderson, S. P. (20). Growth and collapse of the distributed subglacial hydrologic system of kennicott glacier, alaska, usa, and its effects on basal motion. J. Glaciol., 57(206): Joughin, I., Tulaczyk, S., Bindschadler,., and Price, S. F. (2002). Changes in west antarctic ice stream velocities: Observation and analysis. Journal of Geophysical esearch: Solid Earth, 07(B):EPM 3 EPM Meyer, C., Fernandes, M., and ice, J. (205). öthlisberger channels under antiplane shear. Journal of Fluid Mechanics, submitted. ye, J. F. (953). The flow law of ice from measurements in glacier tunnels, laboratory experiments and the jungfraufirn borehole experiment. Proceedings of the oyal Society of London. Series A. Mathematical and Physical Sciences, 29(39): Perol, T. and ice, J.. (20). Control of the width of west antarctic ice streams by internal melting in the ice sheet near the margins. AGU Fall Meeting Abstracts, :0677. öthlisberger, H. (972). Water pressure in intra- and subglacial channels. (62): Weertman, J. (972). General theory of water flow at the base of a glacier or ice sheet. eviews of Geophysics, 0(): M.C.Fernandes et al. - Harvard University IGS Symposium, Höfn - June 23, 205 6

17 Matheus C. Fernandes Thank You! Mendenhall Glacier Ice Cave in Alaska - Photograph by Greg ewkirk Acknowledgments: Harvard SEAS Blue Hill Hydrology Endowment (MCF Masters program). Harvard University

Determining conditions that allow a shear margin to coincide with a Röthlisberger channel

Determining conditions that allow a shear margin to coincide with a Röthlisberger channel JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Determining conditions that allow a shear margin to coincide with a Röthlisberger channel John D. Platt 1,2, Thibaut Perol, 1, Jenny Suckale

More information

Ice stream stabilization through a meltwater channel in the shear margin

Ice stream stabilization through a meltwater channel in the shear margin JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Ice stream stabilization through a meltwater channel in the shear margin John D. Platt 1,2, Thibaut Perol, 1, Jenny Suckale 3, and James R.

More information

Dynamics of Glaciers

Dynamics of Glaciers Dynamics of Glaciers McCarthy Summer School 01 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA June 01 Note: This script is largely based on the Physics of Glaciers

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO1218 Supplementary information Ice speed of a calving glacier modulated by small fluctuations in basal water pressure Shin Sugiyama 1, Pedro Skvarca 2, Nozomu Naito

More information

Glacier Hydrology II: Theory and Modeling

Glacier Hydrology II: Theory and Modeling Glacier Hydrology II: Theory and Modeling McCarthy Summer School 2018 Matt Hoffman Gwenn Flowers, Simon Fraser Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Observations

More information

CAN GLACIER IN ICE CAVE CUT U-SHAPED VALLEY - A NUMERICAL ANALYSIS

CAN GLACIER IN ICE CAVE CUT U-SHAPED VALLEY - A NUMERICAL ANALYSIS CAN GLACIER IN ICE CAVE CUT U-SHAPED VALLEY - A NUMERICAL ANALYSIS Shaohua Yang No.19A Yuquan Road Beijing 100049, China, yangshaohua09@sina.com Yaolin Shi No.19A Yuquan Road Beijing 100049, China, shyl@ucas.ac.cn

More information

Subglacial hydrology and ice stream margin locations

Subglacial hydrology and ice stream margin locations JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:1.12/, Subglacial hydrology and ice stream margin locations Thibaut Perol, 1 James R. Rice 1,2, John D. Platt 1,3, Jenny Suckale 4 Abstract. Fast flowing

More information

Physics of Glaciers: Glacier Hydraulics

Physics of Glaciers: Glacier Hydraulics Introduction Theory Examples References Physics of Glaciers: Glacier Hydraulics Mauro A. Werder VAW / ETHZ 27.11.2017 Introduction Theory Examples References Problems Front matters Me: postdoc at VAW specialising

More information

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information.

Title. Author(s)Greve, Ralf. Issue Date Doc URL. Type. Note. File Information. Title Increased future sea level rise due to rapid decay o Author(s)Greve, Ralf CitationProceedings of the First International Symposium on Issue Date 008--04 Doc URL http://hdl.handle.net/5/4868 Type

More information

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding

Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding Decay of the Greenland Ice Sheet due to surface-meltwater-induced acceleration of basal sliding arxiv:0905.07v [physics.geo-ph] May 009 Ralf Greve Shin Sugiyama Institute of Low Temperature Science, Hokkaido

More information

Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification

Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification Craig Lingle 1 Jed Brown 2 Ed Bueler 2 1 Geophysical Institute University of Alaska Fairbanks, USA 2 Department of

More information

The Effect of a Basal-friction Parameterization on. Grounding-line Dynamics in Ice-sheet Models.

The Effect of a Basal-friction Parameterization on. Grounding-line Dynamics in Ice-sheet Models. The Effect of a Basal-friction Parameterization on Grounding-line Dynamics in Ice-sheet Models. by Gunter Leguy Submitted in Partial Fulfillment of the Requirements for the Degree of Ph.D of Applied &

More information

Greenland subglacial drainage evolution regulated by weakly-connected regions of the bed

Greenland subglacial drainage evolution regulated by weakly-connected regions of the bed Greenland subglacial drainage evolution regulated by weakly-connected regions of the bed Matthew Hoffman Stephen Price Lauren Andrews Ginny Catania Weakly-connected Drainage Distributed Drainage Channelized

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

Deformation-induced melting in the margins of the West-Antarctic ice streams

Deformation-induced melting in the margins of the West-Antarctic ice streams JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, 1 2 Deformation-induced melting in the margins of the West-Antarctic ice streams Jenny Suckale 1, John D. Platt 2, Thibaut Perol 2 and James

More information

Glacier Hydrology. Why should you care?

Glacier Hydrology. Why should you care? Glacier Hydrology Why should you care? Climate Local Meteorology Surface Mass And Energy Exchange Net Mass Balance Dynamic Response Effect on Landscape Changes In Geometry Water Flow PRACTICAL MATTERS:

More information

Study of Glacier flow. Glacier Flow and Ice Profiles 10/8/09. Downslope transport of ice mass Accumula'on vs abla'on

Study of Glacier flow. Glacier Flow and Ice Profiles 10/8/09. Downslope transport of ice mass Accumula'on vs abla'on Glacier Flow and Ice Profiles What can we learn about glacier movement and subglacial processes? Study of Glacier flow Based on three lines of observamon: 1. Field evidence 2. Laboratory experiments 3.

More information

Distributed: Wednesday, March 17, 2004

Distributed: Wednesday, March 17, 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 019.00 MECHANICS AND MATERIALS II QUIZ I SOLUTIONS Distributed: Wednesday, March 17, 004 This quiz consists

More information

The effect of bottom boundary conditions in the ice-sheet to ice-shelf transition zone problem

The effect of bottom boundary conditions in the ice-sheet to ice-shelf transition zone problem Journal of Glaciology, Vol. 53, No. 182, 2007 363 The effect of bottom boundary conditions in the ice-sheet to ice-shelf transition zone problem Alexander V. WILCHINSKY Centre for Polar Observation and

More information

Numerical simulation of the evolution of glacial valley cross sections

Numerical simulation of the evolution of glacial valley cross sections Numerical simulation of the evolution of glacial valley cross sections arxiv:0901.1177v1 [physics.geo-ph] 9 Jan 2009 Hakime Seddik Ralf Greve Shin Sugiyama Institute of Low Temperature Science, Hokkaido

More information

Control of the width of active Western Antarctic Siple Coast ice streams by internal melting at their margins

Control of the width of active Western Antarctic Siple Coast ice streams by internal melting at their margins JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:1.129/, Control of the width of active Western Antarctic Siple Coast ice streams by internal melting at their margins Thibaut Perol 1 and James R. Rice

More information

PISM, a Parallel Ice Sheet Model: Current status of our Antarctic ice sheet simulation

PISM, a Parallel Ice Sheet Model: Current status of our Antarctic ice sheet simulation PISM, a Parallel Ice Sheet Model: Current status of our Antarctic ice sheet simulation Craig Lingle, 1 Ed Bueler, 2 Jed Brown, 1 and David Covey, 1 1 Geophysical Institute, Univ. of Alaska, Fairbanks 2

More information

This is an author produced version of Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line.

This is an author produced version of Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line. This is an author produced version of Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113417/

More information

(In)consistent modelling of subglacial drainage and sliding

(In)consistent modelling of subglacial drainage and sliding (In)consistent modelling of suglacial drainage and sliding Ian Hewitt, University of Oxford Greenland, NASA Ice acceleration and deceleration due to surface melting Greenland surface velocities (GPS) Ice

More information

Constraints on the lake volume required for hydro-fracture through ice sheets

Constraints on the lake volume required for hydro-fracture through ice sheets Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L10501, doi:10.1029/2008gl036765, 2009 Constraints on the lake volume required for hydro-fracture through ice sheets M. J. Krawczynski,

More information

Summer School in Glaciology, Fairbanks/McCarthy, Exercises: Glacial geology

Summer School in Glaciology, Fairbanks/McCarthy, Exercises: Glacial geology Bob Anderson Summer School in Glaciology, Fairbanks/McCarthy, 2010 Exercises: Glacial geology 1. Glacier thickness. We wish to estimate the local thickness of a glacier given only a topographic map of

More information

Modeled and observed fast flow in the Greenland ice sheet

Modeled and observed fast flow in the Greenland ice sheet Modeled and observed fast flow in the Greenland ice sheet Ed Bueler 1 Constantine Khroulev 1 Andy Aschwanden 2 Ian Joughin 3 1 Dept of Mathematics and Statistics, University of Alaska Fairbanks 2 Arctic

More information

Depth-Varying Constitutive Properties Observed in an Isothermal Glacier

Depth-Varying Constitutive Properties Observed in an Isothermal Glacier University of Wyoming Wyoming Scholars Repository Geology and Geophysics Faculty Publications Geology and Geophysics 12-14-2002 Depth-Varying Constitutive Properties Observed in an Isothermal Glacier H.

More information

On Notation Thermodynamics of Glaciers. Types of Glaciers. Why we care. McCarthy Summer School

On Notation Thermodynamics of Glaciers. Types of Glaciers. Why we care. McCarthy Summer School On Notation Thermodynamics of Glaciers McCarthy Summer School Andy Aschwanden Geophysical nstitute University of Alaska Fairbanks, USA (hopefully) consistent with Continuum Mechanics (Truffer) with lots

More information

Antarctic ice stream B: conditions controlling its motion and interactions with the climate system

Antarctic ice stream B: conditions controlling its motion and interactions with the climate system Glaciers-Ocean-Atmosphere interactions (Proceedings of the International Symposium held at St Petersburg, September 1990). IAHS Publ. no. 208, 1991. Antarctic ice stream B: conditions controlling its motion

More information

Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East Antarctica

Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East Antarctica GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16503, doi:10.1029/2008gl034728, 2008 Subglacial topography inferred from ice surface terrain analysis reveals a large un-surveyed basin below sea level in East

More information

A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts

A Finite Element Study of the Residual Stress and Deformation in Hemispherical Contacts obert Jackson 1 Mem. ASME e-mail: robert.jackson@eng.auburn.edu Itti Chusoipin Itzhak Green Fellow, ASME George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA

More information

Dynamic controls on glacier basal motion inferred from surface ice motion

Dynamic controls on glacier basal motion inferred from surface ice motion JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jf000925, 2008 Dynamic controls on glacier basal motion inferred from surface ice motion Ian M. Howat, 1 Slawek Tulaczyk, 2 Edwin Waddington,

More information

Glacier Thermodynamics: Ice Temperature and Heat Transfer Processes

Glacier Thermodynamics: Ice Temperature and Heat Transfer Processes Glacier Thermodynamics: Ice Temperature and Heat Transfer Processes ESS431: Principles of Glaciology ESS505: The Cryosphere Wednesday, 10/24 Ben Hills Today s Objectives: Why do we care about ice temperature?

More information

How can low-pressure channels and defortning tills coexist subglacially?

How can low-pressure channels and defortning tills coexist subglacially? Journal of Glaciology, Vol. 38, No. 128, 1992 How can low-pressure channels and defortning tills coexist subglacially? RICHARD B. ALLEY Earth System Science Center and Department of Geosciences, The Pennsylvania

More information

Application of a general sliding law to simulating flow in a glacier cross-section

Application of a general sliding law to simulating flow in a glacier cross-section Journal of Glaciology, Vo!. 38, No. 128, 1992 Application of a general sliding law to simulating flow in a glacier cross-section JONATHAN M. HARBOR Department of Geology, Kent State University, Kent, Ohio

More information

Modelling of surface to basal hydrology across the Russell Glacier Catchment

Modelling of surface to basal hydrology across the Russell Glacier Catchment Modelling of surface to basal hydrology across the Russell Glacier Catchment Sam GAP Modelling Workshop, Toronto November 2010 Collaborators Alun Hubbard Centre for Glaciology Institute of Geography and

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

Modelling meltwater delivery to the ice-bed interface through fractures at the margin of the Greenland Ice Sheet

Modelling meltwater delivery to the ice-bed interface through fractures at the margin of the Greenland Ice Sheet Modelling meltwater delivery to the ice-bed interface through fractures at the margin of the Greenland Ice Sheet Caroline Clason, Douglas Mair & Peter Nienow CESM Land Ice Working Group Meeting, January

More information

Sliding versus till deformation in the fast motion of an ice stream over a viscous till

Sliding versus till deformation in the fast motion of an ice stream over a viscous till Journal of Glaciology, Vol. 46, No. 55, 000 Sliding versus till deformation in the fast motion of an ice stream over a viscous till Throstur Thorsteinsson, Charles F. Raymond Geophysics Program, Box 35650,

More information

A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests

A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests Bolton, M. D. & Whittle, R. W. (999). GeÂotechnique 49, No., 33±4 TECHNICAL NOTE A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests M. D. BOLTON and R. W. WHITTLE{

More information

T. Perron Glaciers 1. Glaciers

T. Perron Glaciers 1. Glaciers T. Perron 12.001 Glaciers 1 Glaciers I. Why study glaciers? [PPT: Perito Moreno glacier, Argentina] Role in freshwater budget o Fraction of earth s water that is fresh (non-saline): 3% o Fraction of earth

More information

Glacier Dynamics. Glaciers 617. Andy Aschwanden. Geophysical Institute University of Alaska Fairbanks, USA. October 2011

Glacier Dynamics. Glaciers 617. Andy Aschwanden. Geophysical Institute University of Alaska Fairbanks, USA. October 2011 Glacier Dynamics Glaciers 617 Andy Aschwanden Geophysical Institute University of Alaska Fairbanks, USA October 2011 1 / 81 The tradition of glacier studies that we inherit draws upon two great legacies

More information

UNSTOPPABLE COLLAPSE OF THE WEST ANTARCTIC ICE SHEET IS NOT HAPPENING

UNSTOPPABLE COLLAPSE OF THE WEST ANTARCTIC ICE SHEET IS NOT HAPPENING UNSTOPPABLE COLLAPSE OF THE WEST ANTARCTIC ICE SHEET IS NOT HAPPENING Dr. Don J. Easterbrook, Western Washington University, Bellingham, WA May 19, 2014 A New York Times headline reads Scientists Warn

More information

Insights into ice stream dynamics through modelling their response to tidal forcing

Insights into ice stream dynamics through modelling their response to tidal forcing The Cryosphere, 8, 1763 1775, 214 www.the-cryosphere.net/8/1763/214/ doi:1.5194/tc-8-1763-214 Author(s) 214. CC Attribution 3. License. Insights into ice stream dynamics through modelling their response

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

ESS 431 Principles of Glaciology ESS 505 The Cryosphere

ESS 431 Principles of Glaciology ESS 505 The Cryosphere MID-TERM November 9, 2015 ESS 431 Principles of Glaciology ESS 505 The Cryosphere Instructions: Please answer the following 5 questions. [The actual 5 questions will be selected from these 12 questions

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

Time Scale for Rapid Draining of a Surficial Lake into the Greenland Ice Sheet

Time Scale for Rapid Draining of a Surficial Lake into the Greenland Ice Sheet Time Scale for Rapid Draining of a Surficial Lake into the Greenland Ice Sheet James R. Rice Professor, Fellow of ASME, School of Engineering and Applied Sciences, and Department of Earth and Planetary

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

79 N Glacier. Sea ice. 20 km

79 N Glacier. Sea ice. 20 km 79 N Glacier Sea ice 20 km LandSat March 2014 Glaciers Kevin Mullins, Flagstaff Glaciers DefiniCon: a perennial body of ice that moves over land/water and forms from the accumulacon and compaccon of snow

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

Buckling Analysis of Isotropic Circular Plate with Attached Annular Piezoceramic Plate

Buckling Analysis of Isotropic Circular Plate with Attached Annular Piezoceramic Plate Malaysian Journal of Mathematical Sciences 10S February: 443 458 2016 Special Issue: The 3 rd International Conference on Mathematical Applications in Engineering 2014 ICMAE 14 MALAYSIAN JOURNAL OF MATHEMATICAL

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 1 June 2006 1.30 to 4.30 PAPER 76 NONLINEAR CONTINUUM MECHANICS Attempt FOUR questions. There are SIX questions in total. The questions carry equal weight. STATIONERY

More information

Seismic and flexure constraints on lithospheric rheology and their dynamic implications

Seismic and flexure constraints on lithospheric rheology and their dynamic implications Seismic and flexure constraints on lithospheric rheology and their dynamic implications Shijie Zhong Dept. of Physics, University of Colorado Boulder, Colorado, USA Acknowledgement: A. B. Watts Dept. of

More information

ENGN 2290: Plasticity Computational plasticity in Abaqus

ENGN 2290: Plasticity Computational plasticity in Abaqus ENGN 229: Plasticity Computational plasticity in Abaqus The purpose of these exercises is to build a familiarity with using user-material subroutines (UMATs) in Abaqus/Standard. Abaqus/Standard is a finite-element

More information

EART162: PLANETARY INTERIORS

EART162: PLANETARY INTERIORS EART162: PLANETARY INTERIORS Francis Nimmo Last Week Global gravity variations arise due to MoI difference (J 2 ) We can also determine C, the moment of inertia, either by observation (precession) or by

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

GG303 Lecture 17 10/25/09 1 MOHR CIRCLE FOR TRACTIONS

GG303 Lecture 17 10/25/09 1 MOHR CIRCLE FOR TRACTIONS GG303 Lecture 17 10/5/09 1 MOHR CIRCLE FOR TRACTIONS I Main Topics A Stresses vs. tractions B Mohr circle for tractions II Stresses vs. tractions A Similarities between stresses and tractions 1 Same dimensions

More information

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report. Appendix I. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein

NCHRP FY 2004 Rotational Limits for Elastomeric Bearings. Final Report. Appendix I. John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein NCHRP 12-68 FY 2004 Rotational Limits for Elastomeric Bearings Final Report Appendix I John F. Stanton Charles W. Roeder Peter Mackenzie-Helnwein Department of Civil and Environmental Engineering University

More information

Finite element modelling of fault stress triggering due to hydraulic fracturing

Finite element modelling of fault stress triggering due to hydraulic fracturing Finite element modelling of fault stress triggering due to hydraulic fracturing Arsalan, Sattari and David, Eaton University of Calgary, Geoscience Department Summary In this study we aim to model fault

More information

Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet

Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1977 Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet 1. Satellite imagery for all ice shelves Supplementary Figure S1.

More information

Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet

Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet Dynamics of the Mantle and Lithosphere ETH Zürich Continuum Mechanics in Geodynamics: Equation cheat sheet or all equations you will probably ever need Definitions 1. Coordinate system. x,y,z or x 1,x

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

A Study of Annular Plate Buckling Problem with Tension Loaded at Inner Edge

A Study of Annular Plate Buckling Problem with Tension Loaded at Inner Edge ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVII, NR. 1, 010, ISSN 1453-7397 Syed Noh, Mostafa Abdalla, Waleed Fekry Faris A Study of Annular Plate Buckling Problem with Tension Loaded at Inner Edge

More information

ABRUPT CHANGES IN ICE SHELVES AND ICE STREAMS: MODEL STUDIES

ABRUPT CHANGES IN ICE SHELVES AND ICE STREAMS: MODEL STUDIES The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences ABRUPT CHANGES IN ICE SHELVES AND ICE STREAMS: MODEL STUDIES A Thesis in Geosciences by Todd K. Dupont c 2004

More information

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Multiaxial Fatigue Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2001-2011 Darrell Socie, All Rights Reserved Contact Information

More information

Modeling Antarctic subglacial lake filling and drainage cycles

Modeling Antarctic subglacial lake filling and drainage cycles The Cryosphere,, 38 393, 6 www.the-cryosphere.net//38/6/ doi:.594/tc--38-6 Author(s) 6. CC Attribution 3. License. Modeling Antarctic subglacial lake filling and drainage cycles Christine F. Dow,a, Mauro

More information

ICE STREAM SHEAR MARGIN BASAL MELTING, WEST ANTARCTICA

ICE STREAM SHEAR MARGIN BASAL MELTING, WEST ANTARCTICA ICE STREAM SHEAR MARGIN BASAL MELTING, WEST ANTARCTICA A Thesis Presented in Partial Fulfillment for the Degree Masters of Science in the Graduate School of The Ohio State University By Lucas H. Beem,

More information

GSC 107 Lab # 3 Calculating sea level changes

GSC 107 Lab # 3 Calculating sea level changes GSC 107 Lab # 3 Calculating sea level changes Student name Student ID Background Glacial-Interglacial Cycles Climate-related sea-level changes of the last century are very minor compared with the large

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

Advanced Structural Analysis EGF Cylinders Under Pressure

Advanced Structural Analysis EGF Cylinders Under Pressure Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

Changing Landscapes: Glaciated Landscapes. How do glaciers move?

Changing Landscapes: Glaciated Landscapes. How do glaciers move? Changing Landscapes: Glaciated Landscapes How do glaciers move? What you need to know Differences between cold-and warm-based glaciers, their locations and rates of movement Glacier ice movement including

More information

Application of Maximum Principal Strain Theory for Study of Coal Particle Disintegration when Subjected to Detonation Wave

Application of Maximum Principal Strain Theory for Study of Coal Particle Disintegration when Subjected to Detonation Wave Application of Maximum Principal Strain Theory for Study of Coal Particle Disintegration when Subjected to Detonation Wave Patadiya D. M. 1,1, Sheshadri T. S. 1,, Jaishankar S 1,3. 1,1 Department of Aerospace

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Thermodynamics of Glaciers

Thermodynamics of Glaciers Thermodynamics of Glaciers McCarthy Summer School, June 2010 Andy Aschwanden Arctic Region Supercomputing Center University of Alaska Fairbanks, USA McCarthy Summer School, June 2010 1 / 34 On Notation

More information

Fluid Mechanics Qualifying Examination Sample Exam 2

Fluid Mechanics Qualifying Examination Sample Exam 2 Fluid Mechanics Qualifying Examination Sample Exam 2 Allotted Time: 3 Hours The exam is closed book and closed notes. Students are allowed one (double-sided) formula sheet. There are five questions on

More information

7. Post Glacial Rebound. Ge 163 4/16/14-

7. Post Glacial Rebound. Ge 163 4/16/14- 7. Post Glacial Rebound Ge 163 4/16/14- Outline Overview Order of magnitude estimate of mantle viscosity Essentials of fluid mechanics Viscosity Stokes Flow Biharmonic equation Half-space model Channel

More information

Linearized theory of elasticity

Linearized theory of elasticity Linearized theory of elasticity Arie Verhoeven averhoev@win.tue.nl CASA Seminar, May 24, 2006 Seminar: Continuum mechanics 1 Stress and stress principles Bart Nowak March 8 2 Strain and deformation Mark

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

The Wedge, Grease and Heat: Why Ice Sheets Hate Water

The Wedge, Grease and Heat: Why Ice Sheets Hate Water The Wedge, Grease and Heat: Why Ice Sheets Hate Water Dr. Robert Bindschadler Chief Scientist Laboratory for Hydrospheric and Biospheric Sciences NASA Goddard Space Flight Center Robert.A.Bindschadler@nasa.gov

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

Waking Giants: Ice Sheets in a Warming World

Waking Giants: Ice Sheets in a Warming World Waking Giants: Ice Sheets in a Warming World Dr. Robert Bindschadler Chief Scien6st Hydrospheric and Biospheric Sciences Laboratory NASA Goddard Space Flight Center Robert.A.Bindschadler@nasa.gov Ice Sheets

More information

Lecture 4 Honeycombs Notes, 3.054

Lecture 4 Honeycombs Notes, 3.054 Honeycombs-In-plane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts

More information

APPLICATION OF 1D HYDROMECHANICAL COUPLING IN TOUGH2 TO A DEEP GEOLOGICAL REPOSITORY GLACIATION SCENARIO

APPLICATION OF 1D HYDROMECHANICAL COUPLING IN TOUGH2 TO A DEEP GEOLOGICAL REPOSITORY GLACIATION SCENARIO PROCEEDINGS, TOUGH Symposium 2015 Lawrence Berkeley National Laboratory, Berkeley, California, September 28-30, 2015 APPLICATION OF 1D HYDROMECHANICAL COUPLING IN TOUGH2 TO A DEEP GEOLOGICAL REPOSITORY

More information

UQ Benchmark Problems for Multiphysics Modeling

UQ Benchmark Problems for Multiphysics Modeling SIAMUQ UQ Challenge Benchmarks UQ Benchmark Problems for Multiphysics Modeling Maarten Arnst March 31, 2014 SIAMUQ UQ Challenge Benchmarks 1 / 25 Motivation Previous presentation at USNCCM2013 UQ Challenge

More information

Transport et Incision fluviale

Transport et Incision fluviale Transport et Incision fluviale 1 Sediment transport 2 Summerfield & Hulton, 1994 Sediment transport Rivers are by far the most important carriers of sediment on the continents, although glaciers have been

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

Two Modes of Accelerated Glacier Sliding Related to Water

Two Modes of Accelerated Glacier Sliding Related to Water University of Wyoming Wyoming Scholars Repository Geology and Geophysics Faculty Publications Geology and Geophysics 6-29-2007 Two Modes of Accelerated Glacier Sliding Related to Water J. T. Harper Neil

More information

Neogene Uplift of The Barents Sea

Neogene Uplift of The Barents Sea Neogene Uplift of The Barents Sea W. Fjeldskaar A. Amantov Tectonor/UiS, Stavanger, Norway FORCE seminar April 4, 2013 The project (2010-2012) Funding companies Flat Objective The objective of the work

More information

Explicit algebraic Reynolds stress models for internal flows

Explicit algebraic Reynolds stress models for internal flows 5. Double Circular Arc (DCA) cascade blade flow, problem statement The second test case deals with a DCA compressor cascade, which is considered a severe challenge for the CFD codes, due to the presence

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Higher Orders Instability of a Hollow Jet Endowed with Surface Tension

Higher Orders Instability of a Hollow Jet Endowed with Surface Tension Mechanics and Mechanical Engineering Vol. 2, No. (2008) 69 78 c Technical University of Lodz Higher Orders Instability of a Hollow Jet Endowed with Surface Tension Ahmed E. Radwan Mathematics Department,

More information

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow.

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow. Victor S. L vov: Israeli-Italian March 2007 Meeting Phenomenology of Wall Bounded Turbulence: Minimal Models In collaboration with : Anna Pomyalov, Itamar Procaccia, Oleksii Rudenko (WIS), Said Elgobashi

More information