Lab 8: Folds and their map patterns

Size: px
Start display at page:

Download "Lab 8: Folds and their map patterns"

Transcription

1 Lab 8: Fols an their map patterns Fall Fols are one of the most common tectonic structures evelope in eforme rocks. They form in rocks containing planar features such as seimentary being, lithologic layering in metamorphic schists an gneisses, or planar features such as cleavage or schistosity prouce uring an earlier eformational event. They occur at all scales from the thin section to mountain ranges. At larger scales, complex fols may be ifficult to unerstan while mapping in the fiel. Instea, we rely on the pattern that evelops on the map. In aition to looking at the overall fol pattern of the units, we can gain information about the 3-D shape of the fols by analyzing other ata such as strike an ips of the units, shapes an orientations of small-scale fols that are observe in the outcrop, an the orientation of fabrics (e.g. cleavages an lineations) that evelope uring foling. 1.1 Terminology an jargon Hinge line: lines joining the points of maximum curvature on a fol. A physical property, so it has a location as well as an orientation. Hinge plane/surface: the plane or surface containing the hinge lines of successive layers Crest (or trough) line: line of highest (or lowest) elevation on a fol. Also a physical property. Crest (or trough) plane/surface: the plane or surface containing the crest/trough lines. Limbs: zones of minimum curvature, the close to planar part of the fol between the hinges. Fol axis: a theoretical line which, if move through space, woul trace out a closely fitting surface to a fol (in particular, the fol axis generates a cylinrical fol, an real fols are only approximately cylinrical for small regions). Axial plane/surface: plane or surface which connects the hinge lines on ajacent layers. Often approximate as bisecting the fol limbs. Axial surface trace: intersection of axial plane an groun surface. Enveloping surface: a plane or surface containing hinge lines of ajacent fols. Meian surface: a plane or surface containing inflection lines of ajacent fols. Fol train: a series of fols. Symmetric fols: fols in which (1) the meian surface is planar, (2) the axial plane is perpenicular to the meian surface an (3) the fols are bilaterally symmetrical about their axial planes. Asymmetric fols: fols that are not symmetric. Limbs of asymmetric fols are of unequal length. Asymmetric fols are often classifie as "Z-fols" or "S-fols" epening on the sense of overturn. Vergence: irection of acute angle mae by intersection of hinge surface an enveloping surface. Often use to infer a sense of shear, a irection of tectonic transport or the closure of large-scale fols. Cylinrical fol: a fol whose hinge is a straight line; this is the kin of fol generate by moving a line (fol axis) through space parallel to itself. 1

2 Non-cylinrical fol: a fol whose hinge line is curve. Essentially all fols are non-cylinrical, but a noncylinrical fol can usually be broken own into sub-regions which are cylinrical. Anticline: a fol with oler rocks in its core. Syncline: a fol with younger rocks in its core. Antiform: a fol whose limbs ip away from the hinge: that is, it opens ownwar (upsie own U-shape). Synform: a fol whose limbs ip towars the hinge: i.e., it opens upwar. Vertical fol: a fol whose hinge line is vertical or nearly so. Recline fol: a fol whose axial surface is incline an whose hinge plunges own the ip of the axial surface. Recumbent fol: a fol whose axial surface is horizontal or nearly so. Overturne fol: a fol where one limb is "upsie-own". That is, oler bes are foun above younger bes. Dip Isogon: theoretical line connecting points of equal inclination between two fole surfaces (fig. 6). One common scheme for classifying fols is base on whether isogons are 1) convergent isogons; 2) parallel; or 3) ivergent an variations in orthogonal thickeness an axial trace thickness. Parallel fol: a fol in which the thickness measure orthogonally across the layer bounaries is constant throughout the fol. Concentric fol: a subclass of parallel fol whose inner an outer surfaces are efine by circular arcs having a common center. Similar fol: a fol characterize by (1) parallel ip isogons; (2) a ecrease in orthogonal thickness from hinge to limb; (3) constant axial trace thickness. Interlimb angle: the angle between limbs of a fol (fig. 7). This is also the basis for a classification scheme: gentle 120 to 180 open 70 to 120 close 30 to 70 tight 2 to 30 isoclinal 0 to 2 Harmonic fols In a fole multilayer, fols eventually ie out parallel to the axial surface (unless they hit a free surface first). The epth of foling is the length own the axial surface that fols persist. Harmonic fols persist for a greater epth than many multiples of the fol half-wavelength, isharmonic fols ie out within a istance on the orer of the fol s wavelength. Parasitic folsfoling often evelops simultaneously at many scales such that smaller fols are foun on the limbs of larger fols. These are terme parasitic fols, an it is common to istinguish between "first orer fols" (map scale); "secon-orer fols" (tens or hunres of meters) an thir an higher orer fols (meters to millimeters). Preictable changes in the asymmetry or vergence of parasitic fols are useful for etermining the geometry of lower-orer fols. Polyphase foling: a term use when there are multiple episoes of foling. 1.2 Stereonets an foling Prior to foling, the poles to a being plane plot as a single point or a concentration of points on a stereonet. Foling alters the istribution of the original poles. If the plane is fole about a straight fol axis (cylinrical foling), then the orientation of the poles will range from those on one limb to those on the other, an all the orientations will lie in an imaginary plane perpenicular to the fol axis. Information from fole being is usually plotte in one of two ways. A Pi plot is a stereonet plot of poles to being. If the being was cylinrically fole, the poles will all plot roughly on a great circle perpenicular 2

3 to the fol axis. The hanout shows a variety of fol geometries an the corresponing stereonet plots. Look through these carefully until they make sense to you. Note the assumption in each of the plots that the collection of ata is equally istribute along the length of the fol, an thus the ensity of points correspons to the length of limb. The tangent planes to cylinrically fole being intersect at the fol axis. A Beta plot can mae by plotting strike an ip measurements as great circles (rather than as poles to being) an fining the point where all the great circles intersect. The Beta an Pi methos o essentially the same thing, but the Pi plot is easier to work with. The orientation of the axial plane to a cylinrical fol can be foun with the orientations of two lines that are containe by the axial plane. One available line is the fol axis. By efinition, the fol axis must lie in the axial plane. A secon line is the trace of the axial plane across the groun. Draw trace on the map by connecting the points of maximum curvature for several fole bes an measure its general tren irectly from the map. Fin the axial surface by fitting a great circle through the points representing the fol axis an the surface trace of the axial plane. Another option is to raw a plane through the fol axis that bisects the fol limbs. This is an not strictly correct, but it is a reasonable an often mae approximation for rawing fols in cross section. 1.3 Down plunge projections Up to this point, all of the cross sections we have looke at or constructe have been oriente vertically. In regions of fole rocks, it is often esirable to raw what is calle a own plunge projection of the fol structure, a cross section rawn perpenicular to the plunge of a fol. Starting with a map outcrop of a fol, contacts are projecte from their location on the map into the plane of the cross section. Depening on if you are oing a vertical cross section or a own plunge projection, the location of the contact on the plane of the cross section can be foun at an elevation above the base line by multiplying the perpenicular map istance to the contact by the sine or tangent of the plunge. Vertical cross-section Down-plunge cross-section plunge (p) tan(p) plunge (p) sin(p) Plane of section Plane of section To raw a own plunge projection (or for that matter, any section of a plunging structure), start by rawing a square gri on the map parallel an perpenicular to the bearing of the plunge (which shoul be parallel an perpenicular to the line of the section as well). Conense the gri on the cross section, keeping the spacing constant in the irection perpenicular to plunge (parallel to line of section), but conensing the vertical scale by (gri spacing) * (sine (plunge)). Then project points to appropriate elevations above the reference line of cross section using the gris as guies. Obviously, the closer the gri spacing, the more accuracy that you will have on your own plunge projection, but the longer it will take to raw your section. Balance these two factors accor- 3

4 ingly. sin(p) When topography is involve, rawing the own plunge projection becomes a little more complicate. However, it is still possible to raw a section fairly quickly. The elevation becomes a factor in where on the cross section a particular feature plots. sin(p) hcos(p) plunge p p h 2 Exercises 1. Pick a fol on the table. Sketch the fol an ientify, on your sketch: the hinge line, axial plane, the limbs. Ientify the rock type. Are there linear fabric elements (eg. mineral lineations, stretching lineations, or intersection lineations?) present? Classify the fol accoring to the following schemes: (1) cylinricity; (2) symmetry; (3) tightness; (4) Ramsay s classification (using orthogonal thickness, axial trace thickness an the convergence of isogons). 2. Down plunge projection. The fols in figure 1 plunge 30 ue west. a. A fol hinge traces an a few strike an ip symbols (on t worry about the ip, just the irection) to the map. b. Construct a own plunge projection. c. Write a sentence or two on why its important to raw a fol perpenicular to the plunge rather than vertically. 3. Down plunge projection with topography. The fol in figure 2 plunges 25 ue north. Construct an E- W profile of the fol perpenicular to the plunge with 340 m as the zero atum line. Use the formula given in the hanout, but remember to convert all your measurements from the map an the elevations using the given scale. Interpolate elevations between contour lines. 4. Polyphase foling. Schematic map vies of several polyphase fols are shown in figure 3. For each of these 4 fol interference patterns, raw the traces of the F1 (first foling) an F2 (secon foling) hinge surfaces. Also raw schematic cross sections along lines AA an BB. What is the approximate angular relation between the F1 an F2 fol axes? 4

5 5. Stereonet analysis. With the attitue ata given in figure 4, construct a Beta iagram an a Pi iagram. What is the tren an plunge of the fol axis? (feel free to use a stereonet program for this, no nee to o it by han). 6. Stereonet analysis. With the attitue ata given in figure 5, construct a contoure Pi iagram. Determine the following: a. tren an plunge of the fol axis b. approximate attitue of the axial plane c. approximate interlimb angle. approximate fol style. Illustrate with a sketch. 7. Mapping fols an stereonet analysis. As seen in the map in figure 6, a series of sanstone an shales are unconformably overlain by a conglomerate unit. There are no faults in the area. Map symbols are: Strike an ip of bes Strike an ip at joints (arrow points ownip) Vertical joint (strike is line without arrow) Strike an ip of cleavage Tren an plunge of minor fols Tren an plunge of lineations a. Make a "soli" geologic map from the given outcrop area, using extrapolative license. Remember the simplest interpretation is usually the right one. Pay attention to minor fol asymmetries as you complete the map. Lightly color the map an use a re pencil to raw in appropriate hinge surface traces, inicating if its an anticline, syncline, overturne anticline or overturne syncline. There is more that one sanstone an shale unit. b. Analyze the fol structures by plotting on a single stereonet (using ifferent symbols) i) poles to being ii) poles to slaty cleavage iii) minor fol axes Base on the plots, what is the style of foling? What is the orientation of the major fol axial surface in the center of the map? Calculate the angle between the axial surface an each limb of the major fol. Roughly sketch an characterize the fols? c. On a separate stereonet plot, using ifferent symbols, plot i) poles to joints in the sanstones an shales ii) poles to joints in the conglomerate Do the joints appear to be genetically relate to the fols in the shales/sanstones? Are the joints in the conglomerates genetically relate to the joints in the shales/sanstones? If so, why? 5

FOLD CLASSIFICATIONS

FOLD CLASSIFICATIONS GG303 Lecture 28 9/4/01 1 FOLD CLASSIFICATIONS I Main Topics A Fold nomenclature B Ramsay's classification schemes C Interference of folds D Superposition of folds II Fold nomenclature and classification

More information

Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM

Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM http://www.tasagraphicarts.com/progstruct.html AN INTRODUCTION TO STRUCTURAL METHODS - DETAILED CONTENTS: (Navigate

More information

Structural Geology, GEOL 330 Fold mapping lab: Even folds get parasites Spring, 2012

Structural Geology, GEOL 330 Fold mapping lab: Even folds get parasites Spring, 2012 Structural Geology, GEOL 330 Name: Fold mapping lab: Even folds get parasites Spring, 2012 This exercise is meant to mimic a field experience in which you, the student, will measure beddingcleavage relationships

More information

Lecture 9. Folds and Folding. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 9. Folds and Folding. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 9 Folds and Folding Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise Fold Classification Maryland Appalachians

More information

CHAPTER Va : CONTINUOUS HETEROGENEOUS DEFORMATION

CHAPTER Va : CONTINUOUS HETEROGENEOUS DEFORMATION Va-1 INTRODUCTION Heterogeneous deformation results from mechanical instabilities (folding and boudinage) within an heterogeneous material or from strain localization in an homogeneous material (shear

More information

Problem Set 2: Solutions

Problem Set 2: Solutions UNIVERSITY OF ALABAMA Department of Physics an Astronomy PH 102 / LeClair Summer II 2010 Problem Set 2: Solutions 1. The en of a charge rubber ro will attract small pellets of Styrofoam that, having mae

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar Fold: A fold is a bend or wrinkle of rock layers or foliation; folds form as a sequence of ductile deformation. Folding is the processes by which crustal forces deform an area of crust so that layers of

More information

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials I. Properties of Earth Materials GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps Name When rocks are subjected to differential stress the resulting build-up in strain can

More information

Folds in Appalachian Mts.

Folds in Appalachian Mts. Pelatnas IESO Geologi Struktur 2013 Deformasi Liat Salahuddin Husein Jurusan Teknik Geologi Fakultas Teknik Universitas Gadjah Mada 2013 1 Folds in Appalachian Mts. Folds in Myanmar, in the Indo-Burma

More information

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR

PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR PRACTICE 4. CHARGING AND DISCHARGING A CAPACITOR. THE PARALLEL-PLATE CAPACITOR. The Parallel plate capacitor is a evice mae up by two conuctor parallel plates with total influence between them (the surface

More information

Experiment 2, Physics 2BL

Experiment 2, Physics 2BL Experiment 2, Physics 2BL Deuction of Mass Distributions. Last Upate: 2009-05-03 Preparation Before this experiment, we recommen you review or familiarize yourself with the following: Chapters 4-6 in Taylor

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Team Name. Name(s) SSSS Unome Geologic Mapping Test Packet p1

Team Name. Name(s) SSSS Unome Geologic Mapping Test Packet p1 Scioly Summer Study Session 2018-2019 Geologic Mapping Test Packet Written by Unome Instructions 1) This test is based on the 2016 rules for Geologic Mapping. 2) This test is out of 115 points. Questions

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

A. Refer to Appendix F in back of lab manual for list of commonly used geologic map symbols

A. Refer to Appendix F in back of lab manual for list of commonly used geologic map symbols Structural Geology Lab 2: Outcrop Patterns and Structure Contours I. Geologic Map Symbols A. Refer to Appendix F in back of lab manual for list of commonly used geologic map symbols 1. Emphasis: a. strike

More information

Interactive 3D Sketchupbook

Interactive 3D Sketchupbook THE UNIVERSITY OF SYDNEY - SCHOOL OF GEOSCIENCES Interactive 3D Sketchupbook Patrice F. Rey CHAPTER 1 Orienting Planes and Lines 1 Interactive 1.1 Strike, dip and dip direction In a 3D space, planar surfaces

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures Crustal Deformation (Building Earth s Surface, Part 1) Science 330 Summer 2005 Mapping geologic structures When conducting a study of a region, a geologist identifies and describes the dominant rock structures

More information

1. classic definition = study of deformed rocks in the upper crust

1. classic definition = study of deformed rocks in the upper crust Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

LAB 1: ORIENTATION OF LINES AND PLANES

LAB 1: ORIENTATION OF LINES AND PLANES LAB 1: ORIENTATION OF LINES AND PLANES Read the introductory section, chapter 1, pages 1-3, of the manual by Rowland et al (2007) and make sure you understand the concepts of bearing, strike, dip, trend,

More information

Bohr Model of the Hydrogen Atom

Bohr Model of the Hydrogen Atom Class 2 page 1 Bohr Moel of the Hyrogen Atom The Bohr Moel of the hyrogen atom assumes that the atom consists of one electron orbiting a positively charge nucleus. Although it oes NOT o a goo job of escribing

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Pure Further Mathematics 1. Revision Notes

Pure Further Mathematics 1. Revision Notes Pure Further Mathematics Revision Notes June 20 2 FP JUNE 20 SDB Further Pure Complex Numbers... 3 Definitions an arithmetical operations... 3 Complex conjugate... 3 Properties... 3 Complex number plane,

More information

Exercise 1. Exercise 2.

Exercise 1. Exercise 2. Exercise. Magnitue Galaxy ID Ultraviolet Green Re Infrare A Infrare B 9707296462088.56 5.47 5.4 4.75 4.75 97086278435442.6.33 5.36 4.84 4.58 2255030735995063.64.8 5.88 5.48 5.4 56877420209795 9.52.6.54.08

More information

PERMANENT MAGNETS CHAPTER MAGNETIC POLES AND BAR MAGNETS

PERMANENT MAGNETS CHAPTER MAGNETIC POLES AND BAR MAGNETS CHAPTER 6 PERAET AGET 6. AGETIC POLE AD BAR AGET We have seen that a small current-loop carrying a current i, prouces a magnetic fiel B o 4 ji ' at an axial point. Here p ia is the magnetic ipole moment

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS This set of labs will focus on the structures that result from deformation in earth s crust, namely folds and faults. By the end of these labs you should be able

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

inflow outflow Part I. Regular tasks for MAE598/494 Task 1

inflow outflow Part I. Regular tasks for MAE598/494 Task 1 MAE 494/598, Fall 2016 Project #1 (Regular tasks = 20 points) Har copy of report is ue at the start of class on the ue ate. The rules on collaboration will be release separately. Please always follow the

More information

In the usual geometric derivation of Bragg s Law one assumes that crystalline

In the usual geometric derivation of Bragg s Law one assumes that crystalline Diffraction Principles In the usual geometric erivation of ragg s Law one assumes that crystalline arrays of atoms iffract X-rays just as the regularly etche lines of a grating iffract light. While this

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Answer sheet for question 1 Answer question 1 as soon as the sample arrives at your desk.

Answer sheet for question 1 Answer question 1 as soon as the sample arrives at your desk. EAS 233 Geologic structures. Final test. April 2012. 3 hours. Answer question 1 and 2 and three other questions. If you start more than the required number of questions, clearly delete the answers you

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity

1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity AP Physics Multiple Choice Practice Electrostatics 1. The electron volt is a measure of (A) charge (B) energy (C) impulse (D) momentum (E) velocity. A soli conucting sphere is given a positive charge Q.

More information

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically.

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically. NAME : F.5 ( ) MARS: /70 FORM FIVE PHYSICS TEST on MECHANICS Time Allowe: 70 minutes This test consists of two sections: Section A (structure type questions, 50 marks); Section B (multiple choice, 20 marks)

More information

ELECTRON DIFFRACTION

ELECTRON DIFFRACTION ELECTRON DIFFRACTION Electrons : wave or quanta? Measurement of wavelength an momentum of electrons. Introuction Electrons isplay both wave an particle properties. What is the relationship between the

More information

CRUSTAL DEFORMATION. Chapter 10

CRUSTAL DEFORMATION. Chapter 10 CRUSTAL DEFORMATION and dgeologic Structures t Chapter 10 Deformation Df Deformation involves: Stress the amount of force applied to a given area. Types of Stress: Confining Stress stress applied equally

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems

Construction of the Electronic Radial Wave Functions and Probability Distributions of Hydrogen-like Systems Construction of the Electronic Raial Wave Functions an Probability Distributions of Hyrogen-like Systems Thomas S. Kuntzleman, Department of Chemistry Spring Arbor University, Spring Arbor MI 498 tkuntzle@arbor.eu

More information

INTRODUCTION & PHASE SYSTEM

INTRODUCTION & PHASE SYSTEM INTRODUCTION & PHASE SYSTEM Dr. Professor of Civil Engineering S. J. College of Engineering, Mysore 1.1 Geotechnical Engineering Why? 1. We are unable to buil castles in air (yet)! 2. Almost every structure

More information

lecture 8 Methods of Structural Geology This lecture Mas Rabassers de Dalt (Spain) Mas Rabassers de Dalt (Spain)

lecture 8 Methods of Structural Geology This lecture Mas Rabassers de Dalt (Spain) Mas Rabassers de Dalt (Spain) This lecture Methods of Structural Geology lecture 8 Discuss the plotting exercise on Mas Rabassers de Dalt Look at folding related to shear zones Show an example of the application of new theory: Cap

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting Crustal Deformation AKA Structural geology (adapted from Brunkel, 2012) Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting How Rocks Deform: 4 Controls

More information

Part I. PRELAB SECTION To be completed before labs starts:

Part I. PRELAB SECTION To be completed before labs starts: Student Name: Physical Geology 101 Laboratory #13 Structural Geology II Drawing and Analyzing Folds and Faults Grade: Introduction & Purpose: Structural geology is the study of how geologic rock units

More information

Folds and Folding. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 3/4/ :15

Folds and Folding. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 3/4/ :15 Folds and Folding Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 3/4/2017 17:15 We Discuss Folds and Folding Fold Description Fold Classification

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

Solution. ANSWERS - AP Physics Multiple Choice Practice Kinematics. Answer

Solution. ANSWERS - AP Physics Multiple Choice Practice Kinematics. Answer NSWRS - P Physics Multiple hoice Practice Kinematics Solution nswer 1. Total istance = 60 miles, total time = 1.5 hours; average spee = total istance/total time 2. rea boune by the curve is the isplacement

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

Optimization of Geometries by Energy Minimization

Optimization of Geometries by Energy Minimization Optimization of Geometries by Energy Minimization by Tracy P. Hamilton Department of Chemistry University of Alabama at Birmingham Birmingham, AL 3594-140 hamilton@uab.eu Copyright Tracy P. Hamilton, 1997.

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically.

2.25 m. (a) Using Newton s laws of motion, explain why the student can gain an initial speed to leave the ground vertically. NAME : F.5 ( ) MARS: /70 FORM FIVE PHYSICS TEST on MECHANICS Time Allowe: 70 minutes This test consists of two sections: Section A (structure type questions, 50 marks); Section B (multiple choice, 20 marks)

More information

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments

Problem Solving 4 Solutions: Magnetic Force, Torque, and Magnetic Moments MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 004 Problem Solving 4 Solutions: Magnetic Force, Torque, an Magnetic Moments OJECTIVES 1. To start with the magnetic force on a moving

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

FOLDS fold fold trains fold belt Folded single surface - basic geometrical definitions hinge limbs hinge line fold axis

FOLDS fold fold trains fold belt Folded single surface - basic geometrical definitions hinge limbs hinge line fold axis 207 FOLDS The term fold is used when one or stacks of originally flat and planar surfaces such as sedimentary beds become bent or curved as a result of plastic (i.e. permanent) and ductile deformation.

More information

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides

Make graph of g by adding c to the y-values. on the graph of f by c. multiplying the y-values. even-degree polynomial. graph goes up on both sides Reference 1: Transformations of Graphs an En Behavior of Polynomial Graphs Transformations of graphs aitive constant constant on the outsie g(x) = + c Make graph of g by aing c to the y-values on the graph

More information

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building TECTONICS AND TECTONIC STRUCTURES Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building The plate theory Different stages are

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector Multivariable Calculus: Chapter 13: Topic Guie an Formulas (pgs 800 851) * line segment notation above a variable inicates vector The 3D Coorinate System: Distance Formula: (x 2 x ) 2 1 + ( y ) ) 2 y 2

More information

Problem Set #4: Folds and Folding Stereonet Analysis Due Tuesday, Nov. 22

Problem Set #4: Folds and Folding Stereonet Analysis Due Tuesday, Nov. 22 Geol 360 PS #4 Name Problem Set #4: Folds and Folding Stereonet Analysis Due Tuesday, Nov. 22 Supplies: a. Data: i. Compilation of bedding attitudes at Mt Baldy; BaldyBedding.txt ii. Compilation of bedding

More information

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field

Electric Potential. Slide 1 / 29. Slide 2 / 29. Slide 3 / 29. Slide 4 / 29. Slide 6 / 29. Slide 5 / 29. Work done in a Uniform Electric Field Slie 1 / 29 Slie 2 / 29 lectric Potential Slie 3 / 29 Work one in a Uniform lectric Fiel Slie 4 / 29 Work one in a Uniform lectric Fiel point a point b The path which the particle follows through the uniform

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation

Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation JOURNAL OF MATERIALS SCIENCE 34 (999)5497 5503 Thermal conuctivity of grae composites: Numerical simulations an an effective meium approximation P. M. HUI Department of Physics, The Chinese University

More information

shear zones Ductile shear zones can develop as a results of shearing (simple shear strain) or "squeezing" (pure shear strain).

shear zones Ductile shear zones can develop as a results of shearing (simple shear strain) or squeezing (pure shear strain). shear zones Ductile shear zones can develop as a results of shearing (simple shear strain) or "squeezing" (pure shear strain). Shear Zones Mylonite, or mylonitic zone is the central part of the shear zone

More information

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9

Prep 1. Oregon State University PH 213 Spring Term Suggested finish date: Monday, April 9 Oregon State University PH 213 Spring Term 2018 Prep 1 Suggeste finish ate: Monay, April 9 The formats (type, length, scope) of these Prep problems have been purposely create to closely parallel those

More information

Moving Charges And Magnetism

Moving Charges And Magnetism AIND SINGH ACADEMY Moving Charges An Magnetism Solution of NCET Exercise Q -.: A circular coil of wire consisting of turns, each of raius 8. cm carries a current of. A. What is the magnitue of the magnetic

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

Using An Introduction to Structural Methods - An Interactive CD-ROM - In and Out of the Classroom

Using An Introduction to Structural Methods - An Interactive CD-ROM - In and Out of the Classroom Using An to Structural Methods - An Interactive CD-ROM - In and Out of the Classroom Tekla A. Harms, Amherst College taharms@amherst.edu H. Robert Burger, Smith College rburger@email.smith.edu TYPE OF

More information

Physics 2212 GJ Quiz #4 Solutions Fall 2015

Physics 2212 GJ Quiz #4 Solutions Fall 2015 Physics 2212 GJ Quiz #4 Solutions Fall 215 I. (17 points) The magnetic fiel at point P ue to a current through the wire is 5. µt into the page. The curve portion of the wire is a semicircle of raius 2.

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

What Causes Rock to Deform?

What Causes Rock to Deform? Crustal Deformation Earth, Chapter 10 Chapter 10 Crustal Deformation What Causes Rock to Deform? Deformation is a general term that refers to all changes in the shape or position of a rock body in response

More information

Qubit channels that achieve capacity with two states

Qubit channels that achieve capacity with two states Qubit channels that achieve capacity with two states Dominic W. Berry Department of Physics, The University of Queenslan, Brisbane, Queenslan 4072, Australia Receive 22 December 2004; publishe 22 March

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

RFSS: Lecture 4 Alpha Decay

RFSS: Lecture 4 Alpha Decay RFSS: Lecture 4 Alpha Decay Reaings Nuclear an Raiochemistry: Chapter 3 Moern Nuclear Chemistry: Chapter 7 Energetics of Alpha Decay Geiger Nuttall base theory Theory of Alpha Decay Hinrance Factors Different

More information

MAPS AND CROSS SECTIONS (I)

MAPS AND CROSS SECTIONS (I) GG303 Lab 3 8/27/09 1 MAPS AND CROSS SECTIONS (I) I Main Topics A Three point problems B Rule of vees C Map interpretation and cross sections II Three point problems (see handout) A Three points define

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

Lab 6: Plate tectonics, structural geology and geologic maps

Lab 6: Plate tectonics, structural geology and geologic maps Geology 103 Name(s): Lab 6: Plate tectonics, structural geology and geologic maps Objective: To show the effects of plate tectonics on a large-scale set of rocks and to reconstruct the geological history

More information

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geodesics and the Theorem of Gauss-Bonnet

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geodesics and the Theorem of Gauss-Bonnet A P Q O B DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES 7. Geoesics an the Theorem of Gauss-Bonnet 7.. Geoesics on a Surface. The goal of this section is to give an answer to the following question. Question.

More information

STRUCTURAL ANALYSIS. Structural analysis jpb, 2017

STRUCTURAL ANALYSIS. Structural analysis jpb, 2017 STRUCTURAL ANALYSIS 269 Structural geology uses micro- and meso-scale structures found in the rocks to elaborate tools and methods enabling to identify structures too large to be directly observed, although

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

MATHEMATICS BONUS FILES for faculty and students

MATHEMATICS BONUS FILES for faculty and students MATHMATI BONU FIL for faculty an stuents http://www.onu.eu/~mcaragiu1/bonus_files.html RIVD: May 15, 9 PUBLIHD: May 5, 9 toffel 1 Maxwell s quations through the Major Vector Theorems Joshua toffel Department

More information

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis)

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis) Geology 101 Staple this part to part one of lab 6 and turn in Lab 6, part two: Structural geology (analysis) Recall that the objective of this lab is to describe the geologic structures of Cougar Mountain

More information

UNIT 4:Capacitors and Dielectric

UNIT 4:Capacitors and Dielectric UNIT 4:apacitors an Dielectric SF7 4. apacitor A capacitor is a evice that is capable of storing electric charges or electric potential energy. It is consist of two conucting plates separate by a small

More information

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE

Prof. Dr. Ibraheem Nasser electric_charhe 9/22/2017 ELECTRIC CHARGE ELECTRIC CHARGE Introuction: Orinary matter consists of atoms. Each atom consists of a nucleus, consisting of protons an neutrons, surroune by a number of electrons. In electricity, the electric charge

More information

Lecture Notes: March C.D. Lin Attosecond X-ray pulses issues:

Lecture Notes: March C.D. Lin Attosecond X-ray pulses issues: Lecture Notes: March 2003-- C.D. Lin Attosecon X-ray pulses issues: 1. Generation: Nee short pulses (less than 7 fs) to generate HHG HHG in the frequency omain HHG in the time omain Issues of attosecon

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Dip-Sequence Analysis

Dip-Sequence Analysis Chapter 9 Dip-Sequence Analysis 9.1 Introduction The three-dimensional geometry of a structure can be determined from the bedding attitudes measured in a single well bore or on a traverse through a structure.

More information

A simple model for the small-strain behaviour of soils

A simple model for the small-strain behaviour of soils A simple moel for the small-strain behaviour of soils José Jorge Naer Department of Structural an Geotechnical ngineering, Polytechnic School, University of São Paulo 05508-900, São Paulo, Brazil, e-mail:

More information

Ch.7 #4 7,11,12,18 21,24 27

Ch.7 #4 7,11,12,18 21,24 27 Ch.7 #4 7,,,8,4 7 4. Picture the Problem: The farmhan pushes the hay horizontally. 88 N Strategy: Multiply the force by the istance because in this case the two point along the same irection. 3.9 m Solution:

More information