Time-varying subduction and rollback velocities in slab stagnation and buckling

Size: px
Start display at page:

Download "Time-varying subduction and rollback velocities in slab stagnation and buckling"

Transcription

1 Time-varying subduction and rollback velocities in slab stagnation and buckling Hana Čížková Charles University in Prague Craig Bina Northwestern University Evanston

2 SLAB STAGNATION Fukao et al., 29

3 SLAB STAGNATION Obayashi et al., 1997 Huang and Zhao, 26 Widiyantoro, 1997

4 TRENCH ROLLBACK ADVANCE old slabs cold and heavy rollback BUT: cold old slabs are stiff good stress guide advance (Gerault et al., 212) Husson, 212 rollback is controlled primarily by mantle drag, slab rheology plays only minor role

5 TRENCH VELOCITY Funiciello et al., 28

6 NUMERICAL MODELING TRENCH ROLLBACK Target: find the parameters of slabs (rheological parameters, age?) that may control the trench migration Main focus: rheological description effects of nonlinear rheology

7 NUMERICAL MODELING TRENCH ROLLBACK Target: find the parameters of slabs (rheological parameters, age?) that may control the trench migration Main focus: rheological description effects of nonlinear rheology??? FREE PARAMETERS OF RHEOLOGICAL DESCRIPTION??? Activation parameters, lower mantle viscosity jump

8 Estimate of the lower mantle viscosity based on sinking speed of detached slabs + t break t ini depth (km) S&C, log η

9 MODEL: COMPOSITE RHEOLOGY Diffusion creep ε diff = A diff σ E diff + pv exp RT diff Dislocation creep ε disl = A disl n σ E disl + pv exp RT disl Stress limiter ε σ sl = CL σ L n L

10 MODEL: RHEOLOGICAL PARAMETERS Crust Constant viscosity 1 2 Pa s Upper mantle Activation parameters according to Hirth and Kohlstedt (23) Yield stress.5 GPa Lower mantle Diffusion creep A-family V diff = 1.1x1-6 m 3 mol -1 B-family V diff = 2.2x1-6 m 3 mol -1 (PPV: η PPV = 1 21 Pa s)

11 MODEL: VISCOSITY INCREASE AT 66 km A-family B-family F&M, 1996 depth (km) 1 2 depth (km) 1 2 S&C, 26 depth (km) 1 2 P, 1999 S&C, 26 M&F, 24 3 S&C, log η log η log η

12 MODEL: THERMAL EXPANSIVITY 1 Depth (km) 2 Katsura (21) 3 2E-5 4E-5 6E-5 α

13 RESULTS t = 4 Myr surface CMB log η

14 RESULTS: AGE vs. DEPTH A family Depth (km) 1 2 Depth (km) S&C, log η B family S&C, log η Depth (km) , , , Age (Myr) 7, , , Čížková et al., PEPI 212

15 RESULTS: BOTTOM AND TOP OF SLAB REMNANTS 3, , weak PPV Depth (km) Age (Myr) Van der Meer et al. (21) Čížková et al., PEPI 212

16 3 r (km) 2 family A preferred profile log (η)

17 MODEL SETUP ROLLBACK AND SLAB STAGNATION STUDY weak crust Sinking slabs surface 41 km 66 km locked overriding plate PPV CMB weak crust impermeable free-slip surface 41 km second ridge Rollback and stagnation 66 km PPV CMB

18 MODEL SETUP ROLLBACK AND SLAB STAGNATION STUDY Initial position of the trench surface CMB log η

19 MODEL SETUP ROLLBACK AND SLAB STAGNATION STUDY Initial position of the trench surface CMB log η 145 km

20 RESULTS rollback not allowed log η rollback

21 RESULTS plate / rollback velocity (cm/yr) plate velocity rollback velocity 4 8 time since passing 4 km (Myr) log η rollback

22 RESULTS velocity horizontal vertical absolute value 29 km plate / rollback velocity (cm/yr) plate velocity rollback velocity 4 8 time since passing 4 km (Myr) ± 7 cm/yr ± 7 cm/yr 1cm/yr

23 RESULTS viscosity abs(velocity) stream function plate / rollback velocity (cm/yr) plate velocity rollback velocity 4 8 time since passing 4 km (Myr)

24 RESULTS: EFFECT OF THE LOWER MANTLE VISCOSITY 3 r (km) 2 A A - 2xLM A - 1xLM A - LM: log (η)

25 RESULTS snapshot after 5 Myr Effect of the lower mantle viscosity η LM = 3, η LM = 6, η LM = 3,1.1 23

26 RESULTS: EFFECT OF THE CRUSTAL VISCOSITY η crust = 1 21 Pas η crust = Pas η crust = Pas η crust = 1 2 Pas η crust = 1 19 Pas log (η)

27 RESULTS snapshot after 5 Myr Effect of the crustal viscosity η crust = 1 19 η crust = 1 2 η crust = η crust = snapshot after 9 Myr η crust = 1 2 η crust = η crust = η crust = 1 21 penetrating slabs

28 RESULTS snapshot after 5 Myr Effect of the yield stress age 7 Myr age 1 Myr age 15 Myr σ y = σ y = σ y = 1 9

29 RESULTS plate and rollback velocities plate / rollback velocity (cm/yr) plate velocity rollback velocity plate / rollback velocity (cm/yr) plate R13-2xLM rollback R13-2xLM plate / rollback velocity (cm/yr) plate R13-1xLM rollback R13-1xLM lower mantle viscosity 4 8 time since passing 4 km (Myr) 4 8 time since passing 4 km(myr) 4 8 time since passing 4 km(myr) plate / rollback velocity (cm/yr) max. 5 cm/yr plate 1^19 rollback 1^19 plate / rollback velocity (cm/yr) plate 2x1^2 rollback 2x1^2 plate / rollback velocity (cm/yr) plate 5x1^2 rollback 5x1^2 plate / rollback velocity (cm/yr) plate 1^21 rollback 1^21 crust viscosity time since passing 4 km (Myr) 4 8 time since passing 4 km (Myr) 4 8 time since passing 4 km (Myr) 4 8 time since passing 4 km (Myr) plate / rollback velocity (cm/yr) plate 2e8 rollback 2e8 plate / rollback velocity (cm/yr) plate velocity rollback velocity plate / rollback velocity (cm/yr) plate 1e9 rollback 1e9 yield stress 4 8 time since passing 4 km (Myr) 4 8 time since passing 4 km (Myr) 4 8 time since passing 4 km (Myr)

30 RESULTS snapshot after 5 Myr Effect of the Clapeyron slope γ 41 = 1 MPa/K γ 41 = 2 MPa/K γ 41 = 3 MPa/K γ 41 = 4MPa/K plate/rollback velocity (cm/yr) plate velocity rollback velocity 1E+23 1E+22 1E+21 1E+2 η astenosphere (Pas) plate / rollback velocity (cm/yr) plate velocity rollback astenospheric viscosity 1E+23 1E+22 1E+21 1E+2 η ast (Pa s) 4 8 Time since passing 4 km (Myr) 4 8 time since passing 4 km (Myr)

31 RESULTS snapshot after 5 Myr Effect of the Clapeyron slope γ 41 = 1 MPa/K γ 41 = 2 MPa/K γ 41 = 3 MPa/K γ 41 = 4MPa/K plate velocity (cm/yr) plate velocity gamma_4 = 3 MPa/K 1 MPa/K 2 MPa/K 4 MPa/K rollback velocity (cm/yr) rollback velocity 3 MPa/K 1 MPa/K 2 MPa/K 4 MPa/K 4 8 time since passing 4 km (Myr) time since passing 4 km (Myr)

32 RESULTS trench distance after 6 Myr trench retreat (km) trench retreat (km) E+23 2E+23 3E+23 4E+23 lower mantle viscosity (Pa s) 1E+19 1E+2 1E+21 Crustal viscosity (Pa s) age 15 Myr 2 trench retreat (km) age 1 Myr age 7 Myr trench retreat (km) E+8 4E+8 6E+8 8E+8 1E+9 yield stress (Pa) Clapeyron slope 41 km (MPa/K)

33 Obayashi et al., 1997 Huang and Zhao, 26 Widiyantoro, 1997

34 CONCLUSIONS SLAB STAGNATION AND ROLLBACK all modes display rollback (effect of ridge push?) relation between plate velocity and rollback most models predict slab stagnation in the transition zone slow slabs (due to higher friction on the contact) have slower rollback and penetrate to the lower mantle effect of higher astenospheric viscosity? more negatively buoyant slabs have faster rollback stiffer slabs have faster rollback (no reduction due to the periods of increased subduction velocity) implications of rollback periodicity to exhumation

Why does the Nazca plate slow down since the Neogene? Supplemental Information

Why does the Nazca plate slow down since the Neogene? Supplemental Information GSA DATA REPOSITORY 2013004 Why does the Nazca plate slow down since the Neogene? Supplemental Information Javier Quinteros a,b,, Stephan V. Sobolev a,c a Deutsches GeoForschungsZentrum GFZ, Telegrafenberg,

More information

Why cold slabs stagnate in the transition zone

Why cold slabs stagnate in the transition zone GSA Data Repository 2015085 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Why cold slabs stagnate in the transition zone Scott D. King 1,2, Daniel J. Frost 2, and David C. Rubie 2 1 Department of Geosciences,

More information

Viscosity in transition zone and lower mantle: Implications for slab penetration

Viscosity in transition zone and lower mantle: Implications for slab penetration Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl043140, 2010 Viscosity in transition zone and lower mantle: Implications for slab penetration J. Quinteros, 1,2 S.

More information

The importance of the South-American plate motion and the Nazca Ridge subduction on flat subduction below South Peru

The importance of the South-American plate motion and the Nazca Ridge subduction on flat subduction below South Peru Chapter 7 The importance of the South-American plate motion and the Nazca Ridge subduction on flat subduction below South Peru Abstract Flat subduction near Peru occurs only where the thickened crust of

More information

The in uence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity

The in uence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity Earth and Planetary Science Letters 199 (2002) 447^457 www.elsevier.com/locate/epsl The in uence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity Hana

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2015) 201, 172 192 GJI Geodynamics and tectonics doi: 10.1093/gji/ggv011 Trench migration and overriding plate stress in dynamic subduction models A.

More information

Marine Geophysics. Plate tectonics. Dept. of Marine Sciences, Ocean College, Zhejiang University. Nov. 8, 2016

Marine Geophysics. Plate tectonics. Dept. of Marine Sciences, Ocean College, Zhejiang University. Nov. 8, 2016 Marine Geophysics Plate tectonics 何小波 Dept. of Marine Sciences, Ocean College, Zhejiang University Nov. 8, 2016 Ocean College (ZJU) Plate tectonics xbhe@zju.edu.cn 1 / 1 Mantle flow and Plate tectonics

More information

Subduction II Fundamentals of Mantle Dynamics

Subduction II Fundamentals of Mantle Dynamics Subduction II Fundamentals of Mantle Dynamics Thorsten W Becker University of Southern California Short course at Universita di Roma TRE April 18 20, 2011 Rheology Elasticity vs. viscous deformation η

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary information: Our 1080 km x 360 km model setup includes a 7 km thick oceanic crust adjacent to a 60 km thick, 250 km wide orogenic crust. Both the oceanic and the

More information

Citation for final published version: Publishers page: <

Citation for final published version: Publishers page:   < This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/59109/ This is the author s version of a work that was submitted to / accepted

More information

Numerical Simulation of the Thermal Convection and Subduction Process in the Mantle

Numerical Simulation of the Thermal Convection and Subduction Process in the Mantle Chapter 1 Earth Science Numerical Simulation of the Thermal Convection and Subduction Process in the Mantle Project Representative Yoshio Fukao Institute for Research on Earth Evolution, Japan Agency for

More information

Supplement of The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes

Supplement of The influence of upper-plate advance and erosion on overriding plate deformation in orogen syntaxes Supplement of Solid Earth, 9, 127 1224, 218 https://doi.org/1.5194/se-9-127-218-supplement Author(s) 218. This work is distributed under the Creative Commons Attribution 4. License. Supplement of The influence

More information

Plate tectonics. Chapter Slab pull. Dynamics of the Mantle and Lithosphere

Plate tectonics. Chapter Slab pull. Dynamics of the Mantle and Lithosphere Chapter 6 In a number of aspects the Earth s mantle can be regarded as a fluid that shows simple fluid-dynamical behavior. or instance, the mantle of the Earth is probably showing a form of convection.

More information

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10

Lecture 2: Deformation in the crust and the mantle. Read KK&V chapter 2.10 Lecture 2: Deformation in the crust and the mantle Read KK&V chapter 2.10 Tectonic plates What are the structure and composi1on of tectonic plates? Crust, mantle, and lithosphere Crust relatively light

More information

Thermal-Mechanical Behavior of Oceanic Transform Faults

Thermal-Mechanical Behavior of Oceanic Transform Faults Presented at the COMSOL Conference 2008 Boston Thermal-Mechanical Behavior of Oceanic Transform Faults COMSOL Conference - Boston, Massachusetts October 2008 Emily C. Roland - MIT/WHOI Joint Program Mark

More information

Benchmarks for subduction zone models Subduction zone workshop, University of Michigan, July 2003

Benchmarks for subduction zone models Subduction zone workshop, University of Michigan, July 2003 Introduction Benchmarks for subduction zone models Subduction zone workshop, University of Michigan, July 2003 In early October 2002 a group of researchers met at the University of Michigan at Ann Arbor,

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 22 January 2015 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Agrusta, R. and van Hunen,

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2017) 208, 491 507 Advance Access publication 2016 October 14 GJI Geodynamics and tectonics doi: 10.1093/gji/ggw392 The effect of a power-law mantle

More information

Earth and Planetary Science Letters

Earth and Planetary Science Letters Earth and Planetary Science Letters 302 (2011) 27 37 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Continental collision and

More information

Studies of Arc Volcanism and Mantle Behavior in Subduction Zones

Studies of Arc Volcanism and Mantle Behavior in Subduction Zones 1 Studies of Arc Volcanism and Mantle Behavior in Subduction Zones Using COMSOL Lee, Changyeol Faculty of fearth and denvironmental lsciences Chonnam National University, Gwangju, Republic of Korea Sponsor:

More information

Earth and Planetary Science Letters

Earth and Planetary Science Letters Earth and Planetary Science Letters 275 (2008) 43 53 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Long-wavelength character

More information

Modeling the Dynamics of Subducting Slabs

Modeling the Dynamics of Subducting Slabs ANNUAL REVIEWS Further Click here for quick links to Annual Reviews content online, including: Other articles in this volume Top cited articles Top downloaded articles Our comprehensive search Annu. Rev.

More information

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults Excerpt from the Proceedings of the COMSOL Conference 2008 Boston Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults Emily C Roland *1, Mark Behn,2 and Greg Hirth 3 1 MIT/WHOI

More information

Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake

Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake Trench motion-controlled slab morphology and stress variations: Implications for the isolated 2015 Bonin Islands deep earthquake Ting Yang*, Michael Gurnis, Zhongwen Zhan Seismological Laboratory, California

More information

Numerical Simulation of the Mantle Convection and Subduction Process

Numerical Simulation of the Mantle Convection and Subduction Process Numerical Simulation of the Mantle Convection and Subduction Process Project Representative Yoshio Fukao Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology

More information

Plate Tectonics 2. Ocean crust forms at mid-ocean ridges (with magnetic stripes )

Plate Tectonics 2. Ocean crust forms at mid-ocean ridges (with magnetic stripes ) Plate Tectonics 2 Ocean crust forms at mid-ocean ridges (with magnetic stripes )! some more evidence for plate tectonics: (1)! magnetic stripes (conclusion) and (2) seeing it live with high-precision GPS!

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Impact-driven subduction on the Hadean Earth

Impact-driven subduction on the Hadean Earth In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO3029 Impact-driven subduction on the Hadean Earth C. O Neill, S. Marchi, S. Zhang and W. Bottke NATURE GEOSCIENCE

More information

Numerical comparison of different convergent plate contacts: subduction channel and subduction fault

Numerical comparison of different convergent plate contacts: subduction channel and subduction fault Geophys. J. Int. (26) doi: 1.1111/j.1365-246X.26.3498.x Numerical comparison of different convergent plate contacts: subduction channel and subduction fault Roberta De Franco, Rob Govers and Rinus Wortel

More information

Crust : wet quartzite Arc root : dry olivine mantle = 2840 kg/m km = 3300 kg/m km (Arc root thickness) 280 km (Arc width)

Crust : wet quartzite Arc root : dry olivine mantle = 2840 kg/m km = 3300 kg/m km (Arc root thickness) 280 km (Arc width) Crust : wet quartzite Arc root : dry olivine mantle = 2840 kg/m 3 41.5 km = 3300 kg/m 3 o 118.5 km Temperature (C) free surface z = 0 550 1350 160 km (Arc root thickness) 280 km (Arc width) sub-lithospheric

More information

Influence of surrounding plates on 3D subduction dynamics

Influence of surrounding plates on 3D subduction dynamics Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07303, doi:10.1029/2008gl036942, 2009 Influence of surrounding plates on 3D subduction dynamics P. Yamato, 1 L. Husson, 1 J. Braun, 1

More information

Dynamics of continental collision: Influence of the plate contact

Dynamics of continental collision: Influence of the plate contact See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227643245 Dynamics of continental collision: Influence of the plate contact Article in Geophysical

More information

Slabs, plumes and their interaction: new insights from global anisotropy tomography

Slabs, plumes and their interaction: new insights from global anisotropy tomography Slabs, plumes and their interaction: new insights from global anisotropy tomography Ana M G Ferreira Seismological Laboratory, Department of Earth Sciences University College London, UK Sung-Joon Chang,

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 9, Number 2 22 February 2008 Q02014, doi: ISSN: 1525-2027 Slab stiffness control of

More information

Link between the Great Faults of Asia, con7nental plate tectonics and con7nental subduc7on Anne Replumaz

Link between the Great Faults of Asia, con7nental plate tectonics and con7nental subduc7on Anne Replumaz Great Earthquakes: Observa1ons and modeling Link between the Great Faults of Asia, con7nental plate tectonics and con7nental subduc7on Anne Replumaz 1 Great Earthquakes, Great Faults cu

More information

PUBLICATIONS. Geophysical Research Letters

PUBLICATIONS. Geophysical Research Letters PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Key Points: Variation in trench retreat velocity controls the observed slab morphology in Izu-Bonin subduction zone The 30 May 2015 Bonin Islands

More information

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7),

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7), Journal of Applied Mathematics and Computation (JAMC), 2018, 2(7), 266-270 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645 ISSN Print:2576-0653 The Solution Of 2D Hydrodynamic Equations

More information

Introduction to Geology Spring 2008

Introduction to Geology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.001 Introduction to Geology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. RHEOLOGICAL MODELS Rheology

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 17 August 2015 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Di Giuseppe, E. and van Hunen,

More information

Subduction dynamics and Mediterranean mantle flow

Subduction dynamics and Mediterranean mantle flow Subduction dynamics and Mediterranean mantle flow Thorsten W. Becker University of Southern California, Los Angeles MEDUSA Workshop Kalamata, June 2005 Collaborators Donna Blackman (UCSD) Alwina Enns (Frankfurt)

More information

Supplementary information on the West African margin

Supplementary information on the West African margin Huismans and Beaumont 1 Data repository Supplementary information on the West African margin Interpreted seismic cross-sections of the north Angolan to south Gabon west African passive margins 1-3, including

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

A modelling study of vertical surface displacements at convergent plate margins

A modelling study of vertical surface displacements at convergent plate margins Geophys. J. Int. (2001) 147, 415 427 A modelling study of vertical surface displacements at convergent plate margins Susanne J. H. Buiter,* Rob Govers and M. J. R. Wortel Vening Meinesz Research School

More information

Rheology: What is it?

Rheology: What is it? Schedule Rheology basics Viscous, elastic and plastic Creep processes Flow laws Yielding mechanisms Deformation maps Yield strength envelopes Constraints on the rheology from the laboratory, geology, geophysics

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2013) Geophysical Journal International Advance Access published March 15, 2013 A numerical investigation of continental collision styles doi: 10.1093/gji/ggt068

More information

PUBLICATIONS. Geochemistry, Geophysics, Geosystems

PUBLICATIONS. Geochemistry, Geophysics, Geosystems PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE 1.12/214GC5681 Key Points: Instability of cratonic lithosphere with non-newtonian rheology is studied The instability is episodic and

More information

Tectonics and Convection

Tectonics and Convection Tectonics and Convection 1. Historical introduction 2. Surface kinematics 3. Subduction dynamics 4. Subduction dynamics in their ecosystems 5. A world tour of horizontal tectonics 6. Going vertical: Dynamic

More information

Supplementary Material for. Mantle induced subsidence and compression in SE Asia

Supplementary Material for. Mantle induced subsidence and compression in SE Asia Supplementary Material for Mantle induced subsidence and compression in SE Asia Ting Yang 1 *, Michael Gurnis 1, Sabin Zahirovic 2 1 Seismological Laboratory, California Institute of Technology, Pasadena,

More information

SUBDUCTION DYNAMICS AND MANTLE TOMOGRAPHY BENEATH JAPAN

SUBDUCTION DYNAMICS AND MANTLE TOMOGRAPHY BENEATH JAPAN 神戸大学都市安全研究センター研究報告, 第 20 号, 平成 28 年 3 月 SUBDUCTION DYNAMICS AND MANTLE TOMOGRAPHY BENEATH JAPAN Vlad Constantin MANEA 1) Shoichi YOSHIOKA 2) Marina MANEA 3) Abstract: Tomographic images of the Japanese

More information

Rheology of the Mantle and Plates (part 1): Deformation mechanisms and flow rules of mantle minerals

Rheology of the Mantle and Plates (part 1): Deformation mechanisms and flow rules of mantle minerals (part 1): Deformation mechanisms and flow rules of mantle minerals What is rheology? Rheology is the physical property that characterizes deformation behavior of a material (solid, fluid, etc) solid mechanics

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

8 th Grade Campus Assessment- NSMS Plate Tectonics

8 th Grade Campus Assessment- NSMS Plate Tectonics 1. A group of students were discussing plate tectonics in their science class. All of the following statements about the tectonic plates are incorrect EXCEPT: A. The Eurasian Plate consists of the Asian

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

Seismic Anisotropy and Mantle Flow in the Izu-Bonin-Mariana Subduction System

Seismic Anisotropy and Mantle Flow in the Izu-Bonin-Mariana Subduction System Seismic Anisotropy and Mantle Flow in the Izu-Bonin-Mariana Subduction System Matthew J. Fouch (Department of Geological Sciences, Arizona State University, Tempe, AZ 85287, email: fouch@asu.edu) INTRODUCTION

More information

Development of Anisotropic Structure by Solid-State Convection in the Earth s Lower Mantle

Development of Anisotropic Structure by Solid-State Convection in the Earth s Lower Mantle 1 Development of Anisotropic Structure by Solid-State Convection in the Earth s Lower Mantle Allen K. McNamara *, Peter E. van Keken, * & Shun-Ichiro Karato ** * Department of Geological Sciences, University

More information

The influence of short wavelength variations in viscosity on subduction dynamics

The influence of short wavelength variations in viscosity on subduction dynamics 1 Introduction Deformation within the earth, driven by mantle convection due primarily to cooling and subduction of oceanic lithosphere, is expressed at every length scale in various geophysical observations.

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2013) 195, 47 66 Advance Access publication 2013 July 25 doi: 10.1093/gji/ggt257 Three-dimensional dynamic laboratory models of subduction with an overriding

More information

Geodynamics Lecture 10 The forces driving plate tectonics

Geodynamics Lecture 10 The forces driving plate tectonics Geodynamics Lecture 10 The forces driving plate tectonics Lecturer: David Whipp! david.whipp@helsinki.fi!! 2.10.2014 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Describe how thermal convection

More information

What is the Rate-Limiting Step In furthering our Understanding of Subduction Dynamics?

What is the Rate-Limiting Step In furthering our Understanding of Subduction Dynamics? What is the Rate-Limiting Step In furthering our Understanding of Subduction Dynamics? Magali Billen - Katrina Arredondo, - Juan Rodriguez, - Erin Burkett, --Margerete Jadamec Processes in Series are Rate-Limited

More information

Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries

Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries What is the process by which oceanic crust sinks beneath a deep-ocean Why does oceanic crust sink beneath continental crust

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

1.1 Modeling Mantle Convection With Plates. Mantle convection and associated plate tectonics are principal controls on the thermal and

1.1 Modeling Mantle Convection With Plates. Mantle convection and associated plate tectonics are principal controls on the thermal and 1 Chapter 1 Introduction Portions originally published in: Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., & Ghattas, O. (2010). The dynamics of plate tectonics and mantle flow: From

More information

C3.4.1 Vertical (radial) variations in mantle structure

C3.4.1 Vertical (radial) variations in mantle structure C3.4 Mantle structure Mantle behaves as a solid on short time scales (seismic waves travel through it and this requires elastic behaviour). Over geological time scales the mantle behaves as a very viscous

More information

Earth Movement and Resultant Landforms

Earth Movement and Resultant Landforms Earth Movement and Resultant Landforms Structure of the Earth Lithosphere : earth s crust Asthenosphere : upper mantle zone where material is near its melting point & acts almost like liquid (appprox.

More information

Along the center of the mid-ocean ridge is a rift valley that forms when the plates separate.

Along the center of the mid-ocean ridge is a rift valley that forms when the plates separate. Newly formed rock from rising magma rises above sea floor and forms mountain ranges known as midocean ridges. Along the center of the mid-ocean ridge is a rift valley that forms when the plates separate.

More information

The combined effects of continents and the 660 km depth endothermic phase boundary on the thermal regime in the mantle

The combined effects of continents and the 660 km depth endothermic phase boundary on the thermal regime in the mantle 1 2 3 The combined effects of continents and the 66 km depth endothermic phase boundary on the thermal regime in the mantle 4 5 6 G. Sinha, a S.L. Butler a, a Department of Geological Sciences, University

More information

Speculations on the impact of subduction initiation on the. Earth System

Speculations on the impact of subduction initiation on the. Earth System 1 2 3 4 5 Speculations on the impact of subduction initiation on the Earth System F.O. Marques 1,2*, B.J.P. Kaus 2 1 Universidade de Lisboa, 1749-016 Lisboa, Portugal 2 Institut für Geowissenschaften,

More information

Modeling the interior dynamics of terrestrial planets

Modeling the interior dynamics of terrestrial planets Modeling the interior dynamics of terrestrial planets Paul J. Tackley, ETH Zürich Fabio Crameri, Tobias Keller, Marina Armann, Hein van Heck, Tobias Rolf Talk Plan Introduction Tectonic modes: plates,

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Geodynamics. Heat conduction and production Lecture Heat production. Lecturer: David Whipp

Geodynamics. Heat conduction and production Lecture Heat production. Lecturer: David Whipp Geodynamics Heat conduction and production Lecture 7.3 - Heat production Lecturer: David Whipp david.whipp@helsinki.fi Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Discuss radiogenic heat

More information

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Rheology III Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Ideal materials fall into one of the following categories:

More information

The Theory of Plate Tectonics

The Theory of Plate Tectonics Plate Tectonics Objectives Describe how plates move. Explain the features of plate tectonics. Describe the types of plate boundaries and the features that can form and events that can occur at each. The

More information

From subduction to collision: Control of deep processes on the evolution of convergent plate boundary

From subduction to collision: Control of deep processes on the evolution of convergent plate boundary JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B4, 2208, doi:10.1029/2002jb001943, 2003 From subduction to collision: Control of deep processes on the evolution of convergent plate boundary Vincent Regard,

More information

Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga

Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B6, 2288, doi:10.1029/2002jb002161, 2003 Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga A. Guest 1 and G. Schubert

More information

Theory of Plate Tectonics

Theory of Plate Tectonics Theory of Plate Tectonics The Theory of Plate Tectonics Plate tectonics is the theory that the Earth's lithosphere is divided into tectonic plates that move around on top of the asthenosphere. The plates

More information

Earth as a planet: Interior and Surface layers

Earth as a planet: Interior and Surface layers Earth as a planet: Interior and Surface layers Bibliographic material: Langmuir & Broecker (2012) How to build a habitable planet Internal structure of the Earth: Observational techniques Seismology Analysis

More information

The viability and style of the modern plate-tectonic subduction process in a hotter Earth

The viability and style of the modern plate-tectonic subduction process in a hotter Earth Chapter 8 The viability and style of the modern plate-tectonic subduction process in a hotter Earth 8.1 Introduction It is widely believed that the Earth has been cooling steadily, and was warmer during

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 3, Number 11 16 November 2002 1067, doi:10.1029/2001gc000238 ISSN: 1525-2027 Slabs

More information

Dynamics of outer-rise faulting in oceanic-continental subduction systems

Dynamics of outer-rise faulting in oceanic-continental subduction systems Article Volume 14, Number 7 29 July 2013 doi: ISSN: 1525-2027 Dynamics of outer-rise faulting in oceanic-continental subduction systems John B. Naliboff Department of Geology, University of California,

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2011) 184, 991 1008 doi: 10.1111/j.1365-246X.2010.04896.x Subduction initiation along the inherited weakness zone at the edge of a slab: Insights from

More information

Whole Mantle Convection

Whole Mantle Convection Whole Mantle Convection Overview 1. Evidence for whole mantle convection 2. Model of whole mantle convection reconciling geophysical and geochemical data Transition Zone Water Filter Model 3. Evidence

More information

Geodynamics of congested subduction zones - implications for evolution of the Tasmanides

Geodynamics of congested subduction zones - implications for evolution of the Tasmanides Geodynamics of congested subduction zones - implications for evolution of the Tasmanides Pete Betts - School of Earth, Atmosphere, and environment, Monash University Louis Moresi Department of Earth Sciences,

More information

Chapter. Graphics by Tasa Graphic Arts. Inc.

Chapter. Graphics by Tasa Graphic Arts. Inc. Earth Chapter Plate Science 9 Tectonics Graphics by Tasa Graphic Arts. Inc. 1 I. Earth s surface is made up of lithospheric plates. A. Lithospheric plates are composed of the crust and part of the upper

More information

Lecture Plate Boundaries. Present day movement, accretion, reformation, segregation

Lecture Plate Boundaries. Present day movement, accretion, reformation, segregation Lecture Plate Boundaries Present day movement, accretion, reformation, segregation Fig. 4-4 Three types of plate boundaries 1. Divergent 2. Convergent 3. Transform Type of boundary between plates: Constructive

More information

Summary and Conclusions

Summary and Conclusions Chapter 9 Summary and Conclusions 9.1 Summary The contents of this thesis revolve around the question of what type of geodynamics was active in the Early Earth and other terrestrial planets. The geology

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO1521 Possible links between long-term geomagnetic variations and whole-mantle convection processes Biggin, A.J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T.H., van der

More information

The influence of phase boundary deflection on velocity anomalies of stagnant slabs in the transition zone

The influence of phase boundary deflection on velocity anomalies of stagnant slabs in the transition zone GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 18, 1965, doi:10.1029/2003gl017754, 2003 The influence of phase boundary deflection on velocity anomalies of stagnant slabs in the transition zone K. Chambers

More information

Three-dimensional instantaneous mantle flow induced by subduction. Dip. Scienze Geologiche, Universita degli Studi Roma TRE, Rome, Italy

Three-dimensional instantaneous mantle flow induced by subduction. Dip. Scienze Geologiche, Universita degli Studi Roma TRE, Rome, Italy Three-dimensional instantaneous mantle flow induced by subduction C. Piromallo (1), T.W. Becker (2), F. Funiciello (3) and C. Faccenna (3) (1) Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

More information

Physics of the Earth and Planetary Interiors

Physics of the Earth and Planetary Interiors Physics of the Earth and Planetary Interiors 173 (2009) 354 364 Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi The

More information

Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab

Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific slab GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L01302, doi:10.1029/2007gl031658, 2008 Topography of the 660-km discontinuity beneath northeast China: Implications for a retrograde motion of the subducting Pacific

More information

SAC Geography Form 2 Chapter 3: Plate Tectonics Topic 3: Plate Movement

SAC Geography Form 2 Chapter 3: Plate Tectonics Topic 3: Plate Movement What causes an earthquake? Plate movement causes pressure to build up along faults, or breaks, in the earth's crust. When the rocks cannot take any more pressure, the rock layers shift and an earthquake

More information

Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification

Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification Multi-Modal Flow in a Thermocoupled Model of the Antarctic Ice Sheet, with Verification Craig Lingle 1 Jed Brown 2 Ed Bueler 2 1 Geophysical Institute University of Alaska Fairbanks, USA 2 Department of

More information

Data Repository Hampel et al., page 1/5

Data Repository Hampel et al., page 1/5 GSA DATA REPOSITORY 2138 Data Repositor Hampel et al., page 1/5 SETUP OF THE FINITE-ELEMENT MODEL The finite-element models were created with the software ABAQUS and consist of a 1-km-thick lithosphere,

More information

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions:

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions: Geology 101 Origin of Magma From our discussions of the structure of the interior of the Earth, it is clear that the upper parts of the Earth (crust and mantle) are mostly solid because s-waves penetrate

More information

The anisotropic and rheological structure of the oceanic upper mantle from a simple model of plate shear

The anisotropic and rheological structure of the oceanic upper mantle from a simple model of plate shear Geophys. J. Int. (24) 158, 287 296 doi: 1.1111/j.1365-246X.24.225.x The anisotropic and rheological structure of the oceanic upper mantle from a simple model of plate shear Noah S. Podolefsky, Shijie Zhong

More information

The continental lithosphere

The continental lithosphere Simplicity to complexity: The continental lithosphere Reading: Fowler p350-377 Sampling techniques Seismic refraction Bulk crustal properties, thickness velocity profiles Seismic reflection To image specific

More information

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions:

Most mafic magmas come from the upper mantle and lower crust. This handout will address five questions: IDS 102 Origin of Magma From our discussions of the structure of the interior of the Earth, it is clear that the upper parts of the Earth (crust and mantle) are mostly solid because s-waves penetrate those

More information