Large-scale multi-physics earthquake scenarios with the ADER-DG method on modern supercomputers

Size: px
Start display at page:

Download "Large-scale multi-physics earthquake scenarios with the ADER-DG method on modern supercomputers"

Transcription

1 Largescale multiphysics earthquake scenarios with the ADERDG method on modern supercomputers Stephanie Wollherr, Dr. AliceAgnes Gabriel, Dr. Betsy Madden, Thomas Ulrich LudwigsMaximilians Universität (LMU) München in collaboration with

2 Overview Challenges in simulating earthquakes The ADERDG software package SeisSol Optimization for modern supercomputers New physical extensions 2004 Sumatra Andaman earthquake

3 Introduction What is an earthquake? frictional failure of brittle solids under compression on a zone of weakness (= fault) fundamental understanding of earthquake source processes coupled to seismic wave propagation using numerical models which physical processes lead to failure of rocks? under which conditions does an earthquake result in a devastating event? physicsbased seismic hazard assessment Community fault model for California including seismicity. Plesch et al. (2007)

4 Earthquake rupture simulations multiphysics approach: coupling of frictional failure on a predefined fault surface to seismic wave propagation What do we need to model realistic earthquakes? threedimensional properties of the subsurface Earth structure including potentially complex fault geometry as well as surface structure (topography, bathymetry) frictional constitutive relationship, initial fault strength and tectonic background stress 3D structure of the material density Landers fault system discretized by triangular elements Topography of the Sumatra region (GEBCO)

5 Challenges Why do we need HPC? resolving the engineering relevant frequency content of the seismic wave field (020 Hz) and its interaction with Earth structure, nonlinear rheologies and frictional failure on the fault highorder accurate numerical methods mutliscales: from a couple of 100 kilometers to meter scales on the fault large meshes with over 100 of millions of elements I/O requirements: efficient initialization of initial conditions highresolution output of the 3D wavefield and source dynamics Visualization of the abs.particle velocity around the Landers fault system

6 SeisSol an ADERDG based software package Solving the elastic waveequation... with an Arbitrary HighOrder DERivative (ADER) in time and a modal Discontinuous Galerkin (DG) method in space FE approach but discontinuities at element interfaces communication between elements by upwind fluxes (exact Riemann solver) purely local scheme highorder accuracy in space and time based on unstructured tetrahedral meshes originally developed at the LMU (Käser&Dumbser, 2006), optimized in collaboration with TU Munich Open source (github.com/seissol)

7 SeisSol an ADERDG based software package with dynamic rupture internal boundary condition handles coupling to frictional failure causes no spurious oscillations in the slip rate SCEC benchmark: particle velocity at a 60 dipping fault. Refined tetrahedral mesh. (Pelties et al. (2014),Geosci.Model Dev.)

8 SeisSol an ADERDG based software package with dynamic rupture internal boundary condition handles coupling to frictional failure causes no spurious oscillations in the slip rate But computational expensive! SCEC benchmark: particle velocity at a 60 dipping fault. Refined tetrahedral mesh. (Pelties et al. (2014),Geosci.Model Dev.) many relatively small matrix operations complicated load balancing between elements which have to solve for source processes and pure wave propagation ones

9 Optimization Wave propagation on petascale supercomputers... highly optimized kernel operations for sparse/dense matrix products generated by offline code generator strongscalability due to a hybrid OpenMP and MPI parallelization speed up by a factor of 510, 90% parallel efficiency and 45% of peak performance on SuperMUC Phase 1 parallel I/0 scheme customized mesh format and reader A Parallel Server for Adaptive GeoInformation (ASAGI) Simulation of propagating waves on a volcano, Mount Merapi. Model consisting in more than 99 mio. elements Peak performance of the hardware FLOPS and nonzero operations for strong scaling tests of order O=6 References: 1) Breuer et al., PRACE Award, ISC ) Rettenberg & Bader (2015), IEEE International Conference on Cluster Computing 3) Rettenberger et al. (2016), EASC2016

10 Optimization...including dynamic rupture optimization for heterogeneous supercomputers offload scheme: schedules subtask of the complex multiphysics process heterogeneously to either the host or the XeonPhi platform Reference: Heinecke et al.(2014), Gordon Bell Finalist '14

11 Optimization...including dynamic rupture optimization for heterogeneous supercomputers offload scheme: schedules subtask of the complex multiphysics process heterogeneously to either the host or the XeonPhi platform Dynamic earthquake simulation based on the Mw Landers event Petascale (10 ¹⁵Flops/s) simulation on Tianhe2, SuperMuc Phase 1 and Stampede Illustration of the Landers fault system embedded in a realistic geological structure including topography 200 x 10⁶ element tetrahedral mesh (5 x 10¹⁰DoFs) ran on ~ cores of SuperMuc Phase 1 for 200,000 time steps over 7h of computation 1.25 PFLOPS sustained performance Reference: Heinecke et al.(2014), Gordon Bell Finalist '14

12 Petascale simulation Landers scenario highdetailed rupture evolution Jumps, branching, reverse slip, multiple rupture fronts highfrequency ground motion caused by rupture complexity (no stochastic model ingredients) Evolution of slip rate over time Reference: Heinecke et al.(2014), Gordon Bell Finalist '14

13 Petascale simulation Landers scenario highdetailed rupture evolution Jumps, branching, reverse slip, multiple rupture fronts highfrequency ground motion caused by rupture complexity (no stochastic model ingredients) HPC hardware is required to resolve engineering frequency band 0 >10 Hz Evolution of slip rate over time Reference: Heinecke et al.(2014), Gordon Bell Finalist '14

14 New physics crucial but computational expensive physical model extensions such as... attenuation of seismic waves = energy loss as they propagate through the Earth important secondorder effect when resolving highfrequencies and access possible strong ground shaking Sparsity patterns of a typical matrix chain product in the discretisation of SeisSol Reference: Uphoff & Bader (2016), to be published in proceedings of HPCS 2016

15 New physics offfault plasticity high stresses around the fault need to be accommodated by inelastic processes such as plastic deformation of the host rock computational intensive: checking of the yield criterion for each element in each timestep (overhead factor of ~45) Accumulated plastic strain around the fault Reference: Wollherr & Gabriel (2016), in prep.

16 New physics offfault plasticity high stresses around the fault need to be accommodated by inelastic processes such as plastic deformation of the host rock computational intensive: checking of the yield criterion for each element in each timestep (overhead factor of ~45) Impact: reduction of the peak slip rate influence on rupture propagation and jumping dimension of possible earthquakes Accumulated plastic strain around the fault Reference: Wollherr & Gabriel (2016), in prep.

17 Recent challenges 2004 Sumatra Andaman earthquake Mw fatalities from the resulting tsunami Challenges: very slow and long rupture over a large region km rupture length 8 to 10 min of rupture rupture speed of around 23 km/s SumatraAdaman Sea region, Shearer & Bürgmann (2004)

18 Recent challenges 2004 Sumatra Andaman earthquake complex plateboundary interface CAD and mesh generation is a bottleneck Limited mesh coarsening and refinement ( 1% sizing difference between elements) meshes with ~100 million of elements ust nic cr ocea ction subdu tal ntinen crust co zone city w velo zone lo Meshes created with SimModeler customized meshing suite by Simmetrix ( com/) Reference: Model by Thomas Ulrich

19 Recent challenges Good results for the direction of the displacement, but still to high! adding more complexities such as stochastic small scale heterogeneities and 3D velocity structure Synthetics vs observations (compiled by Jade et al. (2005), Gahalaut et al. (2006) and Subaraya et al. (2005))

20 Recent challenges Good results for the direction of the displacement, but still to high! adding more complexities such as stochastic small scale heterogeneities and 3D velocity structure The ASCETE project (www. ascete.de) coupling of seafloor displacement resulting from earthquake rupture simulations as spatiotemporal input for tsunami models Which conditions are responsible for the generation of devastating tsunamis? Synthetics vs observations (compiled by Jade et al. (2005), Gahalaut et al. (2006) and Subaraya et al. (2005))

21 Summary & Outlook SeisSol enables the study of different representations of complexity which possibly influence the highfrequency content of the seismic wave field with efficient execution on modern HPC systems Modern numerical methods further our understanding of earthquake source physics, support physicsbased ground motion research for seismic hazard analysis ExaHype An Exascale Hyperbolic PDE Engine Opensource software for hyperbolic conservation laws applied to seismology & astrophysics addressing the needs of tomorrow s exascale supercomputers energy efficiency, high scalability and memory efficiency

22 Thank you very much for your attention! The SeisSol core team Dr. AliceAgnes Gabriel (LMU) Dr. Betsy Madden (LMU) Thomas Ulrich (LMU) Stephanie Wollherr (LMU) Dr. Alexander Heinecke (Intel) Sebastian Rettenberger (TUM) Carsten Uphoff (TUM) Prof. Dr. Michael Bader (TUM)

Sustained Petascale Performance of Seismic Simulations with SeisSol

Sustained Petascale Performance of Seismic Simulations with SeisSol SIAM EX Workshop on Exascale Applied Mathematics Challenges and Opportunities Sustained Petascale Performance of Seismic Simulations with SeisSol M. Bader, A. Breuer, A. Heinecke, S. Rettenberger C. Pelties,

More information

Extreme-scale Multi-physics Simulation of the 2004 Sumatra Earthquake

Extreme-scale Multi-physics Simulation of the 2004 Sumatra Earthquake Extreme-scale Multi-physics Simulation of the 2004 Sumatra Earthquake Intel MIC Programming Workshop Michael Bader (and many others!) Technical University of Munich LRZ, 28 June 2017 Co-Authors Current

More information

Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System

Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System AGU Fall Meeting 2011 S54C-08 Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System Christian Pelties Josep de la Puente (BSC), Jean Paul Ampuero

More information

Unravelling earthquake dynamics with SeisSol: Megathrust ruptures, off- fault plas?city and rough faults Elizabeth H.

Unravelling earthquake dynamics with SeisSol: Megathrust ruptures, off- fault plas?city and rough faults Elizabeth H. Unravelling earthquake dynamics with SeisSol: Megathrust ruptures, off- fault plas?city and rough faults Elizabeth H. Madden (Betsy) Stephanie Wollherr, Thomas Ulrich, Alice- Agnes Gabriel 1 Earthquake

More information

Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake

Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake ABSTRACT Carsten Uphoff Sebastian Rettenberger Michael Bader uphoff@in.tum.de rettenbs@in.tum.de bader@in.tum.de

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 1: Introduction Michael Bader Lehrstuhl Informatik V Winter 2016/2017 Scientific Computing = Science + Computing? Science on Computers?? Computational Science??? Michael Bader

More information

Annual Report for Research Work in the fiscal year 2005

Annual Report for Research Work in the fiscal year 2005 JST Basic Research Programs C R E S T (Core Research for Evolutional Science and Technology) Annual Report for Research Work in the fiscal year 2005 Research Area : High Performance Computing for Multi-scale

More information

Overview of the PyLith Finite Element Code

Overview of the PyLith Finite Element Code Overview of the PyLith Finite Element Code www.geodynamics.org Charles Williams (GNS Science) Brad Aagaard (USGS) Matt Knepley (University of Chicago) CIG Software PyLith is a Tool for Crustal Deformation

More information

SCEC INCITE OLCF PROJECT PROGRESS REPORT,

SCEC INCITE OLCF PROJECT PROGRESS REPORT, SCEC INCITE OLCF PROJECT PROGRESS REPORT, 2015 Title: PI and Co-PI(s): Thomas H. Jordan, Jacobo Bielak, Kim Olsen, Yifeng Cui, Po Chen, Ricardo Taborda, Philip Maechling Applying Institution/Organization:

More information

Computational Seismology: A Practical Introduction. Heiner Igel Computational Seismology 1 / 18

Computational Seismology: A Practical Introduction. Heiner Igel Computational Seismology 1 / 18 Computational Seismology: A Practical Introduction Heiner Igel Computational Seismology 1 / 18 Introduction Heiner Igel Computational Seismology 2 / 18 Goals of the course Introduction Understand methods

More information

Cactus Tools for Petascale Computing

Cactus Tools for Petascale Computing Cactus Tools for Petascale Computing Erik Schnetter Reno, November 2007 Gamma Ray Bursts ~10 7 km He Protoneutron Star Accretion Collapse to a Black Hole Jet Formation and Sustainment Fe-group nuclei Si

More information

Contribution of HPC to the mitigation of natural risks. B. Feignier. CEA-DAM Ile de France Département Analyse, Surveillance, Environnement

Contribution of HPC to the mitigation of natural risks. B. Feignier. CEA-DAM Ile de France Département Analyse, Surveillance, Environnement Contribution of HPC to the mitigation of natural risks B. Feignier CEA-DAM Ile de France Département Analyse, Surveillance, Environnement Introduction Over the last 40 years, the increase in computational

More information

High performance mantle convection modeling

High performance mantle convection modeling High performance mantle convection modeling Jens Weismüller, Björn Gmeiner, Siavash Ghelichkhan, Markus Huber, Lorenz John, Barbara Wohlmuth, Ulrich Rüde and Hans-Peter Bunge Geophysics Department of Earth-

More information

2014 SCEC Annual Meeting!

2014 SCEC Annual Meeting! 2014 SCEC Annual Meeting! Palm Springs, California! 7-10 September 2014! Welcome Back to Palm Springs! AVAILABLE FOR DOWNLOAD http://www.scec.org/meetings/ 2014am/SCEC2014Program.pdf Goals of the Annual

More information

The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting The Mechanics of Earthquakes and Faulting Christopher H. Scholz Lamont-Doherty Geological Observatory and Department of Earth and Environmental Sciences, Columbia University 2nd edition CAMBRIDGE UNIVERSITY

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Computational Seismology: An Introduction

Computational Seismology: An Introduction Computational Seismology: An Introduction Aim of lecture: Understand why we need numerical methods to understand our world Learn about various numerical methods (finite differences, pseudospectal methods,

More information

High-Resolution Finite Volume Methods and Adaptive Mesh Refinement

High-Resolution Finite Volume Methods and Adaptive Mesh Refinement High-Resolution Finite Volume Methods and Adaptive Mesh Refinement Randall J. LeVeque Department of Applied Mathematics University of Washington CLAWPACK and TsunamiClaw Software http://www.amath.washington.edu/~claw

More information

A new hybrid numerical scheme for modelling elastodynamics in unbounded media with near-source heterogeneities

A new hybrid numerical scheme for modelling elastodynamics in unbounded media with near-source heterogeneities A new hybrid numerical scheme for modelling elastodynamics in unbounded media with near-source heterogeneities Setare Hajarolasvadi Ahmed E. Elbanna https://www.youtube.com/watch?v=bltx92tuwha MOTIVATION

More information

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip Most earthquake simulations study either one large seismic event with full inertial effects or long-term slip history

More information

Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis

Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis Zheqiang Shi and Steven M. Day! Department of Geological

More information

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL 1 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL Hideo AOCHI

More information

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS)

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS) Brittany Erickson (Portland State University) Junle Jiang (University of California, San Diego) SCEC DR-SEAS Workshop,

More information

March 2017 SCEC Rupture Dynamics Code Validation Workshop

March 2017 SCEC Rupture Dynamics Code Validation Workshop Presentation for March 1, 2017 SCEC Boardroom Los Angeles, CA March 2017 SCEC Rupture Dynamics Code Validation Workshop Ruth A. Harris (U.S. Geological Survey) Ralph J. Archuleta (UC Santa Barbara) INTRODUCTION

More information

Synthetic Seismicity Models of Multiple Interacting Faults

Synthetic Seismicity Models of Multiple Interacting Faults Synthetic Seismicity Models of Multiple Interacting Faults Russell Robinson and Rafael Benites Institute of Geological & Nuclear Sciences, Box 30368, Lower Hutt, New Zealand (email: r.robinson@gns.cri.nz).

More information

Annual Report for Research Work in the fiscal year 2006

Annual Report for Research Work in the fiscal year 2006 JST Basic Research Programs C R E S T (Core Research for Evolutional Science and Technology) Annual Report for Research Work in the fiscal year 2006 Research Area : High Performance Computing for Multi-scale

More information

1.1 Modeling Mantle Convection With Plates. Mantle convection and associated plate tectonics are principal controls on the thermal and

1.1 Modeling Mantle Convection With Plates. Mantle convection and associated plate tectonics are principal controls on the thermal and 1 Chapter 1 Introduction Portions originally published in: Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L., & Ghattas, O. (2010). The dynamics of plate tectonics and mantle flow: From

More information

Earthquake and Volcano Clustering at Mono Basin (California)

Earthquake and Volcano Clustering at Mono Basin (California) Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Earthquake and Volcano Clustering at Mono Basin (California) D. La Marra *,1, A. Manconi 2,3 and M. Battaglia 1 1 Dept of Earth Sciences,

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

A parallel finite element multigrid framework for geodynamic simulations with more than ten trillion unknowns

A parallel finite element multigrid framework for geodynamic simulations with more than ten trillion unknowns A parallel finite element multigrid framework for geodynamic simulations with more than ten trillion unknowns Dominik Bartuschat, Ulrich Rüde Chair for System Simulation, University of Erlangen-Nürnberg

More information

EARTHQUAKES. Similar to sound, seismic waves can be generated by natural and artificial movements.

EARTHQUAKES. Similar to sound, seismic waves can be generated by natural and artificial movements. EARTHQUAKES In general terms, an earthquake occurs usually when mechanical energy transmitted from the earth s core by the mantle is released and it reaches the solid cold crust, and tends to propagate

More information

Physics-Based 3D Ground Motion Simulations The SCEC/CME High-F and SEISM Projects!

Physics-Based 3D Ground Motion Simulations The SCEC/CME High-F and SEISM Projects! Physics-Based 3D Ground Motion Simulations The SCEC/CME High-F and SEISM Projects! SCEC Site Effects Workshop May 5, 2015 Thomas Jordan Jacobo Bielak Kim Olsen Steven Day Ricardo Taborda! Phil Maechling

More information

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College What Is an Earthquake? An earthquake is the vibration of Earth, produced by the rapid release of energy.

More information

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Rheology III Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep Ideal materials fall into one of the following categories:

More information

UNIT - 7 EARTHQUAKES

UNIT - 7 EARTHQUAKES UNIT - 7 EARTHQUAKES WHAT IS AN EARTHQUAKE An earthquake is a sudden motion or trembling of the Earth caused by the abrupt release of energy that is stored in rocks. Modern geologists know that most earthquakes

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries SC13, November 21 st 2013 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, Ulrich

More information

The influence of short wavelength variations in viscosity on subduction dynamics

The influence of short wavelength variations in viscosity on subduction dynamics 1 Introduction Deformation within the earth, driven by mantle convection due primarily to cooling and subduction of oceanic lithosphere, is expressed at every length scale in various geophysical observations.

More information

Numerical modeling of dynamic rupture propagation

Numerical modeling of dynamic rupture propagation IX. Slovenská geofyzikálna konferencia, 22. - 23. jún 2011 Fakulta matematiky, fyziky a informatiky UK, Bratislava Numerical modeling of dynamic rupture propagation Martin Galis Peter Moczo Jozef Kristek

More information

Earthquakes. Pt Reyes Station 1906

Earthquakes. Pt Reyes Station 1906 Earthquakes Pt Reyes Station 1906 Earthquakes Ground shaking caused by the sudden release of accumulated strain by an abrupt shift of rock along a fracture in the earth. You Live in Earthquake Country

More information

Three Dimensional Simulations of Tsunami Generation and Propagation

Three Dimensional Simulations of Tsunami Generation and Propagation Chapter 1 Earth Science Three Dimensional Simulations of Tsunami Generation and Propagation Project Representative Takashi Furumura Authors Tatsuhiko Saito Takashi Furumura Earthquake Research Institute,

More information

Chapter 4 Earthquakes and Tsunamis

Chapter 4 Earthquakes and Tsunamis Geology of the Hawaiian Islands Class 21 30 March 2004 100 100 100 96 A B C D F Exam Scores 95 94 94 90 85 83 83 83 Mean 72 67 61 59 59 55 54 41 Mean = 78.5 Median = 83 Any Questions? Chapter 4 Earthquakes

More information

Chapter 4 Earthquakes and Tsunamis. Geology of the Hawaiian Islands. Any Questions? Class March Mean = 78.

Chapter 4 Earthquakes and Tsunamis. Geology of the Hawaiian Islands. Any Questions? Class March Mean = 78. Geology of the Hawaiian Islands Class 21 30 March 2004 Any Questions? 100 100 100 96 A B C D F Exam Scores 95 94 94 90 85 83 83 83 Mean 72 67 61 59 59 55 54 41 Mean = 78.5 Median = 83 Chapter 4 Earthquakes

More information

2018 Blue Waters Symposium June 5, Southern California Earthquake Center

2018 Blue Waters Symposium June 5, Southern California Earthquake Center Integrating Physics-based Earthquake Cycle Simulator Models and High-Resolution Ground Motion Simulations into a Physics-based Probabilistic Seismic Hazard Model PI: J. Vidale; Former PI: T. H. Jordan

More information

Earthquakes and Faulting

Earthquakes and Faulting Earthquakes and Faulting Crustal Strength Profile Quakes happen in the strong, brittle layers Great San Francisco Earthquake April 18, 1906, 5:12 AM Quake lasted about 60 seconds San Francisco was devastated

More information

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES Madlazim Physics Department, Faculty Mathematics and Sciences of Surabaya State University (UNESA) Jl. Ketintang, Surabaya 60231, Indonesia. e-mail:

More information

to: Interseismic strain accumulation and the earthquake potential on the southern San

to: Interseismic strain accumulation and the earthquake potential on the southern San Supplementary material to: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system by Yuri Fialko Methods The San Bernardino-Coachella Valley segment of the

More information

The Nonlinear Time-Domain Modeling of Earthquake Soil Structure Interaction for Nuclear Power Plants: Nonlinear Contact Between Foundation and Rock

The Nonlinear Time-Domain Modeling of Earthquake Soil Structure Interaction for Nuclear Power Plants: Nonlinear Contact Between Foundation and Rock The Nonlinear Time-Domain Modeling of Earthquake Soil Structure Interaction for Nuclear Power Plants: Nonlinear Contact Between Foundation and Rock B. Jeremić, A. Kammerer, N. Tafazzoli, B. Kamrani, University

More information

Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states

Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states C. Meng (cmeng@mit.edu) B. Hager ERL, MIT May 16, 2016 Reservoir production/injection induced seismicity

More information

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together.

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together. Chapter 15 Earthquakes and Plate Tectonics what s the connection? As with volcanoes, earthquakes are not randomly distributed over the globe At the boundaries friction causes plates to stick together.

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2015) 200, 888 907 GJI Seismology doi: 10.1093/gji/ggu436 On the initiation of sustained slip-weakening ruptures by localized stresses M. Galis, 1 C.

More information

Important Concepts. Earthquake hazards can be categorized as:

Important Concepts. Earthquake hazards can be categorized as: Lecture 1 Page 1 Important Concepts Monday, August 17, 2009 1:05 PM Earthquake Engineering is a branch of Civil Engineering that requires expertise in geology, seismology, civil engineering and risk assessment.

More information

Two ways to think about the dynamics of earthquake ruptures

Two ways to think about the dynamics of earthquake ruptures Two ways to think about the dynamics of earthquake ruptures (1) In terms of friction (2) In terms of fracture mechanics Scholz describes conditions for rupture propagation (i.e. instability) via energy

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters H. Köstler 2nd International Symposium Computer Simulations on GPU Freudenstadt, 29.05.2013 1 Contents Motivation walberla software concepts

More information

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013

Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Simulated and Observed Scaling in Earthquakes Kasey Schultz Physics 219B Final Project December 6, 2013 Abstract Earthquakes do not fit into the class of models we discussed in Physics 219B. Earthquakes

More information

Spectral Element simulation of rupture dynamics

Spectral Element simulation of rupture dynamics Spectral Element simulation of rupture dynamics J.-P. Vilotte & G. Festa Department of Seismology, Institut de Physique du Globe de Paris, 75252 France ABSTRACT Numerical modeling is an important tool,

More information

3D Finite Element Modeling of fault-slip triggering caused by porepressure

3D Finite Element Modeling of fault-slip triggering caused by porepressure 3D Finite Element Modeling of fault-slip triggering caused by porepressure changes Arsalan Sattari and David W. Eaton Department of Geoscience, University of Calgary Suary We present a 3D model using a

More information

21. Earthquakes I (p ; 306)

21. Earthquakes I (p ; 306) 21. Earthquakes I (p. 296-303; 306) How many people have been killed by earthquakes in the last 4,000 years? How many people have been killed by earthquakes in the past century? What two recent earthquakes

More information

earthquake virtual

earthquake virtual Activity: Elasticity of the crust Elasticity of the crust. The earth s crust is slightly elastic, it can be stretched or compressed. Without this elasticity all movements along faults would be slow and

More information

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Thomas Gallinger * Alexander Kupzok Roland Wüchner Kai-Uwe Bletzinger Lehrstuhl für Statik Technische Universität München

More information

Evaluation of Fault Foundation Interaction, Using Numerical Studies

Evaluation of Fault Foundation Interaction, Using Numerical Studies Evaluation of Fault Foundation Interaction, Using Numerical Studies Jabbary, M. Msc Student, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran, Nabizadeh, A. PhD Candidate,

More information

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for?

DCPP Seismic FAQ s Geosciences Department 08/04/2011 GM1) What magnitude earthquake is DCPP designed for? GM1) What magnitude earthquake is DCPP designed for? The new design ground motions for DCPP were developed after the discovery of the Hosgri fault. In 1977, the largest magnitude of the Hosgri fault was

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science Date: 23 January 2018 I. Reminder: Exam #1 is scheduled for Feb 1st one week from Thursday o

More information

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region Regional Geodesy Shimon Wdowinski University of Miami Rowena Lohman, Kim Outerbridge, Tom Rockwell, and Gina Schmalze

More information

Integrating Lab and Numerical Experiments to Investigate Fractured Rock

Integrating Lab and Numerical Experiments to Investigate Fractured Rock Integrating Lab and Numerical Experiments to Investigate Fractured Rock Bradford H. Hager Director, Earth Resources Laboratory and Cecil and Ida Green Professor Department of Earth, Atmospheric and Planetary

More information

Rate and State-Dependent Friction in Earthquake Simulation

Rate and State-Dependent Friction in Earthquake Simulation Rate and State-Dependent Friction in Earthquake Simulation Zac Meadows UC Davis - Department of Physics Summer 2012 REU September 3, 2012 Abstract To better understand the spatial and temporal complexity

More information

Verification of the asperity model using seismogenic fault materials Abstract

Verification of the asperity model using seismogenic fault materials Abstract Verification of the asperity model using seismogenic fault materials Takehiro Hirose*, Wataru Tanikawa and Weiren Lin Kochi Institute for Core Sample Research/JAMSTEC, JAPAN * Corresponding author: hiroset@jamstec.go.jp

More information

Earthquakes How and Where Earthquakes Occur

Earthquakes How and Where Earthquakes Occur Earthquakes How and Where Earthquakes Occur PPT Modified from Troy HS Is there such thing as earthquake weather? Absolutely NOT!!! Geologists believe that there is no connection between weather and earthquakes.

More information

Week 10 - Lecture Nonlinear Structural Analysis. ME Introduction to CAD/CAE Tools

Week 10 - Lecture Nonlinear Structural Analysis. ME Introduction to CAD/CAE Tools Week 10 - Lecture Nonlinear Structural Analysis Product Lifecycle Week 10 Requirements Portfolio Management Conceptual Design Product Engineering Manufacturing Engineering Simulation & Validation Build

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

John Shaw CRUSTAL DEFORMATION MODEL: OBLIQUE CONVERGENCE IN THE INNER CALIFORNIA BORDERLANDS ACCOMMODATED BY ACTIVE STRIKE-SLIP AND REVERSE FAULTS

John Shaw CRUSTAL DEFORMATION MODEL: OBLIQUE CONVERGENCE IN THE INNER CALIFORNIA BORDERLANDS ACCOMMODATED BY ACTIVE STRIKE-SLIP AND REVERSE FAULTS CRUSTAL DEFORMATION MODEL: OBLIQUE CONVERGENCE IN THE INNER CALIFORNIA BORDERLANDS ACCOMMODATED BY ACTIVE STRIKE-SLIP AND REVERSE FAULTS August 2013 SONGS SSC SSHAC Workshop # 2 (August 12-14, 2013) Crustal

More information

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone Genda Chen*, Ph.D., P.E., and Mostafa El-Engebawy Engebawy,, Ph.D. *Associate Professor of Civil Engineering Department of Civil, Architecture

More information

Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting

Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting Benchmarking of Hydrodynamic Models for Development of a Coupled Storm Surge Hazard-Infrastructure Modeling Method to improve Inundation Forecasting Abstract Fragility-based models currently used in coastal

More information

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Project Representative Mitsuhiro Matsu'ura Graduate School of Science, The University of Tokyo Authors Mitsuhiro

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

Between Seismology and Seismic Design

Between Seismology and Seismic Design Between Seismology and Seismic Design Prof. Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano Milano, 10 dicembre 2013 Outline 2 Seismic hazard analysis for critical facilities SIGMA

More information

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Naoyuki Kato (1) and Tomowo Hirasawa (2) (1) Geological

More information

Improving Dynamical Core Scalability, Accuracy, and Limi:ng Flexibility with the ADER- DT Time Discre:za:on

Improving Dynamical Core Scalability, Accuracy, and Limi:ng Flexibility with the ADER- DT Time Discre:za:on Improving Dynamical Core Scalability, Accuracy, and Limi:ng Flexibility with the ADER- DT Time Discre:za:on Matthew R. Norman Scientific Computing Group National Center for Computational Sciences Oak Ridge

More information

Ground displacement in a fault zone in the presence of asperities

Ground displacement in a fault zone in the presence of asperities BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA VOL. 40, N. 2, pp. 95-110; JUNE 2000 Ground displacement in a fault zone in the presence of asperities S. SANTINI (1),A.PIOMBO (2) and M. DRAGONI (2) (1) Istituto

More information

Scale Dependence in the Dynamics of Earthquake Rupture Propagation: Evidence from Geological and Seismological Observations

Scale Dependence in the Dynamics of Earthquake Rupture Propagation: Evidence from Geological and Seismological Observations Euroconference of Rock Physics and Geomechanics: Natural hazards: thermo-hydro-mechanical processes in rocks Erice, Sicily, 25-30 September, 2007 Scale Dependence in the Dynamics of Earthquake Rupture

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

Introduction Faults blind attitude strike dip

Introduction Faults blind attitude strike dip Chapter 5 Faults by G.H. Girty, Department of Geological Sciences, San Diego State University Page 1 Introduction Faults are surfaces across which Earth material has lost cohesion and across which there

More information

Efficient multigrid solvers for mixed finite element discretisations in NWP models

Efficient multigrid solvers for mixed finite element discretisations in NWP models 1/20 Efficient multigrid solvers for mixed finite element discretisations in NWP models Colin Cotter, David Ham, Lawrence Mitchell, Eike Hermann Müller *, Robert Scheichl * * University of Bath, Imperial

More information

Scalable and Power-Efficient Data Mining Kernels

Scalable and Power-Efficient Data Mining Kernels Scalable and Power-Efficient Data Mining Kernels Alok Choudhary, John G. Searle Professor Dept. of Electrical Engineering and Computer Science and Professor, Kellogg School of Management Director of the

More information

ANALYSIS OF NATM TUNNEL RESPONSES DUE TO EARTHQUAKE LOADING IN VARIOUS SOILS. Zaneta G. Adme ABSTRACT

ANALYSIS OF NATM TUNNEL RESPONSES DUE TO EARTHQUAKE LOADING IN VARIOUS SOILS. Zaneta G. Adme ABSTRACT ANALYSIS OF NATM TUNNEL RESPONSES DUE TO EARTHQUAKE LOADING IN VARIOUS SOILS Zaneta G. Adme Home Institution: Dept. of Civil and Env. Engineering FAMU-FSU College of Engineering 2525 Pottsdamer St., Tallahassee,

More information

Simulation in Computer Graphics Elastic Solids. Matthias Teschner

Simulation in Computer Graphics Elastic Solids. Matthias Teschner Simulation in Computer Graphics Elastic Solids Matthias Teschner Outline Introduction Elastic forces Miscellaneous Collision handling Visualization University of Freiburg Computer Science Department 2

More information

Japan Seismic Hazard Information Station

Japan Seismic Hazard Information Station Japan Seismic Hazard Information Station (J-SHIS) Hiroyuki Fujiwara National Research Institute for Earth Science and Disaster Prevention (NIED) Background of the Project Headquarters for Earthquake Research

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia.

22.5 Earthquakes. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. The tsunami triggered by the 2004 Sumatra earthquake caused extensive damage to coastal areas in Southeast Asia. An earthquake is a movement of Earth s lithosphere that occurs when rocks in the lithosphere

More information

Multiphysics and multiscale earthqauke modeling

Multiphysics and multiscale earthqauke modeling Multiphysics and multiscale earthqauke modeling C. Meng (cmeng@mit.edu) B. Hager ERL, MIT May 29, 2017 Multiphysics Poro(visco-)elasticity, (quasi-)static and dynamic processes. ground overburden reservoir

More information