Alchemy Unit Investigation III. Lesson 7: Life on the Edge

Size: px
Start display at page:

Download "Alchemy Unit Investigation III. Lesson 7: Life on the Edge"

Transcription

1 Alchemy Unit Investigation III Lesson 7: Life on the Edge

2 The Big Question How does the atomic structure of atoms account for the trends in periodicity of the elements?

3 You will be able to: Explain how the Bohr model of an atom can connect the emission spectrum of an atom to the electron structure of the atom.

4 Activity Purpose: Describe the structure of the Bohr model of the atom. (cont.)

5 Notes By using a cathode ray tube, J.J. Thomson discovered that atoms have a small negatively charged particle known as the electron.

6 Notes Later, when James Rutherford fired positively charged alpha particle bullets at a thin gold foil, he found that most the particles passed through the foil. He reasoned that most of the atom must be empty space. Occasionally, one of the particles would be deflected. Rutherford reasoned that the deflection was caused by a small dense core he called the nucleus.

7 Notes Rutherford knew from Thomson s work that an atom has two electrically charged particles a positively charged proton and a small negatively charged electron. When the atoms are found by themselves, they are electrically neutral. This meant that the number of electrons equaled the number of protons.

8 Notes Rutherford proposed that the atom had a small dense positively charged nucleus surrounded by electrons travelling in paths around the nucleus.

9 Notes Since electrons take up the most space and are found on the outside of the atom, can the periodic patterns we see be caused by electrons? For example, what should happen to the size of atoms as they gain more electrons?

10 Notes As you may recall, the sizes of atoms (atomic radii) increases when you go down a period. Elements with atoms that have more electrons seem to have larger atoms.

11 Notes Also remember that When electrons were added to atoms to form anions, they got bigger. When elections were removed from atoms, they became smaller.

12 Notes Electrons may not be the only cause of the periodic patterns. When we travel across a period, the number of electrons increase. But, instead of increasing in size, the size of the atoms DECREASE.

13 Notes We might be able to explain this trend by noting that the number of protons are also increasing. When more protons are present, the nucleus has a greater positive charge to pull the electrons closer.

14 Electrostatic forces in an atom The positively-charged nucleus exerts an attractive force on on the negatively-charged electrons. (red lines) The attractive force is proportional to 1/r, the distance between the electron and nucleus. The loser the electron is to the nucleus, the greater the attractive force.

15 Electrostatic forces in an atom The negatively-charged electrons pushes on on other negatively-charged electrons. (blue lines) This repulsive force is sometimes called screening. Screening reduces the positive force of the nucleus. The screening effect makes the electron shell larger of the atom.

16 Atomic Radii

17 Electron Affinity

18 Ionization Energies

19 Trends in the Periodic Properties One of the first things you should notice about the properties is that the trend or pattern of change across a period repeats itself row after row. Some properties like ionization energies rise to a peak as you go left to right in a row and drops at the beginning of the next row. Some properties like the atomic radius falls as you go left to right in a row and spikes at the beginning of the next row.

20 Problem For example, we can explain the decrease in the atomic radii and the increase in ionization energies across a period by noting that the atom of each successive element has a greater number of protons. That makes the total positive charge increase, pulling the electrons in closer and making them harder to remove.

21 Problem Cations become smaller because the total positive charge of the nucleus stays the same but the electron-electron repulsion decreases. The opposite is true for anions. More electrons means there are more electronelectron repulsions. The problem is explaining the periodic patterns the repeating patterns we see from row to row.

22 Atomic Spectra An explanation for the cause of the periodic trends came from clues scientists found when they were studying the absorption or emission of light-like waves from atom. When atoms of an element are given a large amount of energy, they give off or emit light.

23 Samples of Gas Discharge Tubes

24 Spectra As you can see, the lights from different elements are a different color. When the light from these tubes are passed through a prism, you see a pattern of lines (spectra) unique to each element.

25 Atomic Spectra Electromagnetic radiation are transverse waves that carry energy at the speed of light. Electrons are able to absorb energy from electromagnetic radiation. Electrons give off electromagnetic radiation (light) when they lose energy. Waves with higher frequencies (number of waves per unit time) have shorter wavelengths and carry more energy per unit time than waves with lower frequencies of EM radiation.

26 Electromagnetic Spectrum

27 Gas Discharge Tubes When an electric current is passed through gases in a low pressure tube, the electrons absorb some of the energy. When they lose the extra energy, they release the energy as packets of light or photons. Different gases produce different colors.

28 Copy the following table Gas Color Spectra Observe the gas discharge tubes. Record the color of light produce. Then observe the same light through a prism or diffraction grating.

29 Emission versus Absorption spectra

30 Notice that the emission spectra produces sharp bands of color rather than a full spectrum (rainbow). The production of a band of color means that the electrons are releasing energy (as a color of light) with a single value of energy. The different bands of color suggests that the electrons are able to drop energy by only certain values.

31 Bohr Model of the Atom Niels Bohr developed a planetary model of the atom to explain why excited atoms produced bands of color. Although his model defied a few basic laws of physics, it worked!

32 Bohr s Model Bohr proposed that the electrons traveled in orbits or shells layered around the nucleus, much like the planets in the solar system. The shells would occur at only certain distances from the nucleus

33 Bohr s Model Bohr proposed that Only a fixed number of electrons could go into each shell Electrons in shells farther from the nucleus had greater kinetic energy and were held more loosely than those in the inner shells

34 Bohr Atom

35 Notes Since specific spectral line were made instead of a full rainbow, it was like the electrons were sitting on a shelf and fell to a lower shelf. There was no intermediate height where the electrons could fall from. Bohr imagined that the electrons were moving around on concentric shells around the nucleus.

36 Notes Bohr reasoned that the electrons could absorb energy and move to to higher shell with the additional energy. When the electrons lost energy (conservation of energy), they could drop from an excited state in a higher shell to a lower shell when they gave back the extra energy. The farther the electrons fell, greater the energy it released (blue, purple).

37 Notes These orbits had fixed distances (energy). That meant that the electrons could only absorb certain amounts of energy (only certain wavelength) When the returns to a lower level, it releasea light at only certain wavelengths.

38 Notes In Bohr s model of the atom, the electrons were located in layers around the nucleus. Each layer could hold only a certain number of electrons. In stable atoms, the layers closest to the nucleus were filled before the outer layers could be filled.

39 Notes The first shell or layer could hold a maximum of 2 electrons. The second, 8 electrons The third holds a total of 18 electrons The fourth holds a total 32 The fifth holds a total of 50 # = 2(n 2 ) ; n=1

40 Activity Let s look for periodic patterns in the Bohr model of the atom.

41 Activity Suppose we represent the nucleus by a single sphere Electrons will be replaced by the number and the symbol e - for electrons

42 Activity Here is a section of the periodic table showing the modified representation of Bohr model atoms.

43 Activity How does the number of electrons change as you move from atom to atom across a period or row?

44 Activity How does the number of shells or rings change as you go down a column? Across a period?

45 Activity How do the number of shells in an atom compare to the period number it is found?

46 Activity What happens to the number of electrons and the number of shells when you move from one period to the next? (e.g. neon to sodium)

47 Activity Draw what the unfilled squares would look like.

48 Activity Answers are

49 Notes The outermost shell of the Bohr model of the atom occupied by electrons is called the valence shell. The valence shell contains the valence electrons. (These outer electrons are the ones usually involved in chemical reactions.) All the other electrons (in the inner shells) are called core electrons.

50 Making Sense How many valence electrons do the halogens have? How many do the noble gases have? The Alkali metals?

51 Making Sense What happens to the number of valence electrons as you go down a column (group/family)?

52 Making Sense What happens to the number of valence electrons as you go across period?

53 Making Sense How many core electrons does the element oxygen (O) have? How many does neon (Ne) have? Boron (B)?

54 Activity Recall the periodic table card sort that you did. How were the valence electrons represented on the cards?

55 Notes

56 Notes

57 Notes Bohr s model also provided a possible explanation for the similarity in chemical properties of elements in the same chemical family.

58 Making sense Notice that the elements in the same family have the same number of valence electrons. This suggests that the properties of the elements and their reactivities are related to the number of valence electrons. Each successive period represents a new layer of electrons. The valence electrons are in a new shell that is farther from the nucleus and gets more shielding from the additional electrons in the inner shells.

59 Examples The atomic radius rebounds to a larger size as we move to a new period because the valence electrons are going into a shell that is farther from the nucleus. The atomic radius decreases across a period because the valence electrons see a greater nuclear charge. The ionization energy increases as you go across a period because each additional proton increases the effective nuclear charge to pull the electrons which are in the same shell in closer.

60 Examples The ionization energy decreases as you go to a new period because the new shell is farther from the nucleus. Electronegativity increases as you go across the period because both the effective nuclear charge increases and the distance the shared electrons decrease to increase the attractive force. Cations shed electrons in their valence shell leaving them with only the electrons from the smaller inner core shells.

61 Examples Anions become larger because the number of protons remain the same but the additional electrons increase the number of repulsive interactions. The electron affinity for noble gases suggest that having a filled shell makes an atom very unreactive.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Chapter 4 Lesson 2 Notes

Chapter 4 Lesson 2 Notes Chapter 4 Lesson 2 Notes How were electrons discovered? Scientists have put together a detailed model of atoms and their parts. Here is the journey of atom parts. How were electrons discovered? (cont.)

More information

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & &

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & & Name: RegentsChemistry:Mr.Palermo Notes:Unit4:Atomics! www.mrpalermo.com Name: $ Key$Ideas$ Themodernmodeloftheatomhasevolvedoveralongperiodoftimethroughtheworkofmany scientists.(3.1a) Eachatomhasanucleus,withanoverallpositivecharge,surroundedbyoneormorenegatively

More information

Chemical Bonding. Nuclear Charge. Nuclear Charge. Trends of the Periodic Table. Down the Table (from Top to Bottom):

Chemical Bonding. Nuclear Charge. Nuclear Charge. Trends of the Periodic Table. Down the Table (from Top to Bottom): Trends of the Periodic Table Chemical Bonding TRENDS OF THE PERIODIC TABLE CHEM ISTRY 11 3 factors are usually discussed when explaining trends nuclear charge n value (outer most filled shell) Inter-electron

More information

Unit 3. The Atom & Modern Atomic Theory

Unit 3. The Atom & Modern Atomic Theory Unit 3 The Atom & Modern Atomic Theory Theories of the Atom Early Models & Thoughts: Democritus Matter is made up of tiny particles called atoms. Smallest unit that retains the identity of the element

More information

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Atomic Structure What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Early Theories Democritus: 4 B.C.: atom He

More information

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter Nine Light and Energy! Electromagnetic radiation (EM) is an especially important form of energy for scientific study.! Many types of radiant energy are

More information

Hot Sync. Materials Needed Today

Hot Sync. Materials Needed Today Chapter 4 Lesson 2 Materials Needed Today Please take these materials out of your backpack. Pencil Blank sheet of paper for notes. Hot Sync Friday 1/10/14 Answer the following questions in complete sentences

More information

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct. Unit Two Test Review Click to get a new slide. Choose your answer, then click to see if you were correct. According to the law of definite proportions, any two samples of water, H2O, A. will be made up

More information

Different states of a substance are different physical ways of packing its component particles:

Different states of a substance are different physical ways of packing its component particles: CHEM1011 Lecture 1 6 th March 2018 States of matter Different states of a substance are different physical ways of packing its component particles: solid (closely packed together and organized), liquid

More information

Atomic Structure Early Theories Democritus: 4 B.C.: atom Dalton: atoms cannot Thomson: Cathode Ray Tubes Rutherford:

Atomic Structure Early Theories Democritus: 4 B.C.: atom Dalton: atoms cannot Thomson: Cathode Ray Tubes Rutherford: Atomic Structure n a well-substantiated explanation of some aspect of the natural world; n an organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set

More information

Explaining Periodic Trends

Explaining Periodic Trends Explaining Periodic Trends! Many observable trends in the chemical and physical properties of elements are observable in the periodic table.! On trends you may be familiar with is reactivity, which is

More information

Chemical symbols. Know names and symbols of elements #1 30, plus. Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U

Chemical symbols. Know names and symbols of elements #1 30, plus. Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U Chemical symbols Know names and symbols of elements #1 30, plus Rb, Cs, Sr, Ba, Ag, Au, Cd, Hg, Pt, Ga, Ge, As, Sn, Pb, Se, Br, I, and U Coulomb s Law F = attractive/repulsive force Q 1, Q 2 = charges

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

Explaining Periodic Trends. Saturday, January 20, 18

Explaining Periodic Trends. Saturday, January 20, 18 Explaining Periodic Trends Many observable trends in the chemical and physical properties of elements are observable in the periodic table. Let s review a trend that you should already be familiar with,

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic Periodic Trends objectives: (#2 3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

More information

a. According to Dalton, what is inside the atom? Nothing, the atom it the smallest

a. According to Dalton, what is inside the atom? Nothing, the atom it the smallest Unit 3: Review SCIENTIFIC THEORIES Dalton theorized that atoms were the smallest particle and could not be divided. Atoms can bond with one another in whole number ratios to form compounds but cannot be

More information

Ch4 and Ch5. Atomic History and the Atom

Ch4 and Ch5. Atomic History and the Atom Ch4 and Ch5 Atomic History and the Atom Ch4.2 What are atoms? Atoms are the smallest part of an element that still has the element s properties. Ch. 4.3 The Atom is Defined 400 B.C. the Greek philosopher

More information

E3 Describe the development of the modern periodic table E4 Draw conclusion about the similarities and trends in the properties of elements, with

E3 Describe the development of the modern periodic table E4 Draw conclusion about the similarities and trends in the properties of elements, with E3 Describe the development of the modern periodic table E4 Draw conclusion about the similarities and trends in the properties of elements, with reference to the periodic table By 1817 52 elements had

More information

Chapter 4. Atomic Structure

Chapter 4. Atomic Structure Chapter 4 Atomic Structure History: Early 1800 s Lots of introductory work with electricity Atoms are electrical in nature Have parts with + charge Have parts with charge Technology was limited until late

More information

Periodic Trends (Section 5.3)

Periodic Trends (Section 5.3) Periodic Trends (Section 5.3) Periodic Trends (Section 5.3) 1. Atomic Radius: Periodic Trends (Section 5.3) 1. Atomic Radius: The distance from the nucleus to the outermost electrons. (See Figure 3.2,

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table A trend is a predictable change in a particular direction. Example: There is a trend in the alkali metals to increase in reactivity as you move down a group. Atomic Radius

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

10/27/2017 [pgs ]

10/27/2017 [pgs ] Objectives SWBAT explain the relationship between energy and frequency. SWBAT predict the behavior of and/or calculate quantum and photon energy from frequency. SWBAT explain how the quantization of energy

More information

Practice Packet Unit 4: Atomic Structure

Practice Packet Unit 4: Atomic Structure Name: Regents Chemistry Practice Packet Unit 4: Atomic Structure Assess Yourself: Vocab: Lesson 1: Lesson 2: Lesson 3: Lesson 4: Lesson 5: Lesson 6: Lesson 7: 1 Vocabulary: Check your understanding. Describe

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

9/13/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory. J. J. Thomson. Thomson s Experiment

9/13/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory. J. J. Thomson. Thomson s Experiment Atomic Structure & The Periodic Table The Greek Philosophers Democritus believed that all matter is made up of tiny particles that could not be divided Aristotle -- thought that matter was made of only

More information

Problems with the Wave Theory of Light (Photoelectric Effect)

Problems with the Wave Theory of Light (Photoelectric Effect) CHEM101 NOTES Properties of Light Found that the wave theory could not work for some experiments e.g. the photovoltaic effect This is because the classic EM view of light could not account for some of

More information

Atomic Class Packet Unit 3

Atomic Class Packet Unit 3 The modern model of the atom has evolved over a long period of time through the work of many scientists.(3.1a) Each atom has a nucleus, with an overall positive charge, surrounded by one or more negatively

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Shapes of the orbitals

Shapes of the orbitals Electrons Review and Periodic Table Trends Unit 7 Electrons Shapes of the orbitals Electron Configuration Electrons spin in opposite direction Background Electrons can jump between shells (Bohr s model

More information

Practice Packet Level 3: Atomics

Practice Packet Level 3: Atomics Name: Regents Chemistry: Mr. Palermo Practice Packet Level 3: Atomics Name: Unit Vocabulary: For each word, provide a short but specific definition from YOUR OWN BRAIN! No boring textbook definitions.

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Trends in the Periodic Table revisited! SCH4U1 SP04

Trends in the Periodic Table revisited! SCH4U1 SP04 Trends in the Periodic Table revisited! SCH4U1 SP04 Factors Affecting the Properties Many of the properties of the elements are related to the force of attraction between the nucleus and the electrons.

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The energy of the electron

More information

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS Atoms Atoms have protons and neutrons located in the nucleus of the atom. Electrons orbit around the nucleus in well-defined paths. Protons have

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Section 3.1 Substances Are Made of Atoms

Section 3.1 Substances Are Made of Atoms Section 3.1 Substances Are Made of Atoms Objectives: 1. State the three laws that support the existence of atoms. 2. List the five principles of John Dalton s atomic theory. Vocabulary: law of definite

More information

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry Electronic Structure and the Periodic Table Unit 6 Honors Chemistry Wave Theory of Light James Clerk Maxwell Electromagnetic waves a form of energy that exhibits wavelike behavior as it travels through

More information

Periodic Trends. More than 20 properties change in predictable way based location of elements on PT

Periodic Trends. More than 20 properties change in predictable way based location of elements on PT Periodic Trends Periodic Trends More than 20 properties change in predictable way based location of elements on PT Some properties: Density Melting point/boiling point Atomic radius Ionization energy Electronegativity

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY *KEY* *KEY* UNIT 2 - ATOMIC THEORY *KEY* *KEY* VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic number Bohr model Cation Compound Electron Electron Configuration Element Excited

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Sir Joseph John Thomson J. J. Thomson 1856-1940 Discovered the electron Did extensive work with cathode ray deflections 1906 Nobel Prize for discovery of electron Early Models

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

What is the current atomic model?

What is the current atomic model? 4.1 Atoms Basic Units of Matter What is the current atomic model? Matter is anything that has mass and takes up space, such as gases, solids, and liquids. Matter is not sound, heat, or light these are

More information

4 Periodic Trends. 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) Periodic Trends > Types of Periodic Trends

4 Periodic Trends. 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) Periodic Trends > Types of Periodic Trends Periodic Trends > Types of Periodic Trends 4 Periodic Trends 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) 1 of 31 Periodic Trends > Trends in Atomic Size The

More information

Rhonda Alexander IC Science Robert E. Lee

Rhonda Alexander IC Science Robert E. Lee Rhonda Alexander IC Science Robert E. Lee Atom The smallest particle of an element that retains all of the chemical properties of the element. The Theory & Evidence for John Dalton s Atomic Theory: Around

More information

The Shell Model (II)

The Shell Model (II) 22 ChemActivity 5 The Shell Model (II) Model 1: Valence Electrons, Inner-Shell Electrons, and Core Charge. The electrons in the outermost shell of an atom are referred to as valence electrons. Electrons

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks ATOM Early Thoughts Aristotle-- Continuous theory Greeks Matter can be divided indefinitely matter is made up of particles--4 elements 4 elements --air--fire--water- -- earth Democritus --Discontinuous

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Professor K. Atomic structure

Professor K. Atomic structure Professor K Atomic structure Review Reaction- the formation and breaking of chemical bonds Bond- a transfer or sharing of electrons Electrons Abbreviated e - What are they? How were they discovered? Early

More information

UNDERLYING STRUCTURE OF MATTER

UNDERLYING STRUCTURE OF MATTER 1 UNDERLYING STRUCTURE OF MATTER Chapter 4 Atomic Structure DEFINING THE ATOM Earlier theories of matter: A. Even though his hypothesis lacked evidence at the time, the Greek philosopher Democritus (460

More information

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms Electrons in Atoms From Light to Energy of Electrons in Atom Quantum mechanical description of Atom 1. Principal quantum number: Shell 2. Orientation (shape) of : Subshell 3. Orbitals hold electrons with

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory In science, often times chemical or physical behavior can not be seen with the naked eye (nor with the use of some other device). Consequently, an understanding and explanation of

More information

Atomic Theory. Early models

Atomic Theory. Early models Atomic Theory Early models Ancient Greece Late 18 th century 4 elements Earth, Water, Wind, Fire: Matter is made up in different combinations of these 4 elements. First atom proposed by Democritus (Greek)

More information

CHAPTER 6 The Periodic Table

CHAPTER 6 The Periodic Table CHAPTER 6 The Periodic Table 6.1 Organizing the Elements Mendeleev: listed the elements in order of increasing atomic mass and in vertical columns according to their properties. Left blank spaces for undiscovered

More information

Keep protons in the nucleus from repelling each other. Atomic Number Mass Number Atomic Mass number of protons determines identity of atom

Keep protons in the nucleus from repelling each other. Atomic Number Mass Number Atomic Mass number of protons determines identity of atom Module 1 - The Atom page 1 of 5 A: Matter & Energy Matter The Has, can be weighed, takes up space Made of Energy Makes the stuff do things, like move or glow No mass, doesn t take up space B: Atomic Structure

More information

SCH4C Practice WS Unit 1

SCH4C Practice WS Unit 1 Name: Class: Date: SCH4C Practice WS Unit 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The special band of light waves that the human eye can detect

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties

Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties 1. Find your staircase on the right side of the periodic table. Feel free to make the lines

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

1. Atomic and Ionic radius 2. Ionization energy 3. Electronegativity 4. Electron Affinity PERIODIC TRENDS

1. Atomic and Ionic radius 2. Ionization energy 3. Electronegativity 4. Electron Affinity PERIODIC TRENDS PERIODIC TRENDS Nov 11 9:05 PM Periodic trends that change in a predictable way: 1. Atomic and Ionic radius 2. Ionization energy 3. Electronegativity 4. Electron Affinity Nov 11 8:20 PM 1 Atomic Radius

More information

Collegiate Institute for Math and Science Day 57: December 9, 2016 Room 427

Collegiate Institute for Math and Science Day 57: December 9, 2016 Room 427 Unit 2: Atomic Concepts Outline Name: Period: Date: 1. The modern model of the atom has evolved over a long period of time through the work of many scientists. Dalton s Model: Elements are made of atoms

More information

All are made of atoms. The, your and even are made of atoms. Atoms are. One atom is only one of a meter wide!

All are made of atoms. The, your and even are made of atoms. Atoms are. One atom is only one of a meter wide! Name: Atoms & The Periodic Table WHAT IS AN ATOM? What is an atom? All are made of atoms. The, your and even are made of atoms. Atoms are. One atom is only one of a meter wide! DEMOCRITIS The idea of an

More information

I. History and Development of the Atom

I. History and Development of the Atom Unit 3: The Atom I. History and Development of the Atom A. Democritus (around 400 B.C.) Based on his observations of the natural world around him, Democritus was the first to suggest that all matter was

More information

Electrons in Atoms. So why does potassium explode in water? Quantum Mechanics Periodic Trends Chemical Bonding

Electrons in Atoms. So why does potassium explode in water? Quantum Mechanics Periodic Trends Chemical Bonding Electrons in Atoms So why does potassium explode in water? Quantum Mechanics Periodic Trends Chemical Bonding 12.1 Development of Atomic Models Dalton s Thompson s Rutherford s Bohr s carbon Quantum Model

More information

2 Electons Electrons: Quantum Numbers, Energy Levels and Electron Configurations

2 Electons Electrons: Quantum Numbers, Energy Levels and Electron Configurations Electrons: Quantum Numbers, Energy Levels and Electron Configurations For chemical reactions to occur a collision between atoms or molecules must happen. These collisions typically result in an exchange

More information

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

Periodic Trends. 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic Periodic Trends objectives: (#2 3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2 3a) I can determine how gaining or losing electrons affects the atomic

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY UNIT 2 - ATOMIC THEORY VOCABULARY: Allotrope Electron Configuration Nuclear Charge Anion Element Nucleons Atom Excited state Nucleus Atomic Mass Ground state Orbital Atomic Mass unit (a.m.u.) Ion Proton

More information

Atomic Structure. Ch 3 Prentice Hall

Atomic Structure. Ch 3 Prentice Hall Atomic Structure Ch 3 Prentice Hall The Nuclear Atom By 1919 Rutherford concluded that the atom has a dense positive center called the nucleus containing what he called protons The electrons surround

More information

SCH3U- R. H. KING ACADEMY ATOMIC STRUCTURE HANDOUT NAME:

SCH3U- R. H. KING ACADEMY ATOMIC STRUCTURE HANDOUT NAME: Particle Theory of Matter Matter is anything that has and takes up. All matter is made up of very small. Each pure substance has its of particle, from the particles of other pure substances. Particles

More information

Chapter 11 Prep Test CLASS SET!!!! Matching

Chapter 11 Prep Test CLASS SET!!!! Matching CLASS SET!!!! ID: A Chapter 11 Prep Test Matching Match each item with the correct statement below. A electronegativity D period B ionization energy E transition metal C atomic radius F group 1 type of

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

The modern model of the atom has evolved over a long period of time through the work of many scientists.(3.1a) Each atom has a nucleus, with an

The modern model of the atom has evolved over a long period of time through the work of many scientists.(3.1a) Each atom has a nucleus, with an REGENTS CHEMISTRY 1 The modern model of the atom has evolved over a long period of time through the work of many scientists.(3.1a) Each atom has a nucleus, with an overall positive charge, surrounded by

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Dr. Williamson s Notes for Atoms Continued

Dr. Williamson s Notes for Atoms Continued Structure of the Periodic Table Atoms Continued: Bohr student version Dr. V.M. Williamson Arranged by or : vertical columns of elements with similar chemical and physical properties : horizontal rows of

More information

General Chemistry I, Unit I: Study Guide

General Chemistry I, Unit I: Study Guide General Chemistry I, Unit I: Study Guide General Chemistry I Unit I 1 CDS Chapter 1: Atomic Molecular Theory Law of Conservation of Mass the total mass of all products of a chemical reaction is equal to

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY UNIT 2 - ATOMIC THEORY VOCABULARY: Allotrope Electron Configuration Nuclear Charge Anion Element Nucleons Atom Excited state Nucleus Atomic Mass Ground state Orbital Atomic Mass unit (a.m.u.) Ion Proton

More information

Periodic Trends. objectives: Atomic Radius Ionization Energy Reactivity

Periodic Trends. objectives: Atomic Radius Ionization Energy Reactivity objectives: Periodic Trends I can determine parts (see vocab list) of the periodic table. (with stepline) I can apply Coulomb's law to attraction of electrons to the nucleus. I can analyze data or use

More information

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered:

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered: Copyright 2004 by Houghton Mifflin Company. Modern Atomic Theory Chapter 10 All rights reserved. 1 10.1 Rutherford s Atom Rutherford showed: Atomic nucleus is composed of protons (positive) and neutrons

More information

White Light. Chapter 7 Electron Structure of the Atom

White Light. Chapter 7 Electron Structure of the Atom Chapter 7 Electron Structure of the Atom Electromagnetic Radiation and Energy The Bohr Model of the Hydrogen Atom The Modern Model of the Atom Periodicity of Electron Configurations Valence Electrons for

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

Chapter 7. Atomic Structure

Chapter 7. Atomic Structure Chapter 7 Atomic Structure Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength Frequency = number of cycles in one

More information

[3.4] The Periodic Table and Periodic Trends

[3.4] The Periodic Table and Periodic Trends [3.4] The Periodic Table and Periodic Trends Father of the Periodic Table Dmitri Mendeleev: Scientist who did a lot of work in the development of the modern periodic table Early periodic tables were arranged

More information

BOHR CHADWICK S ATOMIC NUMBER

BOHR CHADWICK S ATOMIC NUMBER CH 11 T3 ATOMIC THEORY PART 2 1 You have mastered this topic when you can: 1) name and describe the atomic models developed by RUTHERFORD and BOHR. 2) describe CHADWICK S contribution to the structure

More information

Regents Chemistry Unit 1 Atomic Concepts. Textbook Chapters 3 & 4

Regents Chemistry Unit 1 Atomic Concepts. Textbook Chapters 3 & 4 Regents Chemistry Unit 1 Atomic Concepts Textbook Chapters 3 & 4 Atomic Theory- Atoms are the building blocks of matter Atomic Models Democritus ~440 BC a Greek Philosopher suggested that matter is made

More information

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms.

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms. A chemical bond is a mutual electrical attraction between the nucleus and valence electrons of different atoms that binds the atoms together. Why bond? As independent particles, atoms have a high potential

More information

Chapter 4. Models of the Atom

Chapter 4. Models of the Atom Chapter 4 Models of the Atom Dalton Model of the Atom John Dalton proposed that all matter is made up of tiny particles. These particles are molecules or atoms. Molecules can be broken down into atoms

More information

Unit 2: Atomic Structure Practice Packet

Unit 2: Atomic Structure Practice Packet Unit 2: Atomic Structure Practice Packet Dalton s Model: hard sphere model 1. I can describe John Dalton s contribution to our Thomson s Experiment: cathode ray experiment 2. I can describe JJ Thomson

More information

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18 Atomic Theory Developing the Nuclear Model of the Atom Democritus Theory: Atom, the indivisible particle c. 300 BC Democritus Problem: No scientific evidence c. 300 BC Dalton Theory: The solid sphere model

More information