Honors Ch3 and Ch4. Atomic History and the Atom

Size: px
Start display at page:

Download "Honors Ch3 and Ch4. Atomic History and the Atom"

Transcription

1 Honors Ch3 and Ch4 Atomic History and the Atom

2 Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

3 Ch3.1 What are atoms? Atoms are the smallest part of an element that still has the element s properties.

4

5 By 1700 s chemistry was defined by 3 Laws: Law of the Conservation of Mass Law of the definite Proportions Law of Multiple Proportions

6 Law of Conservation of Mass

7 Law of Definite Proportions/Composition Substances contain atoms in the same ratio of mass.

8 Law of Multiple Proportions

9 Early 1800 s John Dalton Came up with first atomic theory that is the basis for today s theory.

10 Early 1800 s John Dalton s Theory-proven 1. Every element is made of tiny, unique particles called atoms These atoms cannot be destroyed, but instead rearrange during a chemical change 2. Atoms of different elements can join to form molecules in constant whole number ratios.

11 John Dalton s Theory-disproved Atoms cannot be broken down into smaller particles. Atoms of the same element are exactly alike in mass

12 Ch JJ Thomson Used a cathoray tube to examine if atoms were made of charged particles.

13 Opposite charges attract

14 1897 JJ Thomson Discovered atoms are made up of particles with negative charges, but little mass. Called them electrons.

15 Thomson Model Electrons Positive charges, not known as protons yet

16 1911-Rutherford Put together a team of physicists to performed the gold foil experiment

17 1 out of 8000 alpha particles were repelled.

18 1913-Rutherford The experiment led to the discovery that atoms are mostly empty space. (expected) It also discovered that atoms contain a positive dense nucleus which contained most of the mass of the atom.

19

20 Rutherford Model

21 Inside the Nucleus Particles were discovered. Positive protons (1836 times more massive than electrons) These practices identified the type of atom. Neutral neutrons (1837 times more massive than electrons) Kept the protons from repelling by producing strong nuclear forces

22 Ch 3.3 Parts of an atom Nucleus Proton Neutron Cloud Subatomic Particles Charged Particles Electron

23

24 Nucleus center of an atom positively charged makes up 99.9% of the atom s mass

25 Protons Charge (+) Mass is equal to 1 atomic mass unit (u) 1/12 mass of Carbon atom

26 Neutrons Charge (0 net) - neutral Mass is equal to 1amu Determine stability of nucleus

27 Electrons Charge is negative (-) Mass is equal to amu

28

29 Atomic Number Identifies # of protons Determines the type of atom because no two elements can have same # of protons.

30 Mass Number Mass of a single atom # of protons # of neutrons Mass #

31 Isotopes Any atoms having the same number of protons but different number of neutrons. thus they have different mass numbers.

32 Springfield Isotopes

33 Isotopes

34

35 Average Atomic Mass Atomic mass is the mass of all isotopes of a particular element averaged together Calculating Average Mass is based on the abundance of each isotope

36 Atoms vs Ions All atoms have the same number of protons and electrons. They are neutral. Charges cancel each other out.

37 Atom vs Ions Ions are charged particles. Form when atoms lose or gain electrons. Form in order to have a full outer shell Two Types.

38 Cations Positively charged ions. Form when atoms lose electrons. Form from metal atoms

39 Cations # of protons greater than # of electrons More (+) than (-)

40

41 Na Atom Na + Cation

42 Anions Negatively charged ions. Form when atoms gain electrons. Form from nonmetal atoms

43 Anions # of protons less than # of electrons More (-) than (+)

44 Cl atom Cl - Anion

45 Ch4.1 The Duality of Light Led to a New View of the Atom Light has characteristics of both waves and particles All forms of radiation travel at the same maximum speed of 3.00 x10 8 m/s

46 Wave description Different forms of light are defined by their unique wavelengths (ƛ) and frequencies (v) Speed of light (c)= ƛ v

47 Electromagnetic Spectrum Electromagnetic spectrum includes light at all possible frequencies and wavelengths wavelength, frequency

48

49 <>

50 Gamma Rays highest energy and frequency. Nuclear radiation

51

52

53

54 X-Rays high ionizing energy radiation Used for imaging

55

56 Ultraviolet Light (UV) Ionizing energetic radiation Can cause skin cancer when over exposed

57

58

59 Sun Protection (SPF) 7 or less no protection 8 Extra protection but still permits tanning 15 Offers total protection from burning 30 Totally blocks UV

60 ROYGBIV Visible spectrum We see red and orange the best Blue and violet are the hottest colors, and emits the most energy, red the least and coldest White is all the colors combined, black the absence

61 Infrared Light Lower energy radiation Night vision

62

63

64

65 Microwaves Low energy radiation Used to heat food Also used in telecommunication

66

67

68 Radio Waves Have the Lowest frequencies and highest wavelengths Includes FM, AM, and TVs Radar

69 REALITY TV

70 The Particle Description The Photoelectric effect: Emission of electrons when certain light hits metal Einstein theorized that light can be modeled as a photons (particles of light) Each photon carries an unique quantum of energy

71 Maxwell Planck Theorized that the energy given off by a photon is directly related to the frequency of the radiation emitted. His equation Energy (E) = hv h = planck s constant = x J s

72 Ch s Niels Bohr Suggested that electrons move around nuclei in set paths around the nucleus. (solar system)

73 s Niels Bohr He said each path is a calculated energy level Atom s electrons can jump to different energy levels when absorbing photons

74 Niels Bohr States of Atoms Ground State- An electron s lowest energy state or level Excited State- An electron that is energized will jump to a higher energy state or level. Will last for a short period. (resulting light production)

75 States of Atoms? Ground State Excited state

76 This is how light is produced Ground State Excited state back to ground And Light production

77

78

79 Niels Bohr Bohr noticed that different atoms emitted different radiation when excited.

80 Planck s Flame Test

81 Spectroscopy

82 Emission (Line) Spectrum Atoms and molecules are identified by these spectrums.

83

84 What the Heck is Light?

85 Ch4.2 Quantum Theory French Physicist De Broglie Wave-Particle Duality of electrons He proposed that electrons can only exist at certain frequencies, hence the energy they release when excited

86 Today s Theory Werner Heisenberg Uncertainty Principle It is impossible to determine an electron s exact position and speed at the same time. Along with De Brogile, they disproved Bohr s definite orbit assumption

87

88 Schrödinger s Work Electrons found in orbitals within different energy levels. a calculated region in an atom where there is a high probability of finding electrons. This led to the Electron Cloud model and Quantum Numbers

89

90

91 Modern Atomic Cloud Model

92

93 History Review

94 Quantum # s Principal (n) = number of energy level (1-7) Angular momentum (l) = sublevels: 0,1,2,or 3 Magnetic (m) = the orbital # (-,0,+) Spin (s) = electron spin (1/2, -1/2) Pauli Exclusion Principle No two atoms will have the same configuration or set of quantum # s

95

96 Energy levels 1 st level holds 2 e - (s) 2 nd level holds 8 e - (s,p) 3 rd level holds 8 or 18e - (s,p,d) 4 th level holds 18 or 32e - (s, p d, f) Outer (valence) level holds up to 8 e- (s, p)

97 Making Bohr Models

98 Bohr s Model Blue dots represent electrons Rings represent energy Level, NOT orbit (path)

99 ELECTRON CONFIGURATIONS Ch4.2 Electron Energy Levels, SUBLEVELS, and Orbital's

100 Electron Configuration The rows (periods) of the periodic table tell you the energy level There are 4 sublevels s,p,d,f

101

102 Electron Configuration Each sublevel contains a different number of orbitals. S =1, p = 3, d= 5, and f = 7 Orbital is represented by: Each orbital holds only two electrons with opposite spin.

103 Writing Atomic Electron Configurations Three ways of writing configurations. 1. orbital box notation. 2. Electron Configuration (spdf) Notation 3. Noble Gas Configuration

104 Orbital Notation Rules: 1. Aufbau Principle- electrons are added one at a time starting at lowest energy level 2. Hund s Rule - When filling orbitals with in the same sublevel, fill one electron into each box before pairing electrons.

105 Orbital Notation ORBITAL BOX NOTATION for He, atomic number = s 1s Arrows depict electron spin

106

107 3. Hund s Rule 2P 1.

108 S,p,d,f Notation for H, atomic number = 1 1 s 1 no. of electrons value of n sublevel

109 Phosphorus Group 5A Atomic number = 15 1s 2 2s 2 2p 6 3s 2 3p 3 [Ne] 3s 2 3p 3 3s 2s 3p 2p 1s

110 Aluminum Group 3A Atomic # = 13 1s 2 2s 2 2p 6 3s 2 3p 1 [Ne] 3s 2 3p 1 All Group 3A elements have [core] ns 2 np 1 configurations where n is the period number. 3s 2s 1s 3p 2p

111

Ch4 and Ch5. Atomic History and the Atom

Ch4 and Ch5. Atomic History and the Atom Ch4 and Ch5 Atomic History and the Atom Ch4.2 What are atoms? Atoms are the smallest part of an element that still has the element s properties. Ch. 4.3 The Atom is Defined 400 B.C. the Greek philosopher

More information

Regents Chemistry Unit 1 Atomic Concepts. Textbook Chapters 3 & 4

Regents Chemistry Unit 1 Atomic Concepts. Textbook Chapters 3 & 4 Regents Chemistry Unit 1 Atomic Concepts Textbook Chapters 3 & 4 Atomic Theory- Atoms are the building blocks of matter Atomic Models Democritus ~440 BC a Greek Philosopher suggested that matter is made

More information

Atomic Structure Chapter 4

Atomic Structure Chapter 4 Atomic Structure Chapter 4 Outline A History of the Atomic Model Electron Structure of the Atom Useful Element Notations Early Thoughts on the Structure of Matter Before the invention of high powered microscopes,

More information

Unit 3. The Atom & Modern Atomic Theory

Unit 3. The Atom & Modern Atomic Theory Unit 3 The Atom & Modern Atomic Theory Theories of the Atom Early Models & Thoughts: Democritus Matter is made up of tiny particles called atoms. Smallest unit that retains the identity of the element

More information

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12 KEY Review Sheet: UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS 1. Know which isotope is the standard for the atomic mass unit. CARBON-12 2. Know what the difference in masses of isotopes

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Chapter #1 - Atomic Structure

Chapter #1 - Atomic Structure Chapter #1 - Atomic Structure Atomic Theories Democritus (460-340 BC) Democritus believed that all matter consisted of extremely small particles that could not be divided. He called them atoms from the

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

Where are we? Check-In

Where are we? Check-In Where are we? Check-In ü Building Blocks of Matter ü Moles, molecules, grams, gases, ü The Bohr Model solutions, and percent composition Coulomb s Law ü Empirical and Molecular formulas Photoelectron Spectroscopy

More information

UNDERLYING STRUCTURE OF MATTER

UNDERLYING STRUCTURE OF MATTER 1 UNDERLYING STRUCTURE OF MATTER Chapter 4 Atomic Structure DEFINING THE ATOM Earlier theories of matter: A. Even though his hypothesis lacked evidence at the time, the Greek philosopher Democritus (460

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

2 Atomic Theory Development of Theory

2 Atomic Theory Development of Theory Atomic Theory Development of Theory Historical Atomic Models Democritus Greek philosopher who postulated that matter is comprised of atoms as the smallest part (ca 400 BC) John Dalton Max Planck J.J. Thompson

More information

Light Study of light by Newton helped lead to the quantum mechanical model. INTRO AND BACKGROUND: Atomic Structure. Electromagne?

Light Study of light by Newton helped lead to the quantum mechanical model. INTRO AND BACKGROUND: Atomic Structure. Electromagne? INTRO AND BACKGROUND: Atomic Structure Light Study of light by Newton helped lead to the quantum mechanical model All light exhibits WAVE properties -AMPLITUDE: height of a wave -WAVELENGTH: distance between

More information

Introduction. Electromagnetic Waves. Electromagnetic Waves

Introduction. Electromagnetic Waves. Electromagnetic Waves Introduction Much of the information we know about electrons comes from studies of interactions of light and matter. In the early 1900 s, scientists discovered that light has properties of both a wave

More information

8.5 Atomic Structure

8.5 Atomic Structure Views of the Atom Democritus (Greek philosopher from 460 BC to 370 BC) Believed that atoms were indivisible and indestructible. His approach was simply philosophy and was not based upon the scientific

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Chapter 4 The Structure of the Atom

Chapter 4 The Structure of the Atom Chapter 4 The Structure of the Atom Read pg. 86-97 4.1 Early Theories of Matter The Philosophers Democritus Artistotle - Artistotle s influence so great and the science so primitive (lacking!) his denial

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena

What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Atomic Structure What is a theory? An organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set of phenomena Early Theories Democritus: 4 B.C.: atom He

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Section 3.1 Substances Are Made of Atoms

Section 3.1 Substances Are Made of Atoms Section 3.1 Substances Are Made of Atoms Objectives: 1. State the three laws that support the existence of atoms. 2. List the five principles of John Dalton s atomic theory. Vocabulary: law of definite

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

CHEMISTRY. Chapter 6 Electronic Structure of Atoms CHEMISTRY The Central Science 8 th Edition Chapter 6 Electronic Structure of Atoms Kozet YAPSAKLI Who are these men? Ancient Philosophy Who: Aristotle, Democritus When: More than 2000 years ago Where:

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Q1 and Q2 Review large CHEMISTRY

Q1 and Q2 Review large CHEMISTRY Q1 and Q2 Review large CHEMISTRY Multiple Choice Identify the choice that best completes the statement or answers the question. 1. E = hv relates the following a. Energy to Planck s constant & wavelength

More information

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 5.1 Notes I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave

More information

Atomic Structure Part II. Electrons in Atoms

Atomic Structure Part II. Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Elements, atoms, & the. discovery of atomic structure

Elements, atoms, & the. discovery of atomic structure Elements, atoms, & the discovery of atomic structure Chapter 4 EARLY MODELS OF THE ATOM One What is an atom? The smallest particle of an element that can keep the same properties of the element. Democritus

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In what way does the photoelectric effect support the particle theory

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms.

What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms. Matter What is matter? Matter is anything that has mass and takes up space. Matter is made up of atoms. Is it matter? Can you measure the object? Does it take up space? Does the object have a mass? Come

More information

Democritus s ideas don t explain chemical behavior & lacked experimental support.

Democritus s ideas don t explain chemical behavior & lacked experimental support. A1: Atomic Structure Worksheet Key (Goals 1 3, Chapter 4) 1. Democritus, who lived in Greece during the 4 th century B.C., suggested that matter is made up of tiny particles that cannot be divided. He

More information

4/14/2013 ATOMIC STRUCTURE THE ATOMIC MODEL

4/14/2013 ATOMIC STRUCTURE THE ATOMIC MODEL ATOMIC STRUCTURE R E G E N T S C H E M I S T R Y M R S. T I L A R O HISTORY OF THE ATOM O L D A N D M O D E R N A T O M THE ATOMIC MODEL Model of the atom is based on indirect experimental data. Model

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

Unit 1, Lesson 01: Summary of Atomic Structure so far

Unit 1, Lesson 01: Summary of Atomic Structure so far Unit 1, Lesson 01: Summary of Atomic Structure so far Atoms are made of sub-atomic particles: Protons: found in the nucleus, charge of 1+, mass of 1 amu (u) Neutrons: found in nucleus, no charge, mass

More information

Atomic Structure. Chemistry Mr. McKenzie

Atomic Structure. Chemistry Mr. McKenzie Atomic Structure Chemistry Mr. McKenzie How was the understanding of the atom developed? John Dalton (1766-1844) - developed a model to explain observations made at the time 1. Elements are made of tiny

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

Atomic Structure Early Theories Democritus: 4 B.C.: atom Dalton: atoms cannot Thomson: Cathode Ray Tubes Rutherford:

Atomic Structure Early Theories Democritus: 4 B.C.: atom Dalton: atoms cannot Thomson: Cathode Ray Tubes Rutherford: Atomic Structure n a well-substantiated explanation of some aspect of the natural world; n an organized system of accepted knowledge that applies in a variety of circumstances to explain a specific set

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms AP Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18 Atomic Theory Developing the Nuclear Model of the Atom Democritus Theory: Atom, the indivisible particle c. 300 BC Democritus Problem: No scientific evidence c. 300 BC Dalton Theory: The solid sphere model

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & &

Notes:&&Unit&4:&Atomics& & & & & & & & & & & & & & & & & Name: RegentsChemistry:Mr.Palermo Notes:Unit4:Atomics! www.mrpalermo.com Name: $ Key$Ideas$ Themodernmodeloftheatomhasevolvedoveralongperiodoftimethroughtheworkofmany scientists.(3.1a) Eachatomhasanucleus,withanoverallpositivecharge,surroundedbyoneormorenegatively

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

Chap 4 Bell -Ringers

Chap 4 Bell -Ringers Chap 4 Bell -Ringers The Structure of the Atom The Atom has a Structure What we ve seen so far Chapter 1 The Science of Chemistry - Chemistry is about discovering and understanding natural laws using the

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

CHAPTER 5. Electrons in Atoms. Rutherford Model. Bohr Model. Plum Pudding Model. 5.1 Atomic Models

CHAPTER 5. Electrons in Atoms. Rutherford Model. Bohr Model. Plum Pudding Model. 5.1 Atomic Models CHAPTER 5 Electrons in Atoms 5.1 Atomic Models The Chemical properties of atoms, ions, and molecules are related to the arrangement of the electrons within them. The first model of the atom was Dalton

More information

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video 2 CH 4- Atoms 1 Discovering the Atom In this lesson we will take a look at the scientists who explored the

More information

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012 Atomic Structure Discovered Ancient Greeks Democritus (460-362 BC) - indivisible particles called atoms Prevailing argument (Plato and Aristotle) - matter is continuously and infinitely divisible John

More information

The History of the Atom. How did we learn about the atom?

The History of the Atom. How did we learn about the atom? The History of the Atom How did we learn about the atom? The Atomic Theory of Matter All matter is made up of fundamental particles. What does fundamental mean? The Greek Philosophers, 400 B.C. Democritus

More information

Atomic Structure ATOMIC STRUCTURE. All matter is composed of atoms.

Atomic Structure ATOMIC STRUCTURE. All matter is composed of atoms. All matter is composed of atoms. ATOMIC STRUCTURE Understanding the structure of atoms is critical to understanding the properties of matter HISTORY OF THE ATOM DALTONS ATOMIC THEORY 1808 John Dalton suggested

More information

Unit 3: Atomic Structure. Particle Charge Location in the Atom Mass

Unit 3: Atomic Structure. Particle Charge Location in the Atom Mass Unit 3: Atomic Structure Name: Basics of the Atom Particle Charge Location in the Atom Mass a.m.u.: unit used to measure mass of atoms atomic number: mass number: To find net charge on an atom, consider

More information

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave nature of

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom 1 The Atom as Matter Dalton s atomic theory had problems It considered atoms to be hard, indivisible particles Did not explain why atoms reacted Also did not explain why atoms

More information

Chapter 5: Electrons in Atoms

Chapter 5: Electrons in Atoms Chapter 5: Electrons in Atoms Models of the Atom Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus, like the planets move around

More information

Electron Configuration

Electron Configuration Electron Configuration Plumb Pudding Atomic Model Thomson s atomic model consisted of negatively charged electrons embedded in a ball of positive charge. Diagram pg 81 of chemistry text. Rutherford s Model

More information

Worksheet 2.1. Chapter 2: Atomic structure glossary

Worksheet 2.1. Chapter 2: Atomic structure glossary Worksheet 2.1 Chapter 2: Atomic structure glossary Acceleration (in a mass spectrometer) The stage where the positive ions are attracted to negatively charged plates. Alpha decay The emission of an alpha

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion.

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Nucleus Contains 99.9% of the mass of an atom Found

More information

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS Atoms Atoms have protons and neutrons located in the nucleus of the atom. Electrons orbit around the nucleus in well-defined paths. Protons have

More information

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered:

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered: Copyright 2004 by Houghton Mifflin Company. Modern Atomic Theory Chapter 10 All rights reserved. 1 10.1 Rutherford s Atom Rutherford showed: Atomic nucleus is composed of protons (positive) and neutrons

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory In science, often times chemical or physical behavior can not be seen with the naked eye (nor with the use of some other device). Consequently, an understanding and explanation of

More information

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space.

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space. Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through space. What are the 7 forms of electromagnetic radiation, in order of INCREASING wavelength? gamma rays

More information

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture

Nuclear Chemistry. Atomic Structure Notes Start on Slide 20 from the second class lecture Nuclear Chemistry Atomic Structure Notes Start on Slide 20 from the second class lecture The Birth of an Idea Democritus, 400 B.C. coined the term atom If you divide matter into smaller and smaller pieces,

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks

ATOM. Rich -Paradis. Early Thoughts Aristotle-- Continuous theory. Matter can be divided indefinitely. Greeks ATOM Early Thoughts Aristotle-- Continuous theory Greeks Matter can be divided indefinitely matter is made up of particles--4 elements 4 elements --air--fire--water- -- earth Democritus --Discontinuous

More information

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz) The Development of Quantum Mechanics Early physicists used the properties of electromagnetic radiation to develop fundamental ideas about the structure of the atom. A fundamental assumption for their work

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea Electrons in Atoms Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element Greek Idea Thomson s Model Discovered electrons Atoms were made of positive

More information

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and positions of electrons

More information

The Electron Cloud. Here is what we know about the electron cloud:

The Electron Cloud. Here is what we know about the electron cloud: The Electron Cloud Here is what we know about the electron cloud: It contains the subatomic particles called electrons This area accounts for most of the volume of the atom ( empty space) These electrons

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

a. According to Dalton, what is inside the atom? Nothing, the atom it the smallest

a. According to Dalton, what is inside the atom? Nothing, the atom it the smallest Unit 3: Review SCIENTIFIC THEORIES Dalton theorized that atoms were the smallest particle and could not be divided. Atoms can bond with one another in whole number ratios to form compounds but cannot be

More information

Chapter 3. Atom. Table of Contents. 1. Atom and History of Atom 2. Subatomic Particles 3. Isotopes 4. Ions 5. Atomic Terminology

Chapter 3. Atom. Table of Contents. 1. Atom and History of Atom 2. Subatomic Particles 3. Isotopes 4. Ions 5. Atomic Terminology Atom Table of Contents 1. Atom and History of Atom 2. Subatomic Particles 3. Isotopes 4. Ions 5. Atomic Terminology The History of The Atom Warm up Make a list of inferences about any properties of objects

More information

Unit 1 Part 1 Atomic Structure and The Periodic Table Introduction to Atomic Structure UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 1 Atomic Structure and The Periodic Table Introduction to Atomic Structure UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 1 INTRODUCTION TO ATOMIC STRUCTURE Contents 1. Protons, Neutrons and Electrons 2. Early Models of the Atom 3. Isotopes and Atomic Mass 4. Atoms and Ions

More information

Focus Learning Targets Atomic Structure and Quantum Chemistry 1. Give the one main contribution to the development of the atomic model from each of

Focus Learning Targets Atomic Structure and Quantum Chemistry 1. Give the one main contribution to the development of the atomic model from each of Atomic Structure Homework Packet Honors Chemistry Focus Learning Targets Atomic Structure and Quantum Chemistry 1. Give the one main contribution to the development of the atomic model from each of the

More information

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY *KEY* *KEY* UNIT 2 - ATOMIC THEORY *KEY* *KEY* VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic number Bohr model Cation Compound Electron Electron Configuration Element Excited

More information

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

Atomic theory. Atoms: The Building Blocks of Matter

Atomic theory. Atoms: The Building Blocks of Matter Atomic theory Atoms: The Building Blocks of Matter First, there was Democritus Democritus was a Greek philosopher atomos He came up with the idea of the atom around 400BCE He had no evidence, he just thought

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

Atomic Theory. Early models

Atomic Theory. Early models Atomic Theory Early models Ancient Greece Late 18 th century 4 elements Earth, Water, Wind, Fire: Matter is made up in different combinations of these 4 elements. First atom proposed by Democritus (Greek)

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Electrons in Atoms Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Click a hyperlink or folder tab to view the corresponding slides. Exit

More information

HISTORY OF THE ATOM ATOMA

HISTORY OF THE ATOM ATOMA S.MORRIS 2006 HISTORY OF THE ATOM 460 BC Democritus develops the idea of atoms he pounded up materials in his pestle and mortar until he had reduced them to smaller and smaller particles which he called

More information