Making the Essential Ingredients of Nuclear Weapons. Matthew Bunn IGA-232, Controlling the World s Most Dangerous Weapons September 12, 2013

Size: px
Start display at page:

Download "Making the Essential Ingredients of Nuclear Weapons. Matthew Bunn IGA-232, Controlling the World s Most Dangerous Weapons September 12, 2013"

Transcription

1 Making the Essential Ingredients of Nuclear Weapons Matthew Bunn IGA-232, Controlling the World s Most Dangerous Weapons September 12, 2013

2 Two paths to the bomb The plutonium route Reactor: uranium fuel absorbs neutrons, makes plutonium Reprocessing plant: chemically separates plutonium from rest of spent fuel The highly enriched uranium (HEU) route Enrichment plant: separates nearly identical U-235 and U-238 isotopes Several techniques (gaseous diffusion, centrifuges, laser ) A few other isotopes could support explosive nuclear chain reactions, are not used in any stockpiled weapons None of these materials occur in nature; all are extraordinarily difficult to produce REPROCESSING ENRICHMENT

3 Two paths to bomb material: enrichment and reprocessing Enrichment 90% U-235, 10% U-238 (product) 0.2% U-235, 99.8% U-238 (tails) Natural Uranium: 0.7% U % U-238 Reactor Spent Fuel: 1% Pu, 99% U + FPs Pu (product) U Reprocessing HLW (FPs) Both routes start from mining uranium; both end with converting products to metal and making bomb components

4 Steps on the two paths Conversion to UF6 Mining Enrichment Milling Conversion to metal or UO2, fuel fabrication Conversion to metal and fabrication Reactor Reprocessing

5 Nuclear reactors a complicated way to boil water Source: Source:

6 Enrichment cascades Source: Alexander Glaser, Princeton University

7 A cascade for HEU (90%) Source: International Panel on Fissile Materials

8 A cascade for LEU (3-5%) Source: International Panel on Fissile Materials

9 Gaseous diffusion enrichment Originally dominated world enrichment Huge, readily observable facilities required Immense energy requirements United States, France still operating large diffusion plants but both planning to replace them with centrifuges Sources: USEC, Atomic Archive

10 Centrifuge enrichment Now dominates world uranium enrichment Far more efficient than gaseous diffusion: small, readily hidden facilities, modest energy requirements Technologically demanding A.Q. Khan network marketed technology to many countries including North Korea Key question: is North Korea making HEU? Sources: URENCO, Reuters

11 How centrifuges work Source: Alexander Glaser, Princeton University

12 P-1 (Ir-1) centrifuges at Natanz Source:

13 Enrichment: large cascades, accelerating success Need to hook up centrifuges in cascades of hundreds or thousands to get substantial enrichment of kilograms or tons Very non-linear process once enriched from 0.7% U-235 to 4.5%, ~ ¾ of the work of going to 90% U-235 is already done Hence, having stock of LEU could allow a country to enrich to HEU more quickly, or with a smaller, easier-to-hide facility Source: DOE

14 How difficult is enrichment? Differing evidence Iran: had complete centrifuges designs in ~ 20 years to operating cascade Building IR-1 centrifuges requires hard-to-get specialty materials, exquisite balancing, a very difficult-to-make bottom bearing Iran, Libya, N. Korea all pursued variants on this Source:

15 How difficult is enrichment? Differing evidence (II) But, United States, U.K., Australia, many other countries developed and built simple, good enough centrifuges in a few years with a few people Source:

16 Centrifuge plants: easy to hide Centrifuges take up little space, little power Plant to make enough HEU for 1 bomb per year could fit in this building, use less power than typical supermarket Uranium leakage is modest How to find them? North Korean centrifuge plant only identified when Siegried Hecker visited it North Korean centrifuge plant at Yongbyon Source: ISIS, image from Digital Globe

17 Producing plutonium Step 1: Irradiate uranium in a nuclear reactor, so that U-238 atoms absorb neutrons, become plutonium Step 2: Reprocess the irradiated uranium ( spent fuel ) dissolve it in boiling nitric acid, use series of solvent extraction steps to separate plutonium from uranium and radioactive fission products Typically (but not always) large, detectable facilities North Korean reactor at Yongbyon Source: Keith Luse, U.S. Senate staff

18 Plutonium production: Schematic of North Korean reactor Source: Sandia

19 North Korean reprocessing plant Source: Digital Globe

20 Civilian nuclear power and the bomb: How close a connection? Enrichment and reprocessing are the key technologies that pose serious proliferation risks Any country with either of these types of plants can decide to make nuclear bomb material at any time Having a civilian light-water reactor by itself does not get a country very close to the bomb Reactors under IAEA safeguards diversion would be detected Fresh fuel: low-enriched, can t be used in nuclear weapons Spent fuel: contains plutonium, would take reprocessing to get the plutonium out from the spent fuel But, civilian reactors provide: Base of personnel trained in nuclear matters and extensive contacts with other countries (which may lead to more sensitive transfers) Justification for pursuing enrichment, reprocessing Bureaucratic power base for nuclear advocates

21 Civilian nuclear power and the bomb: How close a connection? (II) These issues are the origins of several current controversies: Iran: says its enrichment is for peaceful purposes, and legitimate S. Korea: wants U.S. consent for pyroprocessing and enrichment Gold standard : UAE agreed to civilian nuclear cooperation agreement with United States that explicitly barred enrichment and reprocessing Vietnam, Jordan, Saudi Arabia resisting similar terms Nuclear Suppliers Group has just agreed on new criteria that should be met before any exports of enrichment and reprocessing technologies to countries that do not have them would be considered More on proliferation-resistance of civilian nuclear energy later in the course

22 Some (sometimes misleading) terms to remember Highly enriched uranium (HEU) Uranium with at least 20% U-235 As opposed to natural uranium (0.7% U-235), low-enriched uranium (LEU, typically 4-5% U-235), or depleted uranium (<0.7% U-235) Weapons-grade uranium Uranium with ~90% U-235 But bombs can be made with material far below weapons-grade Weapons-grade plutonium Plutonium with ~ 90% Pu-239 As opposed to reactor-grade plutonium (much less Pu-239) contained in spent fuel from typical nuclear power reactors Weapons-makers prefer weapons-grade plutonium, but reliable, effective weapons can also be made with reactor-grade plutonium (once reprocessed from spent fuel)

23 Backup slides if needed.

24 History of North Korean plutonium production first phase 1980 construction begins on 5 MWe reactor 1985 DPRK accedes to NPT under Soviet pressure (but does not complete safeguards agreement) 1986 reactor starts operation 1989 long shut-down how much fuel unloaded? 1991 U.S. unilaterally announces removal of all nuclear weapons from South Korea 12/1991 North-South Denuclearization agreement no enrichment or reprocessing facilities 1/1992 North Korea-IAEA safeguards agreement 9/1992 IAEA confirms discrepancies in North Korean declaration plutonium separated at times not declared

25 History of North Korean plutonium production first phase (II) 2/93 IAEA demands special inspections at DPRK waste sites 3/93 DPRK announces intention to withdraw from NPT, kicks out IAEA inspectors 6/93 DPRK suspends NPT withdrawal after U.S. talks 2/1994 DPRK agrees to resume IAEA inspections, averting Security Council sanctions 3/94 DPRK refuses inspectors access to reprocessing plant, Board of Governors demands it comply 5/94 DPRK begins removing plutonium-bearing fuel from its reactor, preparing to reprocess with no safeguards

26 Other enrichment technologies Calutrons grossly inefficient, energy hogging, but technology comparatively easy to get (used by Iraq) Lasers selectively ionize atoms or molecules of one isotope, then bend charged ones with magnetic field difficult technology, potentially small, efficient Many others chemical, aerodynamic Sources: DOE, UNSCOM

27 Nuclear reactors a complicated way to boil water Source:

28 Fuel assemblies fresh and spent NEI NEI

29 Some important reactor types Reactor type Fuel Moderator Coolant Pu production Light-water 4-5% U235 Light water Light-water R-Pu Graphite % Graphite Gas or water W-Pu or R-Pu CANDU % Heavy water Heavy water R-Pu or W-Pu Fast neutron 20-30%, or Pu None Liquid sodium, other W-Pu

30 Nuclear energy and proliferation Most nuclear weapons programs since civilian nuclear energy became widely established have had crucial contributions from the civilian sector Most programs: dedicated military production facilities for Pu or HEU, but civilian sector provided: source for open or covert technology acquisition cover for purchases actually intended for weapons program buildup of infrastructure and expertise A few programs: Pu or HEU directly from ostensibly civilian facilities -- or consideration of purchase of stolen fissile material

Nuclear Weapons and Materials

Nuclear Weapons and Materials CHAPTER 3 Nuclear Weapons and Materials Nuclear weapons have existed for more than fifty years, and the technology required to produce them is well understood and widely available. Nine countries (Britain,

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein

The discovery of nuclear reactions need not bring about the destruction of mankind any more than the discovery of matches - Albert Einstein The world has achieved brilliance without wisdom, power without conscience. Ours is a world of nuclear giants and ethical infants. - Omar Bradley (US general) The discovery of nuclear reactions need not

More information

Question to the class: What are the pros, cons, and uncertainties of using nuclear power?

Question to the class: What are the pros, cons, and uncertainties of using nuclear power? Energy and Society Week 11 Section Handout Section Outline: 1. Rough sketch of nuclear power (15 minutes) 2. Radioactive decay (10 minutes) 3. Nuclear practice problems or a discussion of the appropriate

More information

Plutonium and Highly Enriched Uranium 1996

Plutonium and Highly Enriched Uranium 1996 Plutonium and Highly Enriched Uranium 1996 World Inventories, Capabilities and Policies David Albright, Frans Berkhout and William Walker sipri OXFORD UNIVERSITY PRESS 1997 Contents Preface Acknowledgements

More information

Chapter 1. Why Countries Might Choose Reactor- Grade Plutonium for Their First Weapon

Chapter 1. Why Countries Might Choose Reactor- Grade Plutonium for Their First Weapon Chapter 1 Why Countries Might Choose Reactor- Grade Plutonium for Their First Weapon Weapon-grade plutonium is preferred to reactor-grade plutonium for the production of nuclear weapons. It has a relatively

More information

Isotope Separation, with a Focus on Uranium Enrichment. ISIS Course October 30, 2014

Isotope Separation, with a Focus on Uranium Enrichment. ISIS Course October 30, 2014 Isotope Separation, with a Focus on Uranium Enrichment ISIS Course October 30, 2014 Isotope Separation Uranium enrichment is a form of isotope separation. Isotope separation is extremely hard to do, since

More information

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 14

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 14 Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control Midterm Examination 2013 March 14 Full Name UIUC ID No. This is a closed book examination you are not to consult any materials

More information

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011

Production. David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Production David Nusbaum Project on Managing the Atom, Belfer Center October 4, 2011 Where are we? Nuclear Fuel Cycle Background Pu- Radioactive, chemical element, of the actinoid series of the periodic

More information

Illicit trafficking in nuclear and radioactive materials and nuclear terrorism

Illicit trafficking in nuclear and radioactive materials and nuclear terrorism Illicit trafficking in nuclear and radioactive materials and nuclear terrorism Elena K. Sokova James Martin Center for Nonproliferation Studies Middlebury Institute of International Studies at Monterey

More information

Implementation of the NPT Safeguards Agreement in the Republic of Korea

Implementation of the NPT Safeguards Agreement in the Republic of Korea International Atomic Energy Agency Board of Governors GOV/2004/84 Date: 11 November 2004 Restricted Distribution Original: English For official use only Item 4(c) of the provisional agenda (GOV/2004/82)

More information

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333)

Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime. (Report under CRDF Project RX0-1333) Low-Grade Nuclear Materials as Possible Threats to the Nonproliferation Regime (Report under CRDF Project RX0-1333) 2 Abstract This study addresses a number of issues related to low-grade fissile materials

More information

Nuclear Power and Nuclear Weapons

Nuclear Power and Nuclear Weapons BREAKING NEWS -- THIS JUST IN: ================================ From: "Whitlock, Jeremy" Subject: Reactor Grade Plutonium and Bombs Date: 31 March, 2014 11:50:18 PM EDT To repeat, Gordon:

More information

East Asian Nuclearization Is Trump Wrong?

East Asian Nuclearization Is Trump Wrong? East Asian Nuclearization Is Trump Wrong? Is the further nuclearization of East Asia inevitable? Technically, how easy might it be for Japan, South Korea, and China to exploit their civilian nuclear infrastructure

More information

Relative abundances of carbon isotopes in our atmosphere are:

Relative abundances of carbon isotopes in our atmosphere are: Relative abundances of carbon isotopes in our atmosphere are: - C-12 (stable) - C-13 (stable) - C-14 (radioactive) 0.0000000001% The C-14 is incorporated into compounds such as CO2. This gets photosynthesized

More information

The North Korean Plutonium Stock Mid-2006 By David Albright and Paul Brannan Institute for Science and International Security (ISIS) June 26, 2006

The North Korean Plutonium Stock Mid-2006 By David Albright and Paul Brannan Institute for Science and International Security (ISIS) June 26, 2006 The North Korean Plutonium Stock Mid-2006 By David Albright and Paul Brannan Institute for Science and International Security (ISIS) June 26, 2006 This report is the latest in a series by ISIS examining

More information

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste Science and Technology Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste Spent Fuel Rods General Accounting Office Fission products that emit beta and gamma radiation

More information

Science Background of North Korea s Nuclear Bomb Program 1 By James D. Wells (Physics Department, University of Michigan, Ann Arbor) July 4, 2011

Science Background of North Korea s Nuclear Bomb Program 1 By James D. Wells (Physics Department, University of Michigan, Ann Arbor) July 4, 2011 Science Background of North Korea s Nuclear Bomb Program 1 By James D. Wells (Physics Department, University of Michigan, Ann Arbor) July 4, 2011 Historical Introduction Scholardox G3 (2011) Since the

More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information INTRODUCTION WHAT FAST REACTORS CAN DO Chain Reactions Early in 1939 Meitner and Frisch suggested that the correct interpretation of the results observed when uranium is bombarded with neutrons is that

More information

The Status Report of Plutonium Management in Japan

The Status Report of Plutonium Management in Japan The Status Report of Plutonium Management in Japan - 215-27 July 216 Office of Atomic Energy Policy Cabinet Office 1. Preface (1) About this report This is a report on the current status of plutonium management

More information

Nuclear Fuel Reprocessing. By Daniel Bolgren Jeff Menees

Nuclear Fuel Reprocessing. By Daniel Bolgren Jeff Menees Nuclear Fuel Reprocessing By Daniel Bolgren Jeff Menees Goals of the Project 1. Develop a reprocessing technique that can: 1. Reprocess used nuclear fuel. 2. Reduce proliferation concerns. 2. Optimize

More information

The Proliferation Consequences of Global Stocks of Separated Civil Plutonium

The Proliferation Consequences of Global Stocks of Separated Civil Plutonium OXFORD RESEARCH GROUP The Proliferation Consequences of Global Stocks of Separated Civil Plutonium Dr. Frank Barnaby June 2005 Future decisions about the global stocks of civil plutonium, separated from

More information

Fission Reactors. Alternatives Inappropriate. Fission Reactors

Fission Reactors. Alternatives Inappropriate. Fission Reactors Page 1 of 5 Fission Reactors The Polywell Reactor Nuclear Reactions Alternatives Inappropriate Hidden Costs of Carbon Web Site Home Page Fission Reactors There are about 438 Neutron Fission Power Reactors

More information

Dual Master s Degree Program in Nonproliferation Studies Moscow, Fall 2018

Dual Master s Degree Program in Nonproliferation Studies Moscow, Fall 2018 Dual Master s Degree Program in Nonproliferation Studies Moscow, Fall 2018 q Classification and categorization of nuclear and other radioactive materials q Safe radioactive waste and spent fuel management:

More information

Nonproliferation Challenges S&T Solutions Monitoring Centrifuges and Blend Down

Nonproliferation Challenges S&T Solutions Monitoring Centrifuges and Blend Down Nonproliferation Challenges S&T Solutions Monitoring Centrifuges and Blend Down Larry Satkowiak Director - Nonproliferation, Safeguards & Security Programs Oak Ridge National Laboratory Simple Steps to

More information

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR

THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 ABSTRACT THORIUM SELF-SUFFICIENT FUEL CYCLE OF CANDU POWER REACTOR Boris Bergelson, Alexander Gerasimov Institute

More information

Indicators for quantifying proliferation risk and nuclear waste issues in energy system models

Indicators for quantifying proliferation risk and nuclear waste issues in energy system models ??? s t or aget i me Indicators for quantifying proliferation risk and nuclear waste issues in energy system models Master s Thesis in Engineering Physics HENRIK WALL Department of Energy and Environment

More information

CHAPTER 5 A FRESH EXAMINATION OF THE PROLIFERATION DANGERS OF LIGHT WATER REACTORS. Victor Gilinsky

CHAPTER 5 A FRESH EXAMINATION OF THE PROLIFERATION DANGERS OF LIGHT WATER REACTORS. Victor Gilinsky CHAPTER 5 A FRESH EXAMINATION OF THE PROLIFERATION DANGERS OF LIGHT WATER REACTORS Victor Gilinsky LWRs Become the Nuclear Power Workhorse around the World. From the beginning of the nuclear age, American

More information

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis

Power Installations based on Activated Nuclear Reactions of Fission and Synthesis Yu.V. Grigoriev 1,2, A.V. Novikov-Borodin 1 1 Institute for Nuclear Research RAS, Moscow, Russia 2 Joint Institute for Nuclear Research, Dubna, Russia Power Installations based on Activated Nuclear Reactions

More information

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation

Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation Proliferation-Proof Uranium/Plutonium Fuel Cycles Safeguards and Non-Proliferation SUB Hamburg by Gunther KeBler A 2012/7138 Scientific Publishing id- Contents 1 Nuclear Proliferation and IAEA-Safeguards

More information

Energy. on this world and elsewhere. Visiting today: Prof. Paschke

Energy. on this world and elsewhere. Visiting today: Prof. Paschke Energy on this world and elsewhere Visiting today: Prof. Paschke Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu,

More information

Some of the technologies used for nuclear

Some of the technologies used for nuclear Nuclear Power in a Warming World 37 Chapter 4 Preventing Nuclear Proliferation and Nuclear Terrorism Some of the technologies used for nuclear power are dual-use, meaning that they can also be used to

More information

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA AN OVERVIEW OF NUCLEAR ENERGY Prof. Mushtaq Ahmad, MS, PhD, MIT, USA Outline of the Seminar 2 Motivation and Importance of Nuclear Energy Future Energy Planning in the Kingdom Current Status of Nuclear

More information

A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors

A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors Kristin E. Chesson, William S. Charlton Nuclear Security Science

More information

Nuclear Energy Learning Outcomes

Nuclear Energy Learning Outcomes 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons. Describe the structure and operation of a nuclear reactor.

More information

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction

Nuclear Energy Learning Outcomes. Nuclear Fission. Chain Reaction by fastfission public domain by fastfission public domain 1 Nuclear Energy Learning Outcomes Describe the principles underlying fission and fusion. Interpret nuclear reactions. Discuss nuclear weapons.

More information

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 15

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 15 Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control Midterm Examination 2012 March 15 Full Name UIUC ID. Lab. This is a closed book examination you are not to consult any materials

More information

Nuclear Archaeology for Heavy Water Reactors to Distinguish Plutonium and Other Isotope Production Modes

Nuclear Archaeology for Heavy Water Reactors to Distinguish Plutonium and Other Isotope Production Modes Nuclear Archaeology for Heavy Water Reactors to Distinguish Plutonium and Other Isotope Production Modes Julien de Troullioud de Lanversin 1, Malte Göttsche 1, Alexander Glaser 1 1 Program on Science and

More information

Physics of Nuclear Weapons. Prof. Lynn R. Cominsky SSU Department of Physics and Astronomy

Physics of Nuclear Weapons. Prof. Lynn R. Cominsky SSU Department of Physics and Astronomy Physics of Nuclear Weapons Prof. Lynn R. Cominsky SSU Department of Physics and Astronomy Talk Outline Nuclear Weapons Background Nuclear materials Processing Fission Weapons Fusion Weapons Effects Proliferation

More information

Nuclear power plants can generate large amounts of electricity.

Nuclear power plants can generate large amounts of electricity. 7.3 Nuclear Reactions Nuclear fission and fusion are processes that involve extremely large amounts of energy. Fission = the splitting of nuclei Fusion = the joining of nuclei Nuclear power plants can

More information

Future Directions in the DPRK s Nuclear Weapons Program: Three Scenarios for 2020

Future Directions in the DPRK s Nuclear Weapons Program: Three Scenarios for 2020 Future Directions in the DPRK s Nuclear Weapons Program: Three Scenarios for 2020 DAVID ALBRIGHT FEBRUARY 2015 NORTH KOREA S NUCLEAR FUTURES SERIES US-KOREA INSTITUTE AT SAIS David Albright, a physicist,

More information

Introduction Discussion i of Fissile il Materials French Pub Nuclear Fuel Cycle

Introduction Discussion i of Fissile il Materials French Pub Nuclear Fuel Cycle Fundamental Cascade Stage Theory in Isotope Separation for ENU4930/6937: Elements of Nuclear Safeguards, Non-Proliferation, and Security Presented by Glenn E. Sjoden, Ph.D., P.E. Associate Professor and

More information

A FRESH EXAMINATION OF THE PROLIFERATION DANGERS OF LIGHT WATER REACTORS

A FRESH EXAMINATION OF THE PROLIFERATION DANGERS OF LIGHT WATER REACTORS A FRESH EXAMINATION OF THE PROLIFERATION DANGERS OF LIGHT WATER REACTORS Victor Gilinsky Marvin Miller Harmon Hubbard October 22, 2004 The Nonproliferation Policy Education Center 1718 M Street, NW Suite

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear.

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear. Chemistry 500: Chemistry in Modern Living 1 Topic 5: The Fires of Nuclear Fission Atomic Structure, Nuclear Fission and Fusion, and Nuclear Weapons Chemistry in Context, 2 nd Edition: Chapter 8, Pages

More information

Национальный исследовательский Томский политехнический университет

Национальный исследовательский Томский политехнический университет ЯДЕРНО ТОПЛИВНЫЙ ЦИКЛ Зяблова Н.Н, Карпова Н.Д. Национальный исследовательский Томский политехнический университет Томск, Россия Данная статья раскрывает понятие ядерно топливного цикла. Объясняет его

More information

Episode 528: Controlling fission

Episode 528: Controlling fission Episode 528: Controlling fission In this episode, you can look at the different features of the core of a nuclear reactor, and explain its operation using your students knowledge of nuclear physics. Summary

More information

Neptunium 237 and Americium: World Inventories and Proliferation Concerns

Neptunium 237 and Americium: World Inventories and Proliferation Concerns Neptunium 237 and Americium: World Inventories and Proliferation Concerns By David Albright and Kimberly Kramer June 10, 2005, Revised August 22, 2005 Although no nation is known to have used either neptunium

More information

NUCLEAR ENGINEERING. 6. Amongst the following, the fissionable materials are (a) U233andPu239 (b) U23iandPu233 (c) U235andPu235 (d) U238andPu239

NUCLEAR ENGINEERING. 6. Amongst the following, the fissionable materials are (a) U233andPu239 (b) U23iandPu233 (c) U235andPu235 (d) U238andPu239 NUCLEAR ENGINEERING 1. The efficiency of a nuclear power plant in comparsion to a conventional thermal power plant is (a) same (b) more (c) less (d) may be less or mote depending on size (e) unpredictable.

More information

U.S. analysts use an average value less than 4-5 kilograms per weapon.

U.S. analysts use an average value less than 4-5 kilograms per weapon. The North Korean Plutonium Stock, February 2007 By David Albright and Paul Brannan Institute for Science and International Security (ISIS) February 20, 2007 This report is the latest in a series by ISIS

More information

A Dedicated Detector for the Verification of Highly Enriched Uranium in Naval Reactors

A Dedicated Detector for the Verification of Highly Enriched Uranium in Naval Reactors A Dedicated Detector for the Verification of Highly Enriched Uranium in Naval Reactors Ferenc Dalnoki-Veress*, ** and Alexander Glaser** * James Martin Center for Nonproliferation Studies (CNS), Monterey

More information

Appendix A. Physics and Technology of Nuclear-Explosive Materials

Appendix A. Physics and Technology of Nuclear-Explosive Materials Appendix A Physics and Technology of Nuclear-Explosive Materials NEM and Fissile Materials Nuclear weapons exploit the explosive release of nuclear energy from an exponentially growing chain reaction sustained

More information

The Current Situation of Plutonium Management in Japan

The Current Situation of Plutonium Management in Japan The Current Situation of Plutonium Management in Japan 11 September 213 Cabinet Office Secretariat of the Atomic Energy Commission 1. Preface This is a report on the current situation of plutonium management

More information

more ?Learning about plutonium

more ?Learning about plutonium ?Learning about plutonium more What is plutonium? Plutonium (PU) is a hard white metal that looks like iron. It melts at 640 Celsius, turns into plutonium oxide when exposed to air and can catch fire.

More information

Energy & Sustainability

Energy & Sustainability Energy & Sustainability Lecture 20: Nuclear Power April 9, 2009 Radioactive Decay Each radioactive isotope has a characteristic lifetime and decays pathway Each isotope has a given probability of decay

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

IAEA ILLICIT TRAFFICKING DATABASE (ITDB)

IAEA ILLICIT TRAFFICKING DATABASE (ITDB) IAEA ILLICIT TRAFFICKING DATABASE (ITDB) The IAEA Illicit Trafficking Database (ITDB) is unique. It contains information, which has been confirmed by the States involved, about incidents of illicit trafficking

More information

The Physics of Nuclear Reactors. Heather King Physics 420

The Physics of Nuclear Reactors. Heather King Physics 420 The Physics of Nuclear Reactors Heather King Physics 420 Nuclear Reactions A nuclear reaction is a reaction that involves atomic nuclei, or nuclear particles (protons, neutrons), producing products different

More information

B C G H I J. In which section(s) would you find: a) the metals? b) the nonmetals? c) the halogens? d) the actinides? e) the alkaline earth metals?

B C G H I J. In which section(s) would you find: a) the metals? b) the nonmetals? c) the halogens? d) the actinides? e) the alkaline earth metals? Pretest: Nuclear Technology (PSC 4010) 1. A B C D E F G H I J In which section(s) would you find: a) the metals? b) the nonmetals? c) the halogens? d) the actinides? e) the alkaline earth metals? f) the

More information

WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY

WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY WELCOME TO PERIOD 18: CONSEQUENCES OF NUCLEAR ENERGY Homework #17 is due today. Midterm 2: Weds, Mar 27, 7:45 8:55 pm (Same room as your midterm 1 exam.) Covers periods 10 19 and videos 3 & 4 Review: Tues,

More information

ORNL/TM-2002/118 Plutonium Production Using Natural Uranium From the Front-End of the Nuclear Fuel Cycle

ORNL/TM-2002/118 Plutonium Production Using Natural Uranium From the Front-End of the Nuclear Fuel Cycle ORNL/TM-2002/118 Plutonium Production Using Natural Uranium From the Front-End of the Nuclear Fuel Cycle C. V. Parks B. D. Murphy L. M. Petrie C. M. Hopper DOCUMENT AVAILABILITY Reports produced after

More information

WORKING PAPER A Fresh Examination of the Proliferation Dangers of Light Water Reactors. by Victor Gilinsky, Marvin Miller, and Harmon Hubbard

WORKING PAPER A Fresh Examination of the Proliferation Dangers of Light Water Reactors. by Victor Gilinsky, Marvin Miller, and Harmon Hubbard WORKING PAPER 1701 A Fresh Examination of the Proliferation Dangers of Light Water Reactors by Victor Gilinsky, Marvin Miller, and Harmon Hubbard March 2017 Nonproliferation Policy Education Center A

More information

Step 2: Calculate the total amount of U-238 present at time=0. Step 4: Calculate the rate constant for the decay process.

Step 2: Calculate the total amount of U-238 present at time=0. Step 4: Calculate the rate constant for the decay process. LP#9. A meteor contains 0.556 g of Pb-206 to every 1.00g U-238. Determine the age of the meteor. Step 1: Calculate the moles of each nuclide present. 0.566g Pb-206 x 1.00g U-238 x Step 2: Calculate the

More information

OFF-SITE AIR SAMPLING ANALYSIS AND NORTH KOREAN NUCLEAR TEST

OFF-SITE AIR SAMPLING ANALYSIS AND NORTH KOREAN NUCLEAR TEST OFF-SITE AIR SAMPLING ANALYSIS AND NORTH KOREAN NUCLEAR TEST Hui Zhang Kennedy School of Government Harvard University 79 John F. Kennedy Street Cambridge, MA 02138 ABSTRACT While some people in the international

More information

Novel Technologies for IAEA Safeguards

Novel Technologies for IAEA Safeguards Novel Technologies for IAEA Safeguards C. Annese, A. Monteith and J.Whichello International Atomic Energy Agency, Vienna, Austria Abstract This paper will introduce the International Atomic Energy Agency

More information

REACTOR POWER HISTORY FROM FISSION PRODUCT SIGNATURES. A Thesis DAVID J. SWEENEY

REACTOR POWER HISTORY FROM FISSION PRODUCT SIGNATURES. A Thesis DAVID J. SWEENEY REACTOR POWER HISTORY FROM FISSION PRODUCT SIGNATURES A Thesis by DAVID J. SWEENEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the

More information

Materials Attractiveness and Security Strategy

Materials Attractiveness and Security Strategy Materials Attractiveness and Security Strategy Weapons Utility Material Attractiveness Minimum Security Strategy* Preferred High Containment Potentially usable, but not preferred Impractical, but not impossible

More information

Ciclo combustibile, scorie, accelerator driven system

Ciclo combustibile, scorie, accelerator driven system Ciclo combustibile, scorie, accelerator driven system M. Carta, C. Artioli ENEA Fusione e Fissione Nucleare: stato e prospettive sulle fonti energetiche nucleari per il futuro Layout of the presentation!

More information

Science 10: Radioactivity! Comparing Fission and Fusion Notes (Ch 11)

Science 10: Radioactivity! Comparing Fission and Fusion Notes (Ch 11) http://www.atomicarchive.com/movies/index.shtml Science 10: Radioactivity! Comparing Fission and Fusion Notes (Ch 11) Nuclear Reactions: an atom s nucleus changes by gaining or releasing particles or energy.

More information

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay

Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region. J.N. Wilson Institut de Physique Nucléaire, Orsay Nuclear Data for Reactor Physics: Cross Sections and Level Densities in in the Actinide Region J.N. Wilson Institut de Physique Nucléaire, Orsay Talk Plan Talk Plan The importance of innovative nuclear

More information

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada

R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada NUCLEAR REACTOR CONFIGURATION R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Nuclear Reactors, Reactor Types, Reactor Arrangement, Technical Data Contents

More information

Fission and Chain Reactions

Fission and Chain Reactions The Harnessed Atom Lesson Five Fission and Chain Reactions What you need to know about Fission and Chain Reactions: Fission Chain reaction Uranium fuel Mining Milling Enrichment Fuel fabrication 2 Nuclear

More information

Nuclear Power MORE CHAPTER 11, #6. Nuclear Fission Reactors

Nuclear Power MORE CHAPTER 11, #6. Nuclear Fission Reactors MORE CHAPTER 11, #6 Nuclear Power Nuclear Fission Reactors The discovery that several neutrons are emitted in the fission process led to speculation concerning the possibility of using these neutrons to

More information

Carbon Dating. Principles of Radiometric Dating. 03 nuclear decay and the standard model June 05, 2013

Carbon Dating. Principles of Radiometric Dating. 03 nuclear decay and the standard model June 05, 2013 Principles of Radiometric Dating http://facstaff.gpc.edu/~pgore/geology/geo102/radio.htm Naturally occurring radioactive materials break down into other materials at known rates. This is known as radioactive

More information

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 19

Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control. Midterm Examination March 19 Physics/Global Studies 280 Nuclear Weapons, Nuclear War, and Arms Control Midterm Examination 2009 March 19 Full Name UIUC ID No. This is a closed book examination you are not to consult any materials

More information

Former Soviet President Mikhail Gorbachev is justly famous for

Former Soviet President Mikhail Gorbachev is justly famous for VOLUME 13, NUMBER 1 March 2005 AN IEER PUBLICATION Published on the Web as Énergie et Sécurité No. 31 Uranium Enrichment Facts to Fuel an Informed Debate on Nuclear Proliferation and Nuclear Power B Y

More information

Reactor physics and Neutrinos NSSC 2016

Reactor physics and Neutrinos NSSC 2016 Reactor physics and Neutrinos NSSC 2016 Vincent Fischer University of California, Davis Vincent Fischer NSSC 2016 1 / 47 Nuclear fission principle Vincent Fischer NSSC 2016 2 / 47 Energy and fragments

More information

Announcements. Projected Energy Consumption. Fossil fuel issues. By the end of class today

Announcements. Projected Energy Consumption. Fossil fuel issues. By the end of class today Announcements Projected Energy Consumption Ecological Footprint assignment starts this afternoon to be completed by 10 AM Thursday Today: Alternatives to fossil fuels? Nuclear power Energy efficiency Thursday:

More information

Physics 11 Nuclear Process. Nuclear Fusion Reactors Terminology Waste Storage Radiation and living things Nuclear Fission

Physics 11 Nuclear Process. Nuclear Fusion Reactors Terminology Waste Storage Radiation and living things Nuclear Fission Physics 11 Nuclear Process Nuclear Fusion Reactors Terminology Waste Storage Radiation and living things Nuclear Fission Nuclear Reactors Terminology Fission Control Rods, moderator, chain reaction half-life

More information

Modeling of High- Burnup Reactors for Antineutrino Safeguards

Modeling of High- Burnup Reactors for Antineutrino Safeguards Modeling of High- Burnup Reactors for Antineutrino Safeguards Anna Erickson Nuclear and Radiological Engineering Program Georgia Tech NNSA SSGF Annual Meeting Washington D.C. July 1 2015 LANNS: Nuclear

More information

PHYS:1200 LECTURE 36 ATOMIC AND NUCLEAR PHYSICS (4)

PHYS:1200 LECTURE 36 ATOMIC AND NUCLEAR PHYSICS (4) 1 PHYS:1200 LECTURE 36 ATOMIC AND NUCLEAR PHYSICS (4) This last lecture of the course will focus on nuclear energy. There is an enormous reservoir of energy in the nucleus and it can be released either

More information

Integral Fast Reactors: Safe, Abundant, Non-Polluting Power by George S. Stanford, Ph.D Original dated Updated September, 2010

Integral Fast Reactors: Safe, Abundant, Non-Polluting Power by George S. Stanford, Ph.D Original dated Updated September, 2010 Integral Fast Reactors: Safe, Abundant, Non-Polluting Power by George S. Stanford, Ph.D Original dated 2001. Updated September, 2010 What is the IFR? IFR stands for Integral Fast Reactor. It was a power-reactordevelopment

More information

Introduction Discussion i of Fissile il Materials French Pub Nuclear Fuel Cycle

Introduction Discussion i of Fissile il Materials French Pub Nuclear Fuel Cycle Fuel Reprocessing and Isotope Separation Methods for ENU4930/6937: Elements of Nuclear Safeguards, Non-Proliferation, and Security Presented by Glenn E. Sjoden, Ph.D., P.E. Associate Professor and FP&L

More information

Gas Centrifuge Technology: Proliferation Concerns and International Safeguards

Gas Centrifuge Technology: Proliferation Concerns and International Safeguards Gas Centrifuge Technology: Proliferation Concerns and International Safeguards Brian D. Boyer Los Alamos National Laboratory Trinity Section American Nuclear Society Santa Fe, NM November 7, 2014 Acknowledgment

More information

The analysis of particles of nuclear material finding the proverbial needle in a hay stack

The analysis of particles of nuclear material finding the proverbial needle in a hay stack San Diego, 18-22 February 2010 AAAS Annual Meeting 1 The analysis of particles of nuclear material finding the proverbial needle in a hay stack AAAS Annual Meeting San Diego, February 19, 2010 Klaus Luetzenkirchen

More information

Verification of fissile materials

Verification of fissile materials Verification of fissile materials Naeem U. H. Syed, Alexander Bürger, Styrkaar Hustveit, Ole Reistad,Tonje Sekse GammaSem seminar 2010 28/09/2010-29/09/2010 Overview Introduction Background The Black Sea

More information

TREATY VERIFICATION CHARACTERIZING GAPS AND EMERGING CHALLENGES

TREATY VERIFICATION CHARACTERIZING GAPS AND EMERGING CHALLENGES CONSORTIUM FOR VERIFICATION TECHNOLOGY TREATY VERIFICATION CHARACTERIZING GAPS AND EMERGING CHALLENGES Alexander Glaser Department of Mechanical and Aerospace Engineering and Woodrow Wilson School of Public

More information

One nucleus splits into two smaller nuclei and typically a few neutrons by the bombardment of a neutron. U-235 is the only naturally occurring

One nucleus splits into two smaller nuclei and typically a few neutrons by the bombardment of a neutron. U-235 is the only naturally occurring One nucleus splits into two smaller nuclei and typically a few neutrons by the bombardment of a neutron. U-235 is the only naturally occurring nuclide that fissions However, both U-238 and Th-232 can be

More information

PHYSICOCHEMICAL CHARACTERISTICS OF URANIUM MICROPARTICLES COLLECTED AT NUCLEAR FUEL CYCLE PLANTS. Abstract

PHYSICOCHEMICAL CHARACTERISTICS OF URANIUM MICROPARTICLES COLLECTED AT NUCLEAR FUEL CYCLE PLANTS. Abstract IAEA-SM-367/10/05/P PHYSICOCHEMICAL CHARACTERISTICS OF URANIUM MICROPARTICLES COLLECTED AT NUCLEAR FUEL CYCLE PLANTS G. Kaurov, V. Stebel kov, O. Kolesnikov, D. Frolov Laboratory for Microparticle Analysis

More information

Nuclear fission and fusion are processes that involve extremely large amounts of energy.

Nuclear fission and fusion are processes that involve extremely large amounts of energy. Nuclear Reactions & Energy Nuclear fission and fusion are processes that involve extremely large amounts of energy. Fission = the splitting of a large nucleus into two smaller nuclei, subatomic particles

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for

Experiments using transmutation set-ups. Speaker : Wolfram Westmeier for Novi Sad, ad hoc Experiments using transmutation set-ups Speaker : Wolfram Westmeier for Participants of collaboration are JINR members or they have Agreements : Russia, Germany, Armenia, Australia, Belarus,

More information

Near Real Time Accountancy at JNC-1. Tokai Japan

Near Real Time Accountancy at JNC-1. Tokai Japan Tokai Japan Sébastien Richet, SGIM-IFC International Atomic Energy Agency Foreword This work would not have been possible without the long lasting cooperation between the Facility operators, the expertise

More information

Nuclear Fission. Conceptual Physics 11 th Edition. Nuclear Fission. Nuclear Fission. Nuclear Fission. This lecture will help you understand:

Nuclear Fission. Conceptual Physics 11 th Edition. Nuclear Fission. Nuclear Fission. Nuclear Fission. This lecture will help you understand: Conceptual Physics 11 th Edition A typical uranium fission reaction: Chapter 34: NUCLEAR FISSION AND FUSION Note the mass number as well as atomic numbers balance. This lecture will help you understand:

More information

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E)

Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Progress in Conceptual Research on Fusion Fission Hybrid Reactor for Energy (FFHR-E) Xue-Ming Shi Xian-Jue Peng Institute of Applied Physics and Computational Mathematics(IAPCM), BeiJing, China December

More information

Seaborg s Plutonium?

Seaborg s Plutonium? Seaborg s Plutonium? Eric B. Norman, Keenan J. Thomas, Kristina E. Telhami* Department of Nuclear Engineering University of California Berkeley, CA 94720 Abstract Passive x-ray and gamma ray analysis was

More information

Introducing nuclear fission The Fizzics Organization

Introducing nuclear fission The Fizzics Organization Nuclear Fission is the splitting of the nucleus of an atom into two or more parts by hitting it with a small particle, almost always a neutron (a proton would be repelled from the positive nucleus and

More information

Mitigating Security Risks from Separated Plutonium: Some Near-Term Steps

Mitigating Security Risks from Separated Plutonium: Some Near-Term Steps NTI Paper MARCH 2018 Mitigating Security Risks from Separated Plutonium: Some Near-Term Steps SUMMARY Separated plutonium is a sensitive material, presenting both proliferation and nuclear security risks.

More information

RADIOACTIVITY & HALF-LIFE Part 3

RADIOACTIVITY & HALF-LIFE Part 3 RADIOACTIVITY & HALF-LIFE Part 3 Half-Life Half-life: is the rate of decay for a radioactive isotope. is the time required for half of an original quantity of an element to decay. is constant and independent

More information

The Myth of Denatured Plutonium Reactor-Grade Plutonium and Nuclear Weapons

The Myth of Denatured Plutonium Reactor-Grade Plutonium and Nuclear Weapons The Myth of Denatured Plutonium Reactor-Grade Plutonium and Nuclear Weapons Gregory S. Jones 1 July 26, 2016 Part One: Introduction, Plutonium Basics, Definitions of Grades of Plutonium, Variation in Fuel

More information