Chapter 3 : Stoichiometry

Size: px
Start display at page:

Download "Chapter 3 : Stoichiometry"

Transcription

1 Chapter : Stoichiometry 14 KMnO C H 5 (OH) --> 7 K CO + 7 Mn O + 5 CO + 16 H O + HEAT Chemical changes : Why they occur? How fast? => Need to know chemical stoicheometry Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions

2 Atomic Mass Atomic mass unit (amu) - 1 C is assigned a mass of exactly 1 amu, and the masses of all other atoms are given relative to this standard. Mass spectrometer - the most accurate method currently available for comparing the masses of atoms Mass Mass ( 1 ( 1 1 C) Mass ( C) C) amu

3 Atomic Masses => atomic mass (atomic weight) in amu. C => but there is no such carbon with atomic mass 1.011?? Elements occur in nature as mixtures of isotopes. Carbon = 98.89% 1 C 1.11% 1 C <0.01% 14 C Atomic mass = (0.9889)(1amu) + (0.0111)(1.004 amu) = 1.01 amu => Average atomic mass = Handful of carbons all together act like 1.01 C because we can't separate them easily.

4 Atomic Masses Ex) Average mass of an element Ne Ne 10 Ne 10 Ne Cu average atomic mass of copper (0.6909)(6.9 amu) (0.091)(64.9 amu) 6.55 amu 6.9 amu 64.9 amu

5 The Mole Mole : The number equal to the number of carbon atoms in exactly 1 grams of pure 1 C. = x 10 = Avogadro's number 1 e of anything = 6.0 x 10 units of that thing Cu 1amu ( atoms )( ) 1g atom amu 1g exact number I Al S Hg Fe 1 of element The e is defined such that a sample of a natural element with a mass equal to the element's atomic mass expressed in grams contains 1 e of atoms.

6 The Mole Ex) Mass of 6 Am atoms in gram (Am => 4 amu)? 4amu 1g mass 6 Amatoms atom Ex) Number of Al atoms in 10.0 g of Al (Al => 6.98 amu)? amu g 10.0g 6.98g atoms. 10 atoms 10.0 g of Al Ex) Number of es and mass of 5.00 x 10 0 Co atoms (Co => 58.9)? atoms atoms g g 4

7 Molar Mass A substance s ar mass (ecular weight) is the mass in grams of one e of the compound. ar mass of CH 4 => mass of 1 C = 1 x 1.01 g = 1.01 g mass of 4 H = 4 x g = 4.0 g g Ex) How many ecules of 1 mg (1 x 10-6 g) of isopentyl acetate? How many C atoms in it? CH O odor of bananas or pears H C CH CH CH O C CH 1 bee sting contains ca. 1 mg of isopentyl acetate call signal for attacking together

8 Molar Mass Ex) How many ecules of 1 mg (1 x 10-6 g) of isopentyl acetate? How many C atoms in it? H C CH CH CH CH O O C CH 1. 01g 7 C 84.07g C 1.008g 14 H 14.11g H 16.00g O.00g O ar mass = g g isopentyl acetate 10.18g isopentyl acetate C atoms isopentyl acetate 4 10 isopentyl acetate 16 C atoms

9 Percent Composition of Compounds mass of element Mass percent of an element in a compound = 100% mass of compound isopentyl acetate (C 7 H 14 O ) CH O CH CH C H C CH O CH 1. 01g 7 C 84.07g C 1.008g 14 H 14.11g H 16.00g O.00g O ar mass = g mass % of mass % of mass % of 84.07g C 100% 64.58% 10.18g 14.11g H 100% 10.84% 10.18g.00g O 100% 4.58% 10.18g

10 Determining Formula of a Compound Formulas ecular formula = (empirical formula) n ecular formula = C 6 H 6 = (CH) 6 empirical formula = CH [n = integer] Mass%of each element in compound g mass% of H 100% 16.% g g mass% of C 100% 8.67% g mass% of N ( )% 45.11% A g of compound A consisting of C, H, N Massesof H and C in compound A H O => g emprical fomula? Mass of H in g of H O g (mass% of H in H O) ar massof H atom g g g g ar massof H O 18.0g Mass of C in g of CO g (mass% of C in CO ) ar massof C atom 1.01g g g g ar massof CO 44.01g CO => g Moles of each element in 100 g of 16. g H g 8.67 g C g 45.11g N g compound A Whole-number ratio of atoms in A C:H:N=.0:16.09:.19 = 1:5:1 Empirical formula of A => CH 5 N

11 Determining Formula of a Compound 1. Base calculation on 100 grams of a compound. (mass % of each element in the compound. Determine es of each element in 100 grams of the compound.. Divide each value of es by the smallest of the values. 4. Multiply each number by an integer to obtain all whole numbers. => Empirical formula => ar mass information => Molecular formula Ex) Caffeine contains 49.48% C, 5.15% H, 8.87 % N, and 16.9 % O by mass and has ar mass of 194. g/. => Empirical formula? Molecular formula? Moles Massesof of H and each C in compound element A in 100 g of caffeine g C 4.10 Mass of H in g of Hg O g (mass% of H in HO) ar 1massof H atom g g H g g ar massof gh O 18.0g Mass of C in g 8.87 g N of CO g (mass% of C in CO) ar massof g C atom 1.01g g g g ar 1massof g O CO g 16.00g Mass%of each element in compound A Whole-number ratio gof atoms in caffeine mass% of H 100% 16.% g C:H:N:O=4.10:5.11:.061:1.06 = 4:5:: g mass% of C 100% 8.67% Empirical formula of g caffeine mass% of N ( )% 45.11% => C 4 H 5 N O Moles of each element in 100 g of compound A Molecular 1formular of caffeine 16. g H g C 4 H 5 N O 1=> empirical formula mass 8.67 g C.0 = (1.01 x g1.008 x x x 11) g/ = g/ 45.11g => ar N mass g of caffeine = 194. g/ => Molecular formula = empirical formula x Whole-number => C 8 H 10 N 4 O ratio of atoms in A C:H:N=.0:16.09:.19 = 1:5:1 Empirical formula of A => CH 5 N Look at the text book. It has a different way to solve.

12 Chemical Equations Chemical Reaction: a reorganization of the atoms in one or more substances. Ex) Methane (CH 4 ) burns in air to produce carbon dioxide (CO ) and water (H O) Chemical Equation : a representation of a chemical reaction with reactants and products CH 4 + O CO + H O reactants products In a chemical reaction, atoms are neither created or destroyed. => chemical equation must be balanced. CH 4 + O CO + H O reactants products

13 Chemical Equations The Meaning of Chemical Equation : two types of information => the nature of the reactants and products and the relative numbers of each State Solid Liquid Gas Dissolved in water (in aqueous solution) Symbol (s) (l) (g) (aq) CH 4 (g) + O (g) CO (g) + H O(g) reactants products HCl(aq) + NaHCO (s) CO (g) + H O(l) +NaCl(aq)

14 Balancing Chemical Equations In a chemical reaction, atoms are neither created or destroyed. => chemical equation must be balanced. 1. Determine what reation is occuring: reactants and products => unbalanced equation. Balance the equation by inspection starting with the most complicated ecule(s).. Check. Ex) Balance the chemical equation for the decomposition of ammonium dichromate. 1. (NH 4 ) Cr O 7 (s) Cr O (s) + N (g) + H O(g). (NH 4 ) Cr O 7 (s) Cr O (s) + N (g) + 4H O(g) Ex) Balance the chemical equation for the reaction of ammonia gas with oxygen to form gaseous nitric oxide and water vapor (1000 o C) => first step of Ostwald process (commertial production of nitric acid, HNO ) 1. NH (g) + O (g) NO(g) + H O(g). NH (g) + O (g) NO(g) + H O(g) NH (g) + O (g) NO(g) + H O(g) NH (g) +.5O (g) NO(g) + H O(g) (NH 4 ) Cr O 7 Cr O 4NH (g) + 5O (g) 4NO(g) + 6H O(g)

15 Stoichiometric Calculations: Amounts of Reactants and Products Ex) What mass of oxygen will react with 96.1 g of propane? C H 8 (g) + 5O (g) CO (g) + 4H O(g) g C H 44.1g 8.18 CH8 5 x.18 O = 10.9 O reacts..00g 10.9 O 49g O Ex) What mass of gaseous carbon dioxide can be absorbed by 1.00 kg of lithium hydroxide (LiOH)? LiOH(s) + CO (g) Li CO (s) + H O(l) Columbia Apollo 1 Emergency Rig LiOH Unit LiOH(s) + CO (g) Li CO (g) + H O(l) 1.00kgLiOH 41.8 LiOH.95g 0.5 x 41.8 CO = 0.9 CO reacts. 44.0g 0.9 CO g CO

16 Calculations Involving a Limiting Reactants CH 4 (g) + H O(g) H (g) + CO(g) The limiting reactant is the reactant that is consumed first, limiting the amounts of products formed. Ex) 18.1 g 90.4 g NH (g) CuO(s) After reaction, mass of each compound? NH (g) + CuO(s) N (g) + Cu(s) + H O(g) NH (g) + CuO(s) N (g) + Cu(s) + H O(g) 18.1g NH 1.06 NH 17.0g 90.4g CuO 79.55g N (g), H O(g) Cu(s) 1.14 CuO The excess reactant is the reactant that still remains after the reaction completes CuO reacts with 1.14 x / (=0.760 ) NH and produces 1.14 Cu, 1.14/ (=0.80 ) N, and 1.14 H O. 6.55g 1.14 Cu 7.4g Cu 8.0g 0.80 N 10.6g N 18.01g 1.14 HO 0.5g HO 17.0g ( ) NH 5.1g limiting NH

17 Calculations Involving a Limiting Reactants Theoretical yield : the amount of a product formed when the limiting reactant is completely comsumed g 90.4 g NH (g) CuO(s) N (g), H O(g) Cu(s) Theoretical yield of N? 10.6 g Actual yield Percent yield = 100% Theoretical yield Ex) Methanol can be manufactured by combination of gaseous carbon monoxide and hydrogen. When 68.5 kg of CO is reacted with 8.76 kg of H,.57 x 10 4 g of methanol is actually produced. Percent yield of methanol? H (g) + CO(g) CH OH(l) g H.016g g CO 8.0g H CO Theoretical yield of limiting Percent yield CH OH.04g CHOH g g % 5.0% 4 g CH OH

18 Summary of Solving a Stoichiometry Problem 1. Balance the equation.. Convert masses to es.. Determine which reactant is limiting. 4. Use es of limiting reactant and e ratios to find es of desired product. 5. Convert from es to grams.

Chapter 5. Stoichiometry

Chapter 5. Stoichiometry Chapter 5 Stoichiometry Chapter 5 Table of Contents (5-1) Counting by weighing (5-2) Atomic masses (5-3) Learning to solve problems (5-4) The mole (5-5) Molar mass (5-6) Percent composition of compounds

More information

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008

CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008 CHM 101 GENERAL CHEMISTRY FALL QUARTER 2008 Section 2 Lecture Notes 10/15/2008 (last revised: 10/15/08, 4:30 PM) 3.3 The Mole: The mole (abbreviated mol) is a unit of measure that greatly facilitates our

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms

Balancing Chemical Reactions. CHAPTER 3: Quantitative Relationships in Chemical Reactions. Zn + HCl ZnCl 2 + H 2. reactant atoms product atoms CHAPTER 3: Quantitative Relationships in Chemical Reactions Stoichiometry: Greek for measure elements Stoichiometry involves calculations based on chemical formulas and chemical equations (reactions) quantitative.

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

AP CHEMISTRY CHAPTER 3 STOICHIOMETRY. Avg. atomic mass- weighted avg. based on isotopic composition This is determined using a mass spectrometer.

AP CHEMISTRY CHAPTER 3 STOICHIOMETRY. Avg. atomic mass- weighted avg. based on isotopic composition This is determined using a mass spectrometer. AP CHEMISTRY CHAPTER 3 STOICHIOMETRY Avg. atomic mass- weighted avg. based on isotopic composition This is determined using a mass spectrometer. To calculate : % Isotope A (mass of A) + % Isotope B (mass

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

Chemical Equations 10/30/13. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions

Chemical Equations 10/30/13. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions. Types of Chemical Reactions Chemical Equations A chemical equation just like a mathematical equation is a way to express, in symbolic form, the reactions occurring in a chemical system. n Balancing chemical equations n Reaction stoichiometry

More information

Chapter 3 Stoichiometry. Ratios of combination

Chapter 3 Stoichiometry. Ratios of combination Chapter 3 Stoichiometry Ratios of combination Topics Molecular and formula masses Percent composition of compounds Chemical equations Mole and molar mass Combustion analysis (Determining the formula of

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

Stoichiometry. Chapter 3

Stoichiometry. Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry: The study of quantities of materials consumed and produced in chemical reactions. In macroworld, we can count objects by weighing assuming

More information

AP Chemistry Chapter 3. Stoichiometry

AP Chemistry Chapter 3. Stoichiometry AP Chemistry Chapter 3 Stoichiometry Stoichiometry Is the study of the quantities of substances consumed and produced in chemical reactions Derived from the Greek words stoicheion meaning element and metron

More information

Chapter 9 Stoichiometry

Chapter 9 Stoichiometry Chapter 9 Stoichiometry Section 9.1 Intro to Stoichiometry 9.1 Objectives Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two

More information

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another.

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another. 8/9/015 A chemical change (a chemical reaction) converts one substance into another. CHAPTER 3: PART Chemical Equations and Stoichiometry Chemical reactions involve: 1. Breaking bonds in the reactants.

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 3 Test Bank. d. The decomposition of magnesium oxide produces 2.4 g of magnesium metal and 3.2 g of oxygen gas.

Chapter 3 Test Bank. d. The decomposition of magnesium oxide produces 2.4 g of magnesium metal and 3.2 g of oxygen gas. 1. Which of the following correctly provides evidence for the unit formula of magnesium oxide? a. The decomposition of magnesium oxide produces 1.2 g of magnesium metal and 1.6 g of oxygen gas. b. The

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Usual Atomic Charges of Main Group Elements

Usual Atomic Charges of Main Group Elements Usual Atomic Charges of Main Group Elements +1 +2 +3 +4 +5 +6 +7-5 -4-3 -2-1 Examples SO 3 sulfur trioxide CO 2 carbon dioxide Al 2 O 3 aluminum trioxide IF 7 iodine heptafluoride Fig. 2-6, p.63 Chemical

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles)

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles) 1.1 The Mole 1.1.1 - Apply the mole concept to substances A mole is the name given to a certain quantity. It represents 6.02 x 10 23 particles. This number is also known as Avogadro's constant, symbolised

More information

Test bank chapter (3)

Test bank chapter (3) Test bank chapter (3) Choose the correct answer 1. What is the mass, in grams, of one copper atom? a) 1.055 10 - g b) 63.55 g c) 1 amu d) 1.66 10-4 g. Determine the number of moles of aluminum in 96.7

More information

Notes 2: Stoichiometry

Notes 2: Stoichiometry Notes 2: Stoichiometry 1.1 Defining Stoichiometry Particle and Mole Relationships Chemical reactions stop when one of the reactants is used up. Stoichiometry is the study of quantitative relationships

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Unit 3. Stoichiometry

Unit 3. Stoichiometry Unit 3. Stoichiometry Upon successful completion of this unit, the students should be able to: 3.1 Define atomic mass and solve related problems. 1. Gallium has two naturally occurring isotopes, and gallium-70

More information

Practice Problems: Set #3-Solutions

Practice Problems: Set #3-Solutions Practice Problems: Set #3-Solutions IIa) Balance the following equations:(10) 1) Zn (s) + H 3 PO 4 (aq) Zn 3 (PO 4 ) 2 (s) + H 2 (g) 3Zn (s) + 2H 3 PO 4 (aq) Zn 3 (PO 4 ) 2 (s) + 3H 2 (g) 2. Mg 3 N 2 (s)

More information

Section 1 Introduction to Stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations.

Section 1 Introduction to Stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Section 1 Introduction to Stoichiometry Objective Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two substances in a chemical

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

Formulas and Models 1

Formulas and Models 1 Formulas and Models 1 A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance An empirical formula shows the simplest whole-number ratio of the atoms in

More information

Chapter 3 The Mole and Stoichiometry

Chapter 3 The Mole and Stoichiometry Chapter 3 The Mole and Stoichiometry Chemistry, 7 th Edition International Student Version Brady/Jespersen/Hyslop Brady/Jespersen/Hyslop Chemistry7E, Copyright 015 John Wiley & Sons, Inc. All Rights Reserved

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 1.1: Calculate the molecular mass of the following: (i) H2O (ii) CO2 (iii) CH4 Answer 1.1: (i) H2O: The molecular mass of water, H2O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen)

More information

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations Preview Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq) MgCl 2 (aq) +

More information

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances

A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances A chemical reaction shows the process in which a substance (or substances) is changed into one or more new substances Chang, R. 2002. Chemistry 7 th ed. Singapore: McGraw-Hill. A chemical equation uses

More information

Chapter 3. Stoichiometry:

Chapter 3. Stoichiometry: Chapter 3. Stoichiometry: Watch Bozeman Videos & other videos on my website for additional help: Big Idea 1: Chemical Analysis Conservation of Atoms Balancing Equations Symbolic Representation Mole Big

More information

Unit IV: Chemical Equations & Stoichiometry

Unit IV: Chemical Equations & Stoichiometry Unit IV: Chemical Equations & Stoichiometry A. The chemical equation B. Types of chemical reactions A. Activity series of metals B. Solubility rules C. Rules for writing and balancing equations D. Calculations

More information

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry

Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Previous Chapter Table of Contents Next Chapter Chapter 2: Mass Relations in Formulas, Chemical Reactions, and Stoichiometry Section 2.1: The Atomic Mass The atomic mass is the mass of 1 atom. Atoms are

More information

1.1 Introduction to the Particulate Nature of Matter and Chemical Change MATTER. Homogeneous (SOLUTIONS)

1.1 Introduction to the Particulate Nature of Matter and Chemical Change MATTER. Homogeneous (SOLUTIONS) TOPIC 1: STOICHIOMETRIC RELATIONS 1.1 Introduction to the Particulate Nature of Matter and Chemical Change MATTER Mass Volume Particles Particles in constant motion MATTER Pure Matters Mixtures ELEMENTS

More information

Mass. Unit 1: Stoichiometry (Review) Adapted from Stoichiometry (NMSI, Rene McCormick) and Chemistry (Brown/LeMay)

Mass. Unit 1: Stoichiometry (Review) Adapted from Stoichiometry (NMSI, Rene McCormick) and Chemistry (Brown/LeMay) Unit 1: Stoichiometry (Review) Adapted from Stoichiometry (NMSI, Rene McCormick) and Chemistry (Brown/LeMay) 1.18 Atomic Masses (pp. 46 48) 12 C Carbon 12 In 1961 it was agreed that this would serve as

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

MOLE CONCEPT AND STOICHIOMETRY

MOLE CONCEPT AND STOICHIOMETRY MOLE CONCEPT AND STOICHIOMETRY Dear Reader You have studied about the term 'mole' in your previous class. It is defined as the amount of a substance containing as many constituting particles (atoms, molecules

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

11 Stoichiometry. Section 11.1 What is stoichiometry?

11 Stoichiometry. Section 11.1 What is stoichiometry? 11 Stoichiometry Section 11.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1.. 3. 4. 5. The study of the quantitative

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Which of the following answers is correct and has the correct number of significant figures?

Which of the following answers is correct and has the correct number of significant figures? Avogadro s Number, N A = 6.022 10 23 1. [7 points] Carry out the following mathematical operation: 6.06 10 3 + 1.1 10 2 Which of the following answers is correct and has the correct number of significant

More information

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place.

7.1 Describing Reactions. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Burning is a chemical change. When a substance undergoes a chemical change, a chemical reaction is said to take place. Chemical Equations What is the law of conservation of mass? The law of conservation

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

Name: Date: AP Questions for Chapter 2

Name: Date: AP Questions for Chapter 2 Name: Date: AP Questions for Chapter 2 Multiple Choice Identify the choice that best completes the statement or answers the question. You must show all work on looseleaf and attach. 1. The mass of a single

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Stoichiometry The study of the numerical relationship between chemical quantities in a chemical reaction Making Pizza The number of pizzas you can make

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Stoichiometry Section 12.1 What is stoichiometry? In your textbook, read about stoichiometry and the balanced equation. For each statement below, write true or false. 1. The study of the quantitative relationships

More information

CHAPTER 9 CHEMICAL QUANTITIES

CHAPTER 9 CHEMICAL QUANTITIES Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 9 CHEMICAL QUANTITIES Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Unit (2) Quantitative Chemistry

Unit (2) Quantitative Chemistry Unit (2) Quantitative Chemistry Chapter (1) :The mole & chemical equation Lesson (1) Mole and chemical equation Chemical equation: The chemical symbols and formulas of the reactants and products which

More information

CH 221 Sample Exam Exam II Name: Lab Section:

CH 221 Sample Exam Exam II Name: Lab Section: Exam II Name: Lab Section: Part I: Multiple Choice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. When methanol undergoes complete combustion,

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date»

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date» Slide 1 / 90 Stoichiometry HW Grade:«grade» Subject: Date:«date» Slide 2 / 90 1 The calculation of quantities in chemical equations is called. A B C D E accuracy and precision dimensional analysis percent

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37 Ch 1-5 to 1-6 Significant Figures pp 22-37 Know how significant digits are found and used in calculations. Ch 1-6 Working With Numbers; Scientific Notation pp 30-32 Know how to use the calculator exponent

More information

CH 221 Chapter Four Part I Concept Guide

CH 221 Chapter Four Part I Concept Guide 1. Balancing Chemical Equations CH 221 Chapter Four Part I Concept Guide Description When chlorine gas, Cl 2, is added to solid phosphorus, P 4, a reaction occurs to produce liquid phosphorus trichloride,

More information

Chapter 3 Calculations with Chemical Formulas and Equations

Chapter 3 Calculations with Chemical Formulas and Equations Chapter 3 Calculations with Chemical Formulas and Equations Contents and Concepts Mass and Moles of Substances Here we will establish a critical relationship between the mass of a chemical substance and

More information

Quantitative Relationships in Chemical Reactions Chapter 7

Quantitative Relationships in Chemical Reactions Chapter 7 Quantitative Relationships in Chemical Reactions Chapter 7 The burning of charcoal releases heat (thermal energy) that grills our food. But the combustion of charcoal and fossil fuels also releases CO

More information

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq)? MgCl 2

More information

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring

STOICHIOMETRY. Greek: Stoicheon = element metron = element measuring STOICHIOMETRY Greek: Stoicheon = element metron = element measuring Stoichiometry is the science of measuring the quantitative proportions or mass ratios in which chemical elements stand to one another

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in terms of interacting

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Chemistry B11 Chapter 5 Chemical reactions

Chemistry B11 Chapter 5 Chemical reactions Chapter 5 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl A + BC AC +

More information

General Chemistry 1 CHM201 Unit 2 Practice Test

General Chemistry 1 CHM201 Unit 2 Practice Test General Chemistry 1 CHM201 Unit 2 Practice Test 1. Which statement about the combustion of propane (C 3H 8) is not correct? C 3H 8 5O 2 3CO 2 4H 2O a. For every propane molecule consumed, three molecules

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

Unit 7: Stoichiometry Homework Packet (85 points)

Unit 7: Stoichiometry Homework Packet (85 points) Name: Period: By the end of the Unit 7, you should be able to: Chapter 12 1. Use stoichiometry to determine the amount of substance in a reaction 2. Determine the limiting reactant of a reaction 3. Determine

More information

Matter is anything that has mass and occupies space. Three physical states of matter

Matter is anything that has mass and occupies space. Three physical states of matter Nature of Matter Some basic concepts Matter is anything that has mass and occupies space. Three physical states of matter Characteristics of solid o Definite volume o Definite shape Characteristics of

More information

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination.

The Atom, The Mole & Stoichiometry. Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Unit 2: The Atom, The Mole & Stoichiometry Chapter 2 I. The Atomic Theory A. proposed the modern atomic model to explain the laws of chemical combination. Postulates of the atomic theory: 1. All matter

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

CHE 105 FA17 Exam 2. How many moles of beryllium are in 15.0 grams of Be?

CHE 105 FA17 Exam 2. How many moles of beryllium are in 15.0 grams of Be? CHE 105 FA17 Exam 2 Your Name: Your ID: Question #: 1 How many moles of beryllium are in 150 grams of Be? A 66 B 13515 C 901 D 0601 Question #: 2 Vanillin, C8H8O3, is the molecule responsible for the vanilla

More information

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction.

Stoichiometry is the relationship between the amount of reactants used and/or the amount of products produced in a chemical reaction. Unit 7 STOICHIOMETRY 1. Introduction to Stoichiometry 2. Mole Mole Stoichiometry 3. Mass Mole Stoichiometry 4. Mass Mass Stoichiometry 5. Mass Volume & Volume Volume Stoichiometry 6. Excess & Limiting

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Practice Packet Unit 7: Moles & Stoichiometry

Practice Packet Unit 7: Moles & Stoichiometry PRACTICE PACKET: Unit 7 Moles & Stoichiometry Regents Chemistry: Practice Packet Unit 7: Moles & Stoichiometry Vocabulary: Lesson 1: Lesson 6: Lesson 2: Lesson 4A: Lesson 4B: Lesson 3: Lesson 5: www.chempride.weebly.com

More information

Chapter 3 C 2 H 4 O2. Mass Relationships, Stoichiometry and Chemical Formulas. Announcements. Learning Objectives. C x H y Oz

Chapter 3 C 2 H 4 O2. Mass Relationships, Stoichiometry and Chemical Formulas. Announcements. Learning Objectives. C x H y Oz Announcements HOUR EXAM 1 --Want me to do recitation again? July 18 6-7:30PM --Skip Combustion Analysis & Isomers (p.82-83 in Principles of Chemistry Text) See me if you donʼt understand! Chapter 3 Relationships,

More information

Chem. 1A Midterm 1 Version A October 20, 2017

Chem. 1A Midterm 1 Version A October 20, 2017 First initial of last name Chem. 1A Midterm 1 Version A October 20, 2017 Name: Print Neatly. You will lose 1 point if I cannot read your name or perm number. Perm Number: All work must be shown on the

More information

Chem. 1A Midterm 1 Version B October 20, 2017

Chem. 1A Midterm 1 Version B October 20, 2017 First initial of last name Chem. 1A Midterm 1 Version B October 20, 2017 Name: Print Neatly. You will lose 1 point if I cannot read your name or perm number. Perm Number: All work must be shown on the

More information

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY 9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY Work directly from Zumdahl (Chapter 3). Work through exercises as required, then summarise the essentials of the section when complete. A chemical equation is

More information

AS Paper 1 and 2 Energetics

AS Paper 1 and 2 Energetics AS Paper 1 and 2 Energetics Q1.Nitric acid is produced industrially from ammonia, air and water using the following sequence of reactions: 4NH 3 (g) + 5O 2(g) 4NO(g) + 6H 2O(g) H = 909 kj mol 1 (2) 2NO(g)

More information

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction A(s) + 2B(aq) C(aq) + D(aq). Look at the data below and identify any patterns

More information

CALCULATIONS AND CHEMICAL EQUATIONS ATOMIC MASS: MASS OF AN ATOM

CALCULATIONS AND CHEMICAL EQUATIONS ATOMIC MASS: MASS OF AN ATOM CALCULATIONS AND CHEMICAL EQUATIONS ATOMIC MASS: MASS OF AN ATOM There is a unique relationship between molar mass and atomic weight: Oxygen's atomic weight is 16.00 amu. 1 mole of oxygen is 6.02 x 1023

More information

4. Magnesium has three natural isotopes with the following masses and natural abundances:

4. Magnesium has three natural isotopes with the following masses and natural abundances: Exercise #1. Determination of Weighted Average Mass 1. The average mass of pennies minted after 1982 is 2.50 g and the average mass of pennies minted before 1982 is 3.00 g. Suppose that a bag of pennies

More information

Lecture outline: Section 3. Law of conservation of mass: atoms are not created or. reactions. They simply rearrange. Mass before = mass after

Lecture outline: Section 3. Law of conservation of mass: atoms are not created or. reactions. They simply rearrange. Mass before = mass after Lecture outline: Section 3 Chemical reactions: chemical changes that occur when substances react to form new substances 1. Chemical equations 2. Atomic and molecular 3. Chemical calculations Law of conservation

More information

Chem 1A Dr. White Fall Handout 4

Chem 1A Dr. White Fall Handout 4 Chem 1A Dr. White Fall 2014 1 Handout 4 4.4 Types of Chemical Reactions (Overview) A. Non-Redox Rxns B. Oxidation-Reduction (Redox) reactions 4.6. Describing Chemical Reactions in Solution A. Molecular

More information

Chapter 12 Stoichiometry

Chapter 12 Stoichiometry 12.2 Chemical Calculations > Chapter 12 Stoichiometry 12.1 The Arithmetic of Equations 12.22 Chemical Calculations 12.3 Limiting Reagent and Percent Yield 1 Copyright Pearson Education, Inc., or its affiliates.

More information

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment AP Chemistry Summer Assignment Due Date: Thursday, September 1 st, 2011 Directions: Show all of your work for full credit. Include units and labels. Record answers to the correct number of significant

More information

Chemical Equations. Chemical Reaction: Interaction between substances that results in one or more new substances being produced

Chemical Equations. Chemical Reaction: Interaction between substances that results in one or more new substances being produced Chemical Equations Chemical Reaction: Interaction between substances that results in one or more new substances being produced Example: hydrogen + oxygen water Reactants of a Reaction: Starting materials

More information

Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information