Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Size: px
Start display at page:

Download "Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations"

Transcription

1 Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield

2 Section 1 Introduction to Stoichiometry Objective Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two substances in a chemical equation.

3 Section 1 Introduction to Stoichiometry Stoichiometry Definition Composition stoichiometry (chapter 3) deals with the mass relationships of elements in compounds Reaction stoichiometry involves the mass relationships between reactants and products in a chemical reaction

4 Section 1 Introduction to Stoichiometry Mole Ratio Mole Ratio - conversion factor that relates the amounts in moles of any two substances involved in a chemical reaction Example: 2Al 2 O 3 (l) 4Al(s) + 3O 2 (g) Mole Ratios: 2 mol Al 2 O 3 2 mol Al 2 O 3 4 mol Al,, 4 mol Al 3 mol O 2 3 mol O 2

5 Section 1 Introduction to Stoichiometry Converting Between Amounts in Moles

6 Questions: What is Stoichiometry? Write all the possible mole ratios for the following equations: 2HgO 2Hg and O 2 4NH 3 + 6NO 5N 2 + 6H 2 O How is a mole ratio used in stoichiometry? What step must be performed before any stoichiometry problem is solved? Why?

7 Section 2 Ideal Stoichiometric Calculations Lesson Starter Acid-Base Neutralization Reaction Demonstration What is the equation for the reaction of HCl with NaOH? What is the mole ratio of HCl to NaOH?

8 Section 2 Ideal Stoichiometric Calculations Objective Calculate the amount in moles of a reactant or a product from the amount in moles of a different reactant or product. Calculate the mass of a reactant or a product from the amount in moles of a different reactant or product. Calculate the amount in moles of a reactant or a product from the mass of a different reactant or product. Calculate the mass of a reactant or a product from the mass of a different reactant or product.

9 Section 2 Ideal Stoichiometric Calculations Conversions of Quantities in Moles Sample Problem A In a spacecraft, the carbon dioxide exhaled by astronauts can be removed by its reaction with lithium hydroxide, LiOH, according to the following chemical equation. CO 2 (g) + 2LiOH(s) Li 2 CO 3 (s) + H 2 O(l) How many moles of lithium hydroxide are required to react with 20 mol CO 2, the average amount exhaled by a person each day?

10 Section 2 Ideal Stoichiometric Calculations Conversions of Quantities in Moles Sample Problem A Solution CO 2 (g) + 2LiOH(s) Li 2 CO 3 (s) + H 2 O(l) Given: amount of CO 2 = 20 mol Unknown: amount of LiOH (mol) Solution: mol CO 2 20 mol CO 2 mol ratio mol LiOH mol LiOH mol CO 2 2 mol LiOH 40 mol LiOH 1 mol CO 2

11 Questions: How many moles of ammonia are produced when 6 moles of hydrogen gas react with excess nitrogen? How many moles of potassium chlorate are needed to produce 15 moles of oxygen?

12 Section 2 Ideal Stoichiometric Calculations Conversions of Amounts in Moles to Mass

13 Section 2 Ideal Stoichiometric Calculations Solving Stoichiometry Problems with Moles or Grams

14 Section 2 Ideal Stoichiometric Calculations Conversions of Amounts in Moles to Mass Sample Problem B In photosynthesis, plants use energy from the sun to produce glucose, C 6 H 12 O 6, and oxygen from the reaction of carbon dioxide and water. What mass, in grams, of glucose is produced when 3.00 mol of water react with carbon dioxide?

15 Section 2 Ideal Stoichiometric Calculations Conversions of Amounts in Moles to Mass Sample Problem B Solution Given: amount of H 2 O = 3.00 mol Unknown: mass of C 6 H 12 O 6 produced (g) Solution: Balanced Equation: 6CO 2 (g) + 6H 2 O(l) C 6 H 12 O 6 (s) + 6O 2 (g) mol ratio molar mass factor mol H 2 O mol C 6 H 12 O 6 mol H 2 O g C 6 H 12 O 6 mol C 6 H 12 O 6 g C 6 H 12 O mol H 2 O 1 mol C 6 H 12 O 6 6 mol H 2 O g C 6 H 12 O 6 1 mol C 6 H 12 O 6 = 90.1 g C 6 H 12 O 6

16 Questions: When magnesium burns in air, what mass of magnesium oxide is produced from 2.0 moles of magnesium burning? What mass of glucose (C 6 H 12 O 6 ) can be produced from photosynthesis of 10 moles of CO 2?

17 Section 2 Ideal Stoichiometric Calculations Conversions of Mass to Amounts in Moles

18 Section 2 Ideal Stoichiometric Calculations Conversions of Mass to Amounts in Moles Sample Problem D The first step in the industrial manufacture of nitric acid is the catalytic oxidation of ammonia. NH 3 (g) + O 2 (g) NO(g) + H 2 O(g) (unbalanced) The reaction is run using 824 g NH 3 and excess oxygen. a. How many moles of NO are formed? b. How many moles of H 2 O are formed?

19 Section 2 Ideal Stoichiometric Calculations Conversions of Mass to Amounts in Moles Sample Problem D Solution Given: mass of NH 3 = 824 g Unknown: a. amount of NO produced (mol) b. amount of H 2 O produced (mol) Solution: Balanced Equation: 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) a. molar mass factor g NH 3 mol NH 3 g NH 3 mol ratio mol NO mol NH 3 mol NO b. g NH 3 mol NH 3 g NH 3 mol H 2 O mol NH 3 mol H 2 O

20 Section 2 Ideal Stoichiometric Calculations Conversions of Mass to Amounts in Moles Sample Problem D Solution, continued molar mass factor mol ratio a. 824 g NH 3 1 mol NH g NH 3 4 mol NO 4 mol NH mol NO b. 824 g NH 3 1 mol NH 3 6 mol H O mol H g NH 3 4 mol NH 2 O 3

21 Section 2 Ideal Stoichiometric Calculations Solving Mass-Mass Problems

22 Section 2 Ideal Stoichiometric Calculations Mass-Mass to Calculations Sample Problem E Tin(II) fluoride, SnF 2, is used in some toothpastes. It is made by the reaction of tin with hydrogen fluoride according to the following equation. Sn(s) + 2HF(g) SnF 2 (s) + H 2 (g) How many grams of SnF 2 are produced from the reaction of g HF with Sn?

23 Section 2 Ideal Stoichiometric Calculations Mass-Mass to Calculations Sample Problem E Solution Given: amount of HF = g Unknown: mass of SnF 2 produced (g) Solution: g HF g HF molar mass factor mol ratio molar mass factor mol HF g HF mol SnF 2 mol HF g SnF 2 mol SnF 2 g SnF 2 1 mol HF g HF 1 mol SnF 2 2 mol HF g SnF 2 1 mol SnF 2 = g SnF 2

24 Section 2 Ideal Stoichiometric Calculations Solving Various Types of Stoichiometry Problems

25 Section 2 Ideal Stoichiometric Calculations Solving Various Types of Stoichiometry Problems

26 Section 2 Ideal Stoichiometric Calculations Solving Volume-Volume Problems

27 Section 2 Ideal Stoichiometric Calculations Solving Particle Problems

28 Questions: Ammonium nitrate decomposes into dinitrogen monoxide and water, how many grams of ammonium nitrate are required to produce 33g of dinitrogen monoxide and how many grams of water are produced? When copper is added to silver nitrate, silver and copper(ii) nitrate are produced. What mass of silver is produced from 100g of copper? What mass of aluminum is produced by the decomposition of 5kg of aluminum oxide? Ammonia mixed with oxygen produces nitrogen and water. Given 4 moles of NH 3 how much is there of everything else Given 4 moles of N 2 how much is there of everything else Given 4.5 moles of O 2 how much is there of everything else

29 More Questions: Magnesium and hydrochloric acid are combined what mass of HCl is needed to completely react with 2.5 moles of magnesium? What mass of each product is produced? CaC 2 + 2H 2 O C 2 H 2 + Ca(OH) 2 If 32 g of calcium carbide are consumed how many moles of water are needed? How many moles of each product are produced? When sodium chloride reacts with silver nitrate silver chloride precipitates. What mass of silver chloride is produced from 75 g of silver nitrate? What mass of carbon and oxygen are needed to make 56 g of carbon monoxide?

30 Section 3 Limiting Reactants and Percentage Yield Objectives Describe a method for determining which of two reactants is a limiting reactant. Calculate the amount in moles or mass in grams of a product, given the amounts in moles or masses in grams of two reactants, one of which is in excess. Distinguish between theoretical yield, actual yield, and percentage yield. Calculate percentage yield, given the actual yield and quantity of a reactant.

31 Section 3 Limiting Reactants and Percentage Yield Limiting Reactants Limiting Reactant - reactant that limits the amount of the other reactant that can combine and the amount of product that can form in a chemical reaction Excess Reactant - substance that is not used up completely in a reaction

32 Section 3 Limiting Reactants and Percentage Yield Limited Reactants Sample Problem F Silicon dioxide (quartz) is usually quite unreactive but reacts readily with hydrogen fluoride according to the following equation. SiO 2 (s) + 4HF(g) SiF 4 (g) + 2H 2 O(l) If 6.0 mol HF is added to 4.5 mol SiO 2, which is the limiting reactant?

33 Section 3 Limiting Reactants and Percentage Yield Limited Reactants Sample Problem F Solution SiO 2 (s) + 4HF(g) SiF 4 (g) + 2H 2 O(l) Given: amount of HF = 6.0 mol amount of SiO 2 = 4.5 mol Unknown: limiting reactant Solution: mole ratio mol HF mol SiF 4 mol HF mol SiO 2 mol SiF 4 mol SiO 2 mol SiF 4 produced mol SiF 4 produced

34 Section 3 Limiting Reactants and Percentage Yield Limited Reactants Sample Problem F Solution, continued SiO 2 (s) + 4HF(g) SiF 4 (g) + 2H 2 O(l) 6.0 mol HF 1 mol SiF 4 4 mol HF 1.5 mol SiF 4 produced 4.5 mol SiO 2 1 mol SiF 4 1 mol SiO mol SiF 4 produced HF is the limiting reactant.

35 Example Carbon reacts with steam at high temperatures to produce hydrogen and carbon monoxide. If 2.4 moles of carbon are exposed to 3.1 moles of steam, what is the limiting reactant? How much of the excess reactant is left over? How many moles of each product are formed?

36 Questions: N 2 H H 2 O 2 N H 2 O Which is the limiting reactant when 0.75 mol N 2 H 4 is mixed with 0.5 mol H 2 O 2? How much of the excess, in moles, remains? How much of each product, in moles, is produced? 8Zn + S 8 8ZnS Which is the limiting reactant when 2 mol Zn is mixed with 1 mol S 8? How much of the excess, in moles, remains? How much product, in moles, is produced?

37 Section 3 Limiting Reactants and Percentage Yield Percentage Yield Theoretical Yield - maximum amount of product that can be produced from a given amount of reactant Actual Yield - measured amount of that product obtained from a reaction Percent Yield - ratio of the actual yield to the theoretical yield, multiplied by 100 percentage yield actual yield theorectical yield 100

38 Visual Concepts Comparing Actual and Theoretical Yield Click below to watch the Visual Concept. Visual Concept

39 Section 3 Limiting Reactants and Percentage Yield Percentage Yield Sample Problem H Chlorobenzene, C 6 H 5 Cl, is used in the production of many important chemicals, such as aspirin, dyes, and disinfectants. One industrial method of preparing chlorobenzene is to react benzene, C 6 H 6, with chlorine, as represented by the following equation. C 6 H 6 (l) + Cl 2 (g) C 6 H 5 Cl(l) + HCl(g) When 36.8 g C 6 H 6 react with an excess of Cl 2, the actual yield of C 6 H 5 Cl is 38.8 g. What is the percentage yield of C 6 H 5 Cl?

40 Section 3 Limiting Reactants and Percentage Yield Percentage Yield Sample Problem H Solution C 6 H 6 (l) + Cl 2 (g) C 6 H 5 Cl(l) + HCl(g) Given: mass of C 6 H 6 = 36.8 g mass of Cl 2 = excess actual yield of C 6 H 5 Cl = 38.8 g Unknown: percentage yield of C 6 H 5 Cl Solution: Theoretical yield molar mass factor mol ratio molar mass g C 6 H 6 mol C 6 H 6 g C 6 H 6 mol C 6 H 5 Cl mol C 6 H 6 g C 6 H 5 Cl mol C 6 H 5 Cl g C 6 H 5 Cl

41 Section 3 Limiting Reactants and Percentage Yield Percentage Yield Sample Problem H Solution, continued C 6 H 6 (l) + Cl 2 (g) C 6 H 5 Cl(l) + HCl(g) Theoretical yield 1 mol C 36.8 g C 6 H 6 6 H 6 1 mol C H Cl g C H Cl g C 6 H 6 1 mol C 6 H 6 1 mol C 6 H 5 Cl Percentage yield 53.0 g C 6 H 5 Cl percentage yield C 6 H 5 Cl percentage yield 38.8 g 53.0 g actual yield theorectical yield %

42 Examples: CO + 2H 2 CH 3 OH If 75g of CO reacts to produce 68.4g CH 3 OH what is the percent yield? Al + CuSO 4 Al 2 (SO 4 ) 3 + Cu If 1.85g of Al react and the percent yield of Cu is 56.6%, what mass of Cu is produced

43 Assignment: CS 2 + 3O 2 CO 2 + SO 2 If 1 moles of CS 2 is exposed to 1 mole of O 2, what is the limiting reactant? How much of the excess reactant is left over? How many moles of each product are formed? Mg + H 2 O Mg(OH) 2 + H 2 If 16.2 grams of magnesium are exposed to 12.0 grams of water, what is the limiting reactant? How much of the excess reactant is left over? How many grams of each product are formed? CaCO 3 CaO + CO 2 When 2 x 103g CaCO 3 are heated the actual yield of CaO is 1.05 X 103g. What is the percent yield?

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations Preview Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq) MgCl 2 (aq) +

More information

Chapter 9 Stoichiometry

Chapter 9 Stoichiometry Chapter 9 Stoichiometry Section 9.1 Intro to Stoichiometry 9.1 Objectives Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two

More information

Section 1 Introduction to Stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations.

Section 1 Introduction to Stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Section 1 Introduction to Stoichiometry Objective Define stoichiometry. Describe the importance of the mole ratio in stoichiometric calculations. Write a mole ratio relating two substances in a chemical

More information

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry

Chapter 9. Table of Contents. Chapter 9. Lesson Starter. Chapter 9. Objective. Stoichiometry. Section 1 Introduction to Stoichiometry Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq)? MgCl 2

More information

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations

Chapter 9. Table of Contents. Stoichiometry. Section 1 Introduction to Stoichiometry. Section 2 Ideal Stoichiometric Calculations Stoichiometry Table of Contents Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Section 1 Introduction to Stoichiometry

More information

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations

Chapter 9. Preview. Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Calculations Preview Lesson Starter Objective Stoichiometry Definition Reaction Stoichiometry Problems Mole Ratio Stoichiometry Section 1 Introduction to Stoichiometry Lesson Starter Mg(s) + 2HCl(aq) MgCl 2 (aq) +

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in terms of interacting

More information

CHAPTER 11 Stoichiometry Defining Stoichiometry

CHAPTER 11 Stoichiometry Defining Stoichiometry CHAPTER 11 Stoichiometry 11.1 Defining Stoichiometry Stoichiometry is the study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction. Stoichiometry

More information

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line.

Name Date Class. Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 12 STOICHIOMETRY Chapter Test B A. Matching Match each term in Column B with the correct description in Column A. Write the letter of the correct term on the line. 1. 2. 3. 4. 5. Column A the substance

More information

Unit 7: Stoichiometry Homework Packet (85 points)

Unit 7: Stoichiometry Homework Packet (85 points) Name: Period: By the end of the Unit 7, you should be able to: Chapter 12 1. Use stoichiometry to determine the amount of substance in a reaction 2. Determine the limiting reactant of a reaction 3. Determine

More information

Limiting Reactants. and Percentage Yield. Section 3

Limiting Reactants. and Percentage Yield. Section 3 GO ONLINE Section 3 8E Main Ideas One reactant limits the product of a reaction. Comparing the actual and theoretical yields helps chemists determine the reaction s efficiency. 8E perform stoichiometric

More information

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date»

Slide 1 / 90. Stoichiometry HW. Grade:«grade» Subject: Date:«date» Slide 1 / 90 Stoichiometry HW Grade:«grade» Subject: Date:«date» Slide 2 / 90 1 The calculation of quantities in chemical equations is called. A B C D E accuracy and precision dimensional analysis percent

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

reaction stoichiometry

reaction stoichiometry 2.10.12 If you decomposed 4 moles of hydrogen peroxide, how many moles of oxygen gas would you produce if you used manganese (IV) oxide as a catalyst? HW page 301 1-3, and page 311 1-4 TYGAGT Use mole

More information

THE MOLE - PART 2. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

THE MOLE - PART 2. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. THE MOLE - PART 2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which one of the following statements is a quantitative observation? a.

More information

Name. Academic Chemistry Stoichiometry Notes. Unit #10 Test Date: cincochem.pbworks.com

Name. Academic Chemistry Stoichiometry Notes. Unit #10 Test Date: cincochem.pbworks.com Name Academic Chemistry Stoichiometry Notes Unit #10 Test Date: cincochem.pbworks.com Resources Unit 10 Common Polyatomic Ions List 20 Name Common Polyatomic Ion Ions Name Ion acetate C 2 H 3 O 2 or CH3

More information

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas.

Stoichiometry. Consider the reaction in which the reactants are nitrogen gas and hydrogen gas. They produce the product ammonia gas. 1 1. Interpreting Chemical Equations Stoichiometry Calculations using balanced equations are called stoichiometric calculations. The starting point for any problem involving quantities of chemicals in

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have?

If Sally has 4.56 x atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? If Sally has 4.56 x 10 34 atoms of oxygen in a sample of aluminum oxide, how many kilograms of aluminum does she have? Bertha has.025 milligrams of sodium that she got from a sample of Sodium phosphate,

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 )

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 ) Homework Stoichiometry 1.) An oxide of iron has the formula Fe 3 O 4. What mass percent of iron does it contain? (72.360%) 2.) Hydrocortisone valerate is an ingredient in hydrocortisone cream, prescribed

More information

2.9 The Mole and Chemical Equations:

2.9 The Mole and Chemical Equations: 2.9 The Mole and Chemical Equations: Stoichiometry Whether you are making omelettes in a kitchen or soap in a factory, you need to know the quantities of ingredients required to produce a certain quantity

More information

CH 221 Chapter Four Part I Concept Guide

CH 221 Chapter Four Part I Concept Guide 1. Balancing Chemical Equations CH 221 Chapter Four Part I Concept Guide Description When chlorine gas, Cl 2, is added to solid phosphorus, P 4, a reaction occurs to produce liquid phosphorus trichloride,

More information

Ch 9 Stoichiometry Practice Test

Ch 9 Stoichiometry Practice Test Ch 9 Stoichiometry Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A balanced chemical equation allows one to determine the a. mole ratio

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

Test bank chapter (3)

Test bank chapter (3) Test bank chapter (3) Choose the correct answer 1. What is the mass, in grams, of one copper atom? a) 1.055 10 - g b) 63.55 g c) 1 amu d) 1.66 10-4 g. Determine the number of moles of aluminum in 96.7

More information

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product?

Unit 6: Stoichiometry. How do manufacturers know how to make enough of their desired product? Unit 6: Stoichiometry How do manufacturers know how to make enough of their desired product? Chocolate Chip Cookies Using the following recipe, complete the questions. Cookie Recipe 1.5 c sugar 1 c. butter

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

Unit 4. Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 4. Multiple Choice Identify the choice that best completes the statement or answers the question. Unit 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 39. Changing a subscript in a correctly written chemical formula a. changes the number of moles represented

More information

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, Stoichiometry Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass, volume, and heat of reaction. Stoichiometry

More information

**continued on next page**

**continued on next page** Chapter 9 Stoichiometry Section 9.1 Introduction to Stoichiometry Standard.e.: Students know how to calculate the masses of reactant and products in a chemical reaction from the mass of one of the reactants

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 9 REVIEW Stoichiometry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. The coefficients in a chemical equation represent the (a) masses in grams of all reactants

More information

Unit 10: Stoichiometry Funsheets. Part A: Balanced Chemical Equations- Balance the following chemical equations.

Unit 10: Stoichiometry Funsheets. Part A: Balanced Chemical Equations- Balance the following chemical equations. Unit 10: Stoichiometry Funsheets Part A: Balanced Chemical Equations- Balance the following chemical equations. 1) Al + Cl 2 AlCl 3 2) Mg(ClO) 2 MgCl 2 + O 2 3) FeCl 3 + LiOH Fe(OH) 3 + LiCl 4) Na + O

More information

Unit 9 Stoichiometry Notes

Unit 9 Stoichiometry Notes Unit 9 Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations to

More information

Stoichiometry Chapter 9 Practice Assessment B

Stoichiometry Chapter 9 Practice Assessment B NAME Hour Date Stoichiometry Chapter 9 Practice Assessment B Objective 1: Interpret balanced chemical equations in terms of interacting moles, representative particles, masses, and gas volume at STP. Directions:

More information

Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations

Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations Unit 6 Assignment Packet Name Period A1 Worksheet: Writing and Balancing Chemical Equations 1. Describe the following word equation with a statement or sentence: Iron + Oxygen iron (III) oxide 2. In a

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

Notes 2: Stoichiometry

Notes 2: Stoichiometry Notes 2: Stoichiometry 1.1 Defining Stoichiometry Particle and Mole Relationships Chemical reactions stop when one of the reactants is used up. Stoichiometry is the study of quantitative relationships

More information

Practice Problems Stoich!

Practice Problems Stoich! Practice Problems Stoich! Name: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE IN QUESTIONS

More information

CHAPTER 9 CHEMICAL QUANTITIES

CHAPTER 9 CHEMICAL QUANTITIES Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 9 CHEMICAL QUANTITIES Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

actual yield (p. 372) excess reagent (p. 369) mole-mole relationship for ag bw: x mol G b mol W a mol G xb a mol W Organizing Information

actual yield (p. 372) excess reagent (p. 369) mole-mole relationship for ag bw: x mol G b mol W a mol G xb a mol W Organizing Information 12 Study Guide 12 Study Guide Study Tip Prioritize Schedule your time realistically. Stick to your deadlines. If your class subscribes to the Interactive Textbook with ChemASAP, your students can go online

More information

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio

VOCABULARY Define. 1. stoichiometry. 2. composition stoichiometry. 3. reaction stoichiometry. 4. unknown. 5. mole ratio CHAPTER 9 HOMEWORK 9-1 (pp. 275 279) Define. 1. stoichiometry 2. composition stoichiometry 3. reaction stoichiometry 4. unknown 5. mole ratio SKILL BUILDER On a separate sheet of paper, write five possible

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Chapter 3 Test Bank. d. The decomposition of magnesium oxide produces 2.4 g of magnesium metal and 3.2 g of oxygen gas.

Chapter 3 Test Bank. d. The decomposition of magnesium oxide produces 2.4 g of magnesium metal and 3.2 g of oxygen gas. 1. Which of the following correctly provides evidence for the unit formula of magnesium oxide? a. The decomposition of magnesium oxide produces 1.2 g of magnesium metal and 1.6 g of oxygen gas. b. The

More information

What does this equation tell you? 1. 1 molecule of nitrogen gas reacts with 3 molecules of hydrogen gas to produce 2 molecules of ammonia gas.

What does this equation tell you? 1. 1 molecule of nitrogen gas reacts with 3 molecules of hydrogen gas to produce 2 molecules of ammonia gas. Chapter 7 Quantities in Chemical Reactions Stoichiometry For example, the Haber Process (used to make ammonia gas) is based on the following balanced equation: N 2(g) + 3H 2(g) 2NH 3(g) Stoichiometry is

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Table of Contents Click on the topic to go to that section Stoichiometry Calculations with Moles Stoichiometry Calculations with Particles

More information

Unit IV: Chemical Equations & Stoichiometry

Unit IV: Chemical Equations & Stoichiometry Unit IV: Chemical Equations & Stoichiometry A. The chemical equation B. Types of chemical reactions A. Activity series of metals B. Solubility rules C. Rules for writing and balancing equations D. Calculations

More information

Stoichiometric Calculations

Stoichiometric Calculations Slide 1 / 109 Slide 2 / 109 Stoichiometric Calculations Slide 3 / 109 Slide 4 / 109 Table of Contents Stoichiometry Calculations with Moles Click on the topic to go to that section Stoichiometry Calculations

More information

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg?

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg? 1 A 2 B 3 C The atomic number of Na is 11. How many electrons are there in a sodium ion, Na +? How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? What is the mass in grams

More information

A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS

A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS MASS AQUEOUS VOLUME ` MOLAR MASS GASEOUS VOLUME MOLES CONCENTRATION REVISION FROM LESSON 1 How many moles? 1) Jahin weighs a sample

More information

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment AP Chemistry Summer Assignment Due Date: Thursday, September 1 st, 2011 Directions: Show all of your work for full credit. Include units and labels. Record answers to the correct number of significant

More information

Study Guide: Stoichiometry

Study Guide: Stoichiometry Name: Study Guide: Stoichiometry Period: **YOUR ANSWERS MUST INCLUDE THE PROPER NUMBER OF SIG FIGS AND COMPLETE UNITS IN ORDER TO RECEIVE CREDIT FOR THE PROBLEM.** BALANCE THE FOLLOWING EQUATIONS TO USE

More information

Chapter 6. Chemical Reactions. Sodium reacts violently with bromine to form sodium bromide.

Chapter 6. Chemical Reactions. Sodium reacts violently with bromine to form sodium bromide. Chapter 6 Chemical Reactions Sodium reacts violently with bromine to form sodium bromide. Evidence of Chemical Reactions Chemical Equations Reactants Products Reactant(s): Substance(s) present before the

More information

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017 Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017 Balance the following chemical equations. Remember, it is not necessary to write "1" if the coefficient is one. 1. N 2 + H 2 NH 3 2. KClO 3 KCl +

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

The photograph in the textbook provides evidence that an exothermic chemical reaction is occurring.

The photograph in the textbook provides evidence that an exothermic chemical reaction is occurring. Preview Lesson Starter Objectives Indications of a Chemical Reaction Characteristics of Chemical Equations Significance of a Chemical Equation Balancing Chemical Equations Section 1 Describing Chemical

More information

STOICHIOMETRY. Chapter Quiz. Fill in the word(s) that will make each statement true

STOICHIOMETRY. Chapter Quiz. Fill in the word(s) that will make each statement true STOICHIOMETRY Chapter Quiz Fill in the word(s) that will make each statement true. 1. The 1 in a balanced chemical equation also reveal the mole ratios of the substances involved. 1. 12.1 2. 12.1 2. The

More information

Chapter 9. Chemical Quantities

Chapter 9. Chemical Quantities Chapter 9 Chemical Quantities Section 9.1 Information Given by Chemical Equations A balanced chemical equation gives relative numbers (or moles) of reactant and product molecules that participate in a

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Micro World atoms & molecules Macro World grams Atomic mass is the mass of an atom in

More information

Practice Packet Unit 7: Moles & Stoichiometry

Practice Packet Unit 7: Moles & Stoichiometry PRACTICE PACKET: Unit 7 Moles & Stoichiometry Regents Chemistry: Practice Packet Unit 7: Moles & Stoichiometry Vocabulary: Lesson 1: Lesson 6: Lesson 2: Lesson 4A: Lesson 4B: Lesson 3: Lesson 5: www.chempride.weebly.com

More information

STOICHIOMETRY CLASSWORK

STOICHIOMETRY CLASSWORK STOICHIOMETRY CLASSWORK Given the following equation: 2 C4H10 + 13 02 ---> 8 CO2 + 10 H20 Show what the following molar ratios should be. a, C4H10 / 02 b. 02 / CO2 o, 02 / H20 d, C4Hlo / CO2 e. C4Hlo /

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Chapter 7: Stoichiometry in Chemical Reactions

Chapter 7: Stoichiometry in Chemical Reactions Chapter 7: Stoichiometry in Chemical Reactions Mini Investigation: Precipitating Ratios, page 315 A. ZnCl 2 (aq) + Na 2 CO 3 (aq) ZnCO 3 (s) + 2 NaCl(aq) 3 AgNO 3 (aq) + Na 3 PO 4 (aq) Ag 3 PO 4 (s) +

More information

Stoichiometry Dry Lab

Stoichiometry Dry Lab Stoichiometry Dry Lab Name: Mole-Mass Conversions The molar mass of a substance is the conversion factor that allows us to convert between the mass of a substance (in grams) and the number of moles of

More information

SCH4U Chemistry Review: Fundamentals

SCH4U Chemistry Review: Fundamentals SCH4U Chemistry Review: Fundamentals Particle Theory of Matter Matter is anything that has mass and takes up space. Anything around us and in the entire universe can be classified as either matter or energy.

More information

UNIT 9 - STOICHIOMETRY

UNIT 9 - STOICHIOMETRY General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen?

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? Stoichiometry Mole-to-Mole 1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? N 2 + H 2 NH 3 2. If 5.50 moles of calcium carbide (CaC 2 ) reacts with an excess of

More information

AP Chapter 3 Study Questions

AP Chapter 3 Study Questions Class: Date: AP Chapter 3 Study Questions True/False Indicate whether the statement is true or false. 1. The mass of a single atom of an element (in amu) is numerically EQUAL to the mass in grams of 1

More information

Stoichiometry study of the relationships in a

Stoichiometry study of the relationships in a Note Taking Guide: Episode 801 Name Stoichiometry study of the relationships in a based on equations 2 Mg + O 2 2 MgO The in a give the for the involved in the. Ex. Problem: When elemental aluminum reacts

More information

7.1. What Is Stoichiometry? SECTION. Key Terms

7.1. What Is Stoichiometry? SECTION. Key Terms SECTION 7.1 What Is Stoichiometry? Key Terms stoichiometry mole ratio stoichiometry the study of the quantitative relationships among the amounts of reactants used and the amounts of products formed in

More information

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Name: Unit 9- Stoichiometry Day Page # Description IC/HW Name: Unit 9- Stoichiometry Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 Stoichiometry Notes IC 1 4 Mole Map IC X 1 5 Mole to Mole Practice IC 1 6 Mass to Mole Practice IC 1/2 X

More information

Stoichiometry Part 1

Stoichiometry Part 1 Stoichiometry Part 1 Formulae of simple compounds Formulae of simple compounds can be deduced from their ions/valencies but there are some that you should know off by heart. You will learn these and more

More information

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with Chapter 3: Chemical Formulae and Equations 1. Relative atomic mass, A r - The relative atomic mass of an element is the average mass of one atom of an element when compared with mass of an atom of carbon-12

More information

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12 Nam e: Period: Unit Goals- As you work through this unit, you should be able to: 1. Write formula equations from word equations using appropriate

More information

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams.

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams. CHEMISTRY TEST NAME: MASS AND VOLUME DATE: EQUATION RELATIONSHIPS Directions: For each of the following questions, choose the number that best answers the question and place it on your answer sheet. Directions:

More information

Unit Two Worksheet WS DC U2

Unit Two Worksheet WS DC U2 Unit Two Worksheet WS DC U2 Name Period Short Answer [Writing]. Write skeleton equations representing the following reactions and then balance them. Then identify the reaction type. Include all needed

More information

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1

STOICHIOMETRY. Engr. Yvonne Ligaya F. Musico 1 STOICHIOMETRY Engr. Yvonne Ligaya F. Musico 1 Stoichiometry The study in chemistry dealing with calculations based on balanced chemical equations. The branch of chemistry dealing with mass relationships

More information

Unit 3. Stoichiometry

Unit 3. Stoichiometry Unit 3. Stoichiometry Upon successful completion of this unit, the students should be able to: 3.1 Define atomic mass and solve related problems. 1. Gallium has two naturally occurring isotopes, and gallium-70

More information

What is one of the spectator ions (with correct coefficient)? A)

What is one of the spectator ions (with correct coefficient)? A) Chem 101 Exam Fall 01 Section 001 1. Based on the solubility rules Mg (PO 4 ) is A) soluble B) insoluble. An aqueous solution of potassium sulfate is allowed to react with an aqueous solution of What is

More information

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry.

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry. TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry. Stoichiometric calculations. By combining a knowledge of balancing equations with the concept of the mole, it is possible to easily calculate the masses

More information

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. 1. calcium + oxygen 2. cupric carbonate 3. aluminum + hydrochloric

More information

Chapter 5. Stoichiometry

Chapter 5. Stoichiometry Chapter 5 Stoichiometry Chapter 5 Table of Contents (5-1) Counting by weighing (5-2) Atomic masses (5-3) Learning to solve problems (5-4) The mole (5-5) Molar mass (5-6) Percent composition of compounds

More information

September 18, reaction stoichiometry.notebook. May 18 10:07 AM. Sep 13 8:55 AM REACTION STOICHIOMETRY

September 18, reaction stoichiometry.notebook. May 18 10:07 AM. Sep 13 8:55 AM REACTION STOICHIOMETRY REACTION STOICHIOMETRY COMPOSITION STOICHIOMETRY: The mass relationships of elements in a compound REACTION STOICHIOMETRY : the mass relationships between products and reactants May 18 10:07 AM Sep 13

More information

Unit 5: Chemical Equations and Reactions & Stoichiometry

Unit 5: Chemical Equations and Reactions & Stoichiometry pg. 10 Unit 5: Chemical Equations and Reactions & Stoichiometry Chapter 8: Chemical Equations and Reactions 8.1: Describing Chemical Reactions Selected Chemistry Assignment Answers (Section Review on pg.

More information

General Chemistry 1 CHM201 Unit 2 Practice Test

General Chemistry 1 CHM201 Unit 2 Practice Test General Chemistry 1 CHM201 Unit 2 Practice Test 1. Which statement about the combustion of propane (C 3H 8) is not correct? C 3H 8 5O 2 3CO 2 4H 2O a. For every propane molecule consumed, three molecules

More information

Exam III Material Chapter 7-CHEMICAL REACTIONS, continued

Exam III Material Chapter 7-CHEMICAL REACTIONS, continued Exam III Material Chapter 7-CHEMICAL REACTIONS, continued A chemical reaction occurs when there is a change in chemical composition. I. Double Replacement/Double Exchange/Metathesis Reactions In an double

More information

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a

Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a Apply the concept of percent yield to stoichiometric problems. Methanol can be produced through the reaction of CO and H 2 in the presence of a catalyst. CO (g) + H 2 (g) CH 3 OH (l) If 75.0 g of CO reacts

More information

4 CO O 2. , how many moles of KCl will be produced? Use the unbalanced equation below: PbCl 2. PbSO 4

4 CO O 2. , how many moles of KCl will be produced? Use the unbalanced equation below: PbCl 2. PbSO 4 Honors Chemistry Practice Final 2017 KEY 1. Acetylene gas, C 2, is used in welding because it generates an extremely hot flame when combusted with oxygen. How many moles of oxygen are required to react

More information

Stoichiometry CHAPTER 9. Online Chemistry. Why It Matters Video. Online Labs include: Stoichiometry and Gravimetric Analysis

Stoichiometry CHAPTER 9. Online Chemistry. Why It Matters Video. Online Labs include: Stoichiometry and Gravimetric Analysis CHAPTER 9 Stoichiometry Online Chemistry HMDScience.com Section 1 Introduction to Stoichiometry Section 2 Ideal Stoichiometric Calculations Section 3 Limiting Reactants and Percentage Yield Online Labs

More information

Moles, Mass, and Limiting Reactants

Moles, Mass, and Limiting Reactants Moles, Mass, and Limiting Reactants Interpreting a Chemical Equation 1. How many moles of chlorine gas react with 1 mol of hydrogen gas according to the balanced chemical equation? (a) 1 mol (b) 2 mol

More information

Example Exercise 10.1 Interpreting Chemical Equation Calculations

Example Exercise 10.1 Interpreting Chemical Equation Calculations Example Exercise 10.1 Interpreting Chemical Equation Calculations Given the chemical equation for the combustion of methane, CH 4, balance the equation and interpret the coefficients in terms of (a) moles

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Chemical Formulae, Equations and Calculations NOTES 1.25: Write word equations and balanced chemical equations (including state symbols): For reactions

More information

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2

Name: Class: Date: ID: A. (g), what is the ratio of moles of oxygen used to moles of CO 2 produced? a. 1:1 b. 2:1 c. 1:2 d. 2:2 Name: Class: _ Date: _ Chpt 12 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is conserved in the reaction shown below? H 2 + Cl 2 2HCl a.

More information

2H 2 (g) + O 2 (g) 2H 2 O (g)

2H 2 (g) + O 2 (g) 2H 2 O (g) Mass A AP Chemistry Stoichiometry Review Pages Mass to Mass Stoichiometry Problem (Review) Moles A Moles B Mass B Mass of given Amount of given Amount of unknown Mass of unknown in grams in Moles in moles

More information

Problem Solving. Limiting Reactants

Problem Solving. Limiting Reactants Skills Worksheet Problem Solving Limiting Reactants At the beginning of Chapter 8, a comparison was made between solving stoichiometry problems and making turkey sandwiches. Look at the sandwich recipe

More information

Quantity Relationships in Chemical Reactions

Quantity Relationships in Chemical Reactions Chapter 10 Relationships in Chemical Reactions Section 10.1 Conversion Factors from a Chemical Equation Goal 1 The coefficients in a chemical equation give us the conversion factors to get from the number

More information

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard Chapter 1 IB Chemistry Warm Ups Stoichiometry Mrs. Hilliard Vocabulary 1. Atomic theory 2. Kelvin 3. Mole 4. Relative abundance 5. Molar Mass 6. Empirical formula 7. Molecular formula 8. Stoichiometry

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information