CHM2045 Exam 2 Review Spring 2018 Gases

Size: px
Start display at page:

Download "CHM2045 Exam 2 Review Spring 2018 Gases"

Transcription

1 CHM2045 Exam 2 Review Spring 2018 Gases Gases are assumed to behave Ideally What is ideal behavior? o Gas molecules do not exert forces on each other (i.e. no IMFs) o Gases have fully elastic collisions (No net energy loss when they collide with walls and/or each other) o Gas molecules themselves have negligible volume compared to their container How do you facilitate ideal behavior? i.e. when are gasses most ideal? Question 1: Under which of the following conditions would gasses deviate from ideal behavior? I. High temperatures II. Low average kinetic energy III. Low internal pressure IV. High density a. II, and III b. I, II, and III c. II and IV d. II, III, and IV Ideal Gas Law PV = nrt, where P is pressure (atm), V is volume (L), n is moles of gas, T is temperature (K), and R is the gas constant (0.0821) All gas other gas laws can be derived from the Ideal Gas Law o How? 1

2 The Gas Laws Boyle s Law Charles Law Gay-Lessac s Law Avogadro s Law Dalton s Law The gas laws are typically used when comparing the effects of changing conditions Question 2 A weather balloon is initially at a volume of 10 ml and temperature of 298 K at sea level. It is released into the air and once it reaches a certain altitude, the temperature is now 278K and the pressure is 0.76 atm. What is the volume of this balloon at the new altitude? Question 3 Two vessels of different volumes are connected through a closed valve. One of the vessels contains 2L of gas A, and vessel B contains 3L of gas B, and they are both at 758mmHg. When the valve is opened, gas A and B mix and react to for A2B3. What is the final pressure after the reaction has occurred? 2

3 Thermochemistry q and ΔH ARE NOT THE SAME THING ΔH is q/quantity q is measured in KJ/J or Cal/cal ΔH is measured in KJ/mol, J/mol, KJ/g, J/g, etc. o Sometimes they will not include the quantity and simply say the enthalpy change of some reaction if X KJ Question 4 Acetylene, C2H2, burns in air by the following reaction: 2 C2H2(g) + 5 O2(g) à 4 CO2(g) + 2 H2O(g) ΔH = 2510 kj How much heat is released when 3.0 g of C2H2react with 6.0 g of O2? (1) 94.1 kj (2) 145 kj (3) 188 kj (4) 289 kj (5) 477 kj Hess s Law Hess s Law allows us to add enthalpies of individual reactions as we add their respective reactions Hess s Law also tells us that enthalpy is a state function (path independent) When manipulating reactions, the same must be done to their corresponding enthalpies; when multiplying the reaction by a number, you must multiply its enthalpy by the same number when flipping a reaction, its enthalpy must be negated 3

4 Question 5 Calculate the enthalpy for this reaction: 2C(s) + H2(g) ---> C2H2(g) ΔH =??? kj Given the following thermochemical equations: C2H2(g) + 5 2O2(g) ---> 2CO2(g) + H2O(l) ΔH = kj C(s) + O2(g) ---> CO2(g) H2(g) + 1 2O2(g) ---> H2O(l) ΔH = kj ΔH = kj 4

5 Question 6 Calculate the ΔHf of SrCl2(s), given the following thermochemical equations. Sr(s) Sr(g) ΔHvap/sub = kj/mol Sr(g) Sr+(g) + e- IE1 = 549 kj /mol Sr+(g) Sr2+(g) + e- IE2= 1064 kj /mol Cl2(g) 2Cl(g) BE = 243 kj /mol Cl(g) + e- Cl1-(g) EA = -349 kj /mol Sr2+(g) + 2Cl1-(g) SrCl2(s) LE = kJ /mol (1) kj (2) kj (3) kj (4) kj (5) kj Heat Transfer q = mcδt where q is heat energy (J), m is mass (g), C is specific heat (heat capacity) (J/g*K), and T is the difference in temperature (final initial) (can be in kelvin or Celsius since it is a change in temperature. *Pay attention to signs if q < 0, then heat is being released if q > 0, then heat is being absorbed 5

6 When solving problems involving the transfer of heat energy, it is important to be able to identify the system and the surrounding The system is the substance causing the heat transfer The surrounding is the substance being affected by the system o Example. When a hot metal ball is dropped in cold water, the metal ball will be the system as it is releasing heat whereas the water (and maybe the container) will be the surroundings as they are the substance accepting the heat that is leaving the ball Once the system and the surroundings have been identified, the general equation for the heat transfer is q sysetm = q surrounding For example, if water is a surrounding as well as the container, then their combined heat energies will count as qsurrounding When identifying the system and the surroundings, label each of their heat energies in a recognizable way Metal > qmetal solution > qsoln water > qwater container (bomb) > qbomb reaction > qrxn Steps to Solving Heat Transfer Problems 1. Identify the existing q s (qmetal, qsoln, etc.) 2. Determine what the surroundings and the systems are 3. Plug into qsys = - qsurr 4. Write out mcδt for each q (if the information is given) 6

7 Question 7 A g copper rod is heated and then is placed into an insulated vessel containing 1000.g of water at 20.0 C. The final temperature after equilibrium is achieved is 27.5 C. What was the temperature (K) of the copper rod? The heat capacity of copper is J/g C. (1) 573 K (2) 360 K (3) 1285 K (4) 281 K (5) 103 K 7

8 Question 8 13) A ml sample of M HCl is mixed with a 50.0 ml sample of M NaOH in a Styrofoam cup. If both solutions were initially at C, and the enthalpy of the neutralization reaction is 57 kj/mole of H2O formed, what is the final temperature of the mixture? Assume that the solution has a density of 1.00 g/ml and a specific heat of J/g C, and that the Styrofoam cup has an insignificant heat capacity. 1) C 2) 33.8 C 3) C 4) 50 C 5) C 8

9 Kinetics: Reaction Rates Rate Laws Rate laws are determined through experimental data For the reaction A + B > C + D, the rate law is Rate = k [A] x [B] Where x and y are the orders of A and B respectively, and k is the reaction rate constant Finding the Rate Law from a Data Table The data table will typically contain the initial rate, the concentration of each reactant, and the experiment number If you are determining the order of a reactant, look for experiments where all other reactant concentrations stay constant except for the concentration of the reactant under question Question 9 Given the data below, find the rate law for the following reaction at 300 K and the corresponding rate constant. A+B C+D Trial [A]initial (M) [B]initial (M) Rateinitial (M/s)

10 Finding the Rate Law from elementary steps When given a mechanism for a specific reaction, the rate law of the reaction can be determined by finding the rate determining step of the mechanism (aka the slowest step) The mechanism is only as good as its weakest link When given mechanisms with reversible (equilibrium) steps, those steps must be taken into consideration for the rate law as well. If there are any intermediates in the reversible step(s) and the slow step, you must solve for the intermediate and substitute that reaction into the slow reaction Question 10 Which of the rate laws below would be compatible with the following reaction mechanism? Step 1 : A + B D (fast, equilibrium) Step 2 : D + B E + F (slow, rate-determining) Step 3 : F G (fast) (1) rate = k[d][b] (2) rate = k[a][b]2 [D] (3) rate = k[d][b][f] (4) rate = k[a][b]2 (5) rate = k[a][b] 10

11 Kinetics What increases the rate of reaction? Increasing the temperature (average kinetic energy) of the reaction Increasing the surface area of the reactant Increasing the number of collisions between reactants Question 11 Which of the following conditions would hinder the progress of a gaseous reaction? (1) Increasing the temperature (2) Increasing the average kinetic energy (3) Decreasing the pressure of (4) Increasing Volume (5) both (1) and (2) 11

12 Light Chemistry and Photons a photon is a pocket of energy that is released when an electron drops from an excited state of energy to a lower state of energy (we will treat it as if it were an electron) photons move through space in a wave-like manner and thus they have both a frequency and wavelength Light Energy c = λv where c is the speed of light (3.0 x 10 8 m/s), λ is the wavelength (m), and v is the frequency (Hz or 1/s) Light energy (E) is related to frequency through the following equation E = hv Where h is Planck s Constant (6.626 x ) It is vital to understand that E is measured in Joules per individual PHOTON, so if the question asks for joules per MOLE of photons, you must do the appropriate unit conversion Question 12 A certain light bulb consumes 200 J of energy per second. If a light bulb converts all of this energy to 500 nm light, how many photons are produced each second? (1) 5.0 x 10^20 (2) 200 (3) 5.0x10^-7 (4) 5.0x10^-19 (5)

13 Question 13 What is the longest wavelength of light which can photo-dissociate a CO molecule when the bond energy of CO is 1046 kj/mol. (1) 114 nm (2) 265 nm (3) 74.0 nm (4) 318 nm (5) 93.5 nm 13

14 Question 14 Enormous numbers of microwave photons are needed to warm household samples. A bowl of soup containing 400g of water is heated in a microwave oven from 20.0 C to 98.0 C using radiation with wavelength 122 mm. Assuming that the specific heat capacity of the soup is the same as that of water (4.184 J/g C) and no heat loss to the bowl, which choice is closest to the number of photons absorbed? (1) 4.0*10-6 (2) 8.0*10-20 (3) 4.0*106 (4) 8.0*1020 (5) None of the above 14

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

General Chemistry 1 CHM201 Unit 3 Practice Test

General Chemistry 1 CHM201 Unit 3 Practice Test General Chemistry 1 CHM201 Unit 3 Practice Test 1. Heat is best defined as a. a substance that increases the temperature and causes water to boil. b. a form of potential energy. c. a form of work. d. the

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Form Code X NAME. CHM 2045, Fall 2016, Exam 2 Review Packet (UF Teaching Center)

Form Code X NAME. CHM 2045, Fall 2016, Exam 2 Review Packet (UF Teaching Center) Form Code X NAME CHM 2045, Fall 2016, Exam 2 Review Packet (UF Teaching Center) Exam Packet Instructions: Do your best and don t be anxious. Read the question, re-read the question, write down all given

More information

CHE 105 Fall 2016 Exam 3

CHE 105 Fall 2016 Exam 3 CHE 105 Fall 2016 Exam 3 Your Name: Your ID: Question #: 1 Samples of CO2(g), C6H6(g), Cl2(g) and C3H8(g) are placed in separate glass vessels (only one gas to a vessel) at the same temperature and pressure.

More information

47 people in recitation yesterday. Expect quizzes there and in class.

47 people in recitation yesterday. Expect quizzes there and in class. Announcements 47 people in recitation yesterday. Expect quizzes there and in class. Chapter 6 Problems: 6.9, 6.11, 6.13(except c), 6.19, 6.23, 6.34, 6.38, 6.42, 6.51, 6.53, 6.54, 6.57, 6.64, 6.66, 6.69,

More information

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj)

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj) CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC D PROBLEMS 1) For all problems involving energy, you may give your answer in either joules or kilojoules, unless the problem specifies a unit. (In general, though,

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Energy -Very much a chemistry topic Every chemical change has an accompanying change of. Combustion of fossil fuels The discharging a battery Metabolism of foods If we are to

More information

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.)

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Change in Energy Energy Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Heat - the energy transferred between objects that are at different temperatures. Unit of heat

More information

Name: Date: Period: #: UNIT 4 NOTES & EXAMPLE PROBLEMS. W = kg m s 2 m= kg m2. Pressure =

Name: Date: Period: #: UNIT 4 NOTES & EXAMPLE PROBLEMS. W = kg m s 2 m= kg m2. Pressure = BACKGROUND ON UNITS Acceleration = velocity time Force (F) = mass acceleration = m a F = kg m s 2 = kg m s 2 UNIT 4 NOTES & EXAMPLE PROBLEMS = m s s Work (W)= Force distance = F d = m s 2 = m s-2 W = kg

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #3 KEY. While you wait, please complete the following information:

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #3 KEY. While you wait, please complete the following information: DO NOT OPEN UNTIL INSTRUCTED TO DO SO CHEM 110 Dr. McCorkle Exam #3 KEY While you wait, please complete the following information: Name: Student ID: Turn off cellphones and stow them away. No headphones,

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object.

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object. HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do work. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy

More information

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]?

Warm up. 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? Warm up 1) What is the conjugate acid of NH 3? 2) What is the conjugate base of HNO 2? 3) If the ph is 9.2, what is the [H 3 O + ], poh, and [OH - ]? 4) What is the concentration of H 2 SO 4 if 30.1 ml

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Reaction Energy. Thermochemistry

Reaction Energy. Thermochemistry Reaction Energy Thermochemistry Thermochemistry The study of the transfers of energy as heat that accompany chemical reactions & physical changes Thermochemistry -In studying heat changes, think of defining

More information

CHEMISTRY Matter and Change. Chapter 13: Gases

CHEMISTRY Matter and Change. Chapter 13: Gases CHEMISTRY Matter and Change Chapter 13: Gases CHAPTER 13 Table Of Contents Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry Click a hyperlink to view the corresponding

More information

Thermodynamics- Chapter 19 Schedule and Notes

Thermodynamics- Chapter 19 Schedule and Notes Thermodynamics- Chapter 19 Schedule and Notes Date Topics Video cast DUE Assignment during class time One Review of thermodynamics ONE and TWO Review of thermo Wksheet Two 19.1-4; state function THREE

More information

Chapter 6 Review. Part 1: Change in Internal Energy

Chapter 6 Review. Part 1: Change in Internal Energy Chapter 6 Review This is my own personal review, this should not be the only thing used to study. You should also study using notes, PowerPoint, homework, ect. I have not seen the exam, so I cannot say

More information

All chemical reactions involve changes in energy. Typically this energy comes in the form of heat.

All chemical reactions involve changes in energy. Typically this energy comes in the form of heat. Topic: Thermochemistry Essential Question: How does energy flow in chemical reactions? Name: Class: Date: / / Period: All chemical reactions involve changes in energy. Typically this energy comes in the

More information

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #3. While you wait, please complete the following information:

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #3. While you wait, please complete the following information: DO NOT OPEN UNTIL INSTRUCTED TO DO SO CHEM 110 Dr. McCorkle Exam #3 While you wait, please complete the following information: Name: Student ID: Turn off cellphones and stow them away. No headphones, mp3

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.

B 2 Fe(s) O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75. 1 2004 B 2 Fe(s) + 3 2 O 2(g) Fe 2 O 3 (s) H f = -824 kj mol 1 Iron reacts with oxygen to produce iron(iii) oxide as represented above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of O 2 (g) at 2.66

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

Chapter 8. Thermochemistry

Chapter 8. Thermochemistry Chapter 8 Thermochemistry Copyright 2001 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to the following address: Permissions Department,

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow

Chapter 8. Thermochemistry 강의개요. 8.1 Principles of Heat Flow. 2) Magnitude of Heat Flow. 1) State Properties. Basic concepts : study of heat flow 강의개요 Basic concepts : study of heat flow Chapter 8 Thermochemistry Calorimetry : experimental measurement of the magnitude and direction of heat flow Thermochemical Equations Copyright 2005 연세대학교이학계열일반화학및실험

More information

CHEMISTRY Practice Exam #3 - SPRING 2013

CHEMISTRY Practice Exam #3 - SPRING 2013 CHEMISTRY 1710 - Practice Exam #3 - SPRING 2013 Section 1 - This section of the exam is multiple choice. Choose the BEST answer from the choices which are given and write the letter for your choice in

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry Section 6.1: Introduction to Thermochemistry Thermochemistry refers to the study of heat flow or heat energy in a chemical reaction. In a study of Thermochemistry the chemical

More information

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30

Introduction to Thermochemistry. Thermochemistry Unit. Definition. Terminology. Terminology. Terminology 07/04/2016. Chemistry 30 Thermochemistry Unit Introduction to Thermochemistry Chemistry 30 Definition Thermochemistry is the branch of chemistry concerned with the heat produced and used in chemical reactions. Most of thermochemistry

More information

Chemistry 1105 R11 Fall 2018 Test 3

Chemistry 1105 R11 Fall 2018 Test 3 Chemistry 1105 R11 Fall 2018 Test 3 Friday, November 16, 2018 Name: Time: 1 hour 50 minutes Student #: This test consists of seven pages of questions, the periodic table, and a page containing useful constants

More information

1. How much heat is required to warm 400. g of ethanol from 25.0ºC to 40.0ºC?

1. How much heat is required to warm 400. g of ethanol from 25.0ºC to 40.0ºC? Heat and q=mcδt 1. How much heat is required to warm 400. g of ethanol from 25.0ºC to 40.0ºC? 2. What mass of water can be heated from 0.00ºC to 25.0ºC with 90,000. J of energy? 3. If 7,500. J of energy

More information

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container?

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container? 1. Which gas law states that the volume of a fixed mass of a gas is directly proportional to its Kelvin temperature if the pressure is kept constant? A. Boyle s law B. Charles law C. Dalton s law D. Gay-Lussac

More information

Thermochemistry. The study of the ENERGY CHANGES that accompany changes in matter. 3 Ways: Monday, February 3, 2014

Thermochemistry. The study of the ENERGY CHANGES that accompany changes in matter. 3 Ways: Monday, February 3, 2014 Thermochemistry The study of the ENERGY CHANGES that accompany changes in matter 3 Ways: 1 Thermodynamics FIRST LAW OF THERMODYNAMICS the total amount of energy in the universe is constant (conservation

More information

Form Code X. 1. Which of the following transitions in a hydrogen atom would emit the longest wavelength photon?

Form Code X. 1. Which of the following transitions in a hydrogen atom would emit the longest wavelength photon? Form Code X NAME CHM 2045, Summer 2018 Exam Packet Instructions: Do your best and don t be anxious. Read the question, re-read the question, write down all given or valuable information, and write down

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Energy Changes in Reactions p

Energy Changes in Reactions p Energy Changes in Reactions p.126 210 Heat vs. temperature: Heat is a form of energy, it is transferred from one system to another Temperature is an indication of the intensity of heat, it measures the

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY MIDTERM 1. Examiners: Prof. B. Siwick Prof. I. Butler Dr. A.

FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY MIDTERM 1. Examiners: Prof. B. Siwick Prof. I. Butler Dr. A. FACULTY OF SCIENCE MID-TERM EXAMINATION CHEMISTRY 120 GENERAL CHEMISTRY MIDTERM 1 Examiners: Prof. B. Siwick Prof. I. Butler Dr. A. Fenster Name: INSTRUCTIONS 1. Enter your student number and name on the

More information

Gases. Properties of Gases Kinetic Molecular Theory of Gases Pressure Boyle s and Charles Law The Ideal Gas Law Gas reactions Partial pressures.

Gases. Properties of Gases Kinetic Molecular Theory of Gases Pressure Boyle s and Charles Law The Ideal Gas Law Gas reactions Partial pressures. Gases Properties of Gases Kinetic Molecular Theory of Gases Pressure Boyle s and Charles Law The Ideal Gas Law Gas reactions Partial pressures Gases Properties of Gases All elements will form a gas at

More information

Review for Final Exam

Review for Final Exam Review for Final Exam Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Types of Changes A physical change does not alter the composition or identity

More information

Thermochemistry HW. PSI Chemistry

Thermochemistry HW. PSI Chemistry Thermochemistry HW PSI Chemistry Name Energy 1) Objects can possess energy as: (a) endothermic energy (b) potential energy A) a only B) b only C) c only D) a and c E) b and c (c) kinetic energy 2) The

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V.

Useful Information to be provided on the exam: 1 atm = 760 mm Hg = 760 torr = lb/in 2 = 101,325 Pa = kpa. q = m C T. w = -P V. Chem 101A Study Questions, Chapters 5 & 6 Name: Review Tues 10/25/16 Due 10/27/16 (Exam 3 date) This is a homework assignment. Please show your work for full credit. If you do work on separate paper, attach

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Boyle s law states the relationship between the pressure and the volume of a sample of gas.

Boyle s law states the relationship between the pressure and the volume of a sample of gas. The Ideal Gas Law Boyle s law states the relationship between the pressure and the volume of a sample of gas. Charles s law states the relationship between the volume and the absolute temperature of a

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C?

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? Learning Check q = c * m * ΔT How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? (c water =4.184 J/ C g, c iron =0.450 J/ C g) q Fe = 0.450

More information

3.2 Calorimetry and Enthalpy

3.2 Calorimetry and Enthalpy 3.2 Calorimetry and Enthalpy Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1 g of a substance by 1 C. The SI units for specific heat capacity

More information

To calculate heat (q) for a given temperature change: heat (q) = (specific heat) (mass) ( T) where T = T f T i

To calculate heat (q) for a given temperature change: heat (q) = (specific heat) (mass) ( T) where T = T f T i Use your textbook or other resources available to answer the following questions General Information: Thermochemistry Phase Change A change in the physical form/state but not a change in the chemical identity

More information

Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster

Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY. Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster Practice Midterm 1 CHEMISTRY 120 GENERAL CHEMISTRY Examiners: Prof. B. Siwick Prof. A. Mittermaier Prof. A. Fenster Name: INSTRUCTIONS (for the actual Midterm) 1. Enter your student number and name on

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

5/14/14. How can you measure the amount of heat released when a match burns?

5/14/14. How can you measure the amount of heat released when a match burns? CHEMISTRY & YOU Chapter 7 Thermochemistry How can you measure the amount of heat released when a match burns? 7. The Flow of Energy 7.3 Heat in Changes of State 7.4 Calculating Heats of Reaction Remember:

More information

Thermochemistry deals with the heat involved in chemical and physical changes. 2 H2(g) + O2(g) 2 H2O(g) + energy. Two types of energy

Thermochemistry deals with the heat involved in chemical and physical changes. 2 H2(g) + O2(g) 2 H2O(g) + energy. Two types of energy All course materials, including lectures, class notes, quizzes, exams, handouts, presentations, and other materials provided to students or this course are protected intellectual property. As such, the

More information

Gas Laws and Thermochemistry Review Packet

Gas Laws and Thermochemistry Review Packet Gas Laws and Thermochemistry Review Packet Introduction to Gas Laws Gas Laws Earlier in your science education you learned to describe the gas state as the state of matter with no definite shape, no definite

More information

CHEMISTRY CP Name: Period:

CHEMISTRY CP Name: Period: CHEMISTRY CP Name: Period: CHEMISTRY SPRING FINAL REVIEW SHEET NOTE: Below are concepts that we have covered in class throughout the second semester. Questions are organized by chapter/concept to help

More information

CHAPTER 13 Gases The Gas Laws

CHAPTER 13 Gases The Gas Laws CHAPTER 13 Gases 13.1 The Gas Laws The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. Gas particles do not attract or repel each other. Gas particles

More information

Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change

Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change Notepack 1 Section 11.1: The Flow of Energy Heat (Pages 293 299) 1. Define the following terms: a. Thermochemistry b. Energy

More information

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages Chapter 11 Thermochemistry 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages 293-94 The Flow of energy - heat Thermochemistry concerned with the heat changes that occur

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 Chapter 10 Thermochemistry Heat

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy of motion:

More information

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = mc T mol HCl m = 70.0 g c = 4.19 J/g C T = 9.8 C.4 C = 7.4 C mol HCl = 3.00 mol/ 0.000 = 0.0600 mol H = 70.0 g 4.19 J/g

More information

Chapter 5. The Gas Laws

Chapter 5. The Gas Laws Chapter 5 The Gas Laws 1 Pressure Force per unit area. Gas molecules fill container. Molecules move around and hit sides. Collisions are the force. Container has the area. Measured with a barometer. 2

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry

Name: Thermochemistry. Practice Test C. General Chemistry Honors Chemistry Name: Thermochemistry C Practice Test C General Chemistry Honors Chemistry 1 Objective 1: Use the relationship between mass, specific heat, and temperature change to calculate the heat flow during a chemical

More information

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY

AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY AP CHEMISTRY NOTES 4-1 THERMOCHEMISTRY: ENTHALPY AND ENTROPY Reaction Rate how fast a chemical reaction occurs Collision Theory In order for a chemical reaction to occur, the following conditions must

More information

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS

Name Date Class SECTION 16.1 PROPERTIES OF SOLUTIONS SOLUTIONS Practice Problems In your notebook, solve the following problems. SECTION 16.1 PROPERTIES OF SOLUTIONS 1. The solubility of CO 2 in water at 1.22 atm is 0.54 g/l. What is the solubility of carbon

More information

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics

10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics Chapter 10 Thermochemistry 10-1 Heat 10-2 Calorimetry 10-3 Enthalpy 10-4 Standard-State Enthalpies 10-5 Bond Enthalpies 10-6 The First Law of Thermodynamics OFB Chap. 10 1 OFB Chap. 10 2 Thermite Reaction

More information

Thermochemistry 14.notebook. November 24, Thermochemistry. Energy the capacity to do work or produce heat. translational.

Thermochemistry 14.notebook. November 24, Thermochemistry. Energy the capacity to do work or produce heat. translational. Thermochemistry Energy the capacity to do work or produce heat POTENTIAL ENERGY KINETIC ENERGY (energy of motion) "stored" bond energy TEMPERATURE and HEAT vibrational rotational translational a measure

More information

Thermochemistry Lecture

Thermochemistry Lecture Thermochemistry Lecture Jennifer Fang 1. Enthalpy 2. Entropy 3. Gibbs Free Energy 4. q 5. Hess Law 6. Laws of Thermodynamics ENTHALPY total energy in all its forms; made up of the kinetic energy of the

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry Gases Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry Click a hyperlink or folder tab to view the corresponding slides. Exit Section 13.1 The Gas Laws State the

More information

AP Questions: Thermodynamics

AP Questions: Thermodynamics AP Questions: Thermodynamics 1970 Consider the first ionization of sulfurous acid: H2SO3(aq) H + (aq) + HSO3 - (aq) Certain related thermodynamic data are provided below: H2SO3(aq) H + (aq) HSO3 - (aq)

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Let s begin with terms for you to master: Heat (q) Two systems with different temperatures that are in thermal contact will exchange thermal energy, the quantity of which

More information

Gilbert Kirss Foster. Chapter 9. Thermochemistry. Energy Changes in Chemical Reactions

Gilbert Kirss Foster. Chapter 9. Thermochemistry. Energy Changes in Chemical Reactions Gilbert Kirss Foster Chapter 9 Thermochemistry Energy Changes in Chemical Reactions Chapter Outline 9.1 Energy as a Reactant or Product 9.2 Transferring Heat and Doing Work 9.3 Enthalpy and Enthalpy Changes

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Practice Test: Energy and Rates of Reactions

Practice Test: Energy and Rates of Reactions Practice Test: Energy and Rates of Reactions NAME: /65 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (20 marks) 1. What is the symbol for

More information

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions System Definitions Heat Physical Science 20 Ms. Hayduk Heat Terminology System: the part of the universe being studied (big Earth, or small one atom) Surroundings: the part of the universe outside the

More information

Changes and Properties of Matter

Changes and Properties of Matter Changes and Properties of Matter Physical Properties of Matter Physical Changes: Changes that change only the appearance of a substance, not its chemical identity. Physical Properties: Properties that

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6. Thermochemistry 1 1. Terms to Know: thermodynamics thermochemistry energy kinetic energy potential energy heat heat vs. temperature work work of expanding gases work of expanding gases under

More information

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3

ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, , 13.3 ENERGY (THERMOCHEMISTRY) Ch 1.5, 6, 9.10, 11.5-11.7, 13.3 Thermochemistry Prediction and measurement of energy transfer, in the form of heat, that accompanies chemical and physical processes. Chemical

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Thermochemistry: Part of Thermodynamics

Thermochemistry: Part of Thermodynamics Thermochemistry: Part of Thermodynamics Dr. Vickie M. Williamson @vmwilliamson Student Version 1 Chemical Thermodynamics! Thermodynamics: study of the energy changes associated with physical and chemical

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013

Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Kwantlen Polytechnic University Chemistry 1105 S10 Spring Term Test No. 3 Thursday, April 4, 2013 Name: Student Number Instructions: Ensure that this exam contains all eight pages including this page.

More information

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10. Chapter 10 Gases 10.1 Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.1) Unlike liquids and solids, gases expand to fill their

More information

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 11 - Gas Laws Practice Problems Due Date Assignment On-Time (100) Late (70) 11.1 11.2 11.3 11.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located

More information

KEEP THIS SECTION!!!!!!!!!

KEEP THIS SECTION!!!!!!!!! KEEP THIS SECTION!!!!!!!!! CHEMISTRY 202 Hour Exam II (Multiple Choice Section) November 1, 2018 Dr. D. DeCoste Name Signature T.A. This exam contains 20 questions on 5 numbered pages. Check now to make

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

AP Problem Set 5: Due New Topics: Heat Transfer, Enthalpy, Hess s Law, Specific Heat, Calorimetry

AP Problem Set 5: Due New Topics: Heat Transfer, Enthalpy, Hess s Law, Specific Heat, Calorimetry AP Problem Set 5: Due New Topics: Heat Transfer, Enthalpy, Hess s Law, Specific Heat, Calorimetry Directions: Complete all assigned problems. Show your work for all problems, write in complete sentences

More information