Potentiometric measurement of ph

Size: px
Start display at page:

Download "Potentiometric measurement of ph"

Transcription

1 Potentiometric measurement of ph Determination of ph can be done by simple colorimetric methods using acid-base indicators (ph test strips). Nevertheless, the precision of such methods is mostly insufficient. For exact ph measurement, laboratories are equipped with ph meters with usual resolution of 0.01 ph units, high-end instruments with resolution of ph units. There is a ph meter with combined electrode (consisting of both the glass and the reference electrode) at your working place. Electrode must be kept moist using the storage solution. Remove the protective plastic cover with storage solution before using the electrode. Keep the storage solution inside the plastic cover, do not pour it out. At the end of your work, you have to place the electrode back into the cover with storage solution. Never touch the glass membrane of the electrode with your fingers! Electrodes should be rinsed between samples with distilled water. After rinsing, gently blot the electrode with cotton paper piece to remove excess water. Procedure: Into a clean small beaker, transfer the sample which ph you want to determine, by pouring from the small plastic bottle. Estimate the ph using universal indicator strip. Dip the electrode of the ph meter into the solution in the beaker, gently shake the content by slowly moving the beaker to make the membrane of the electrod be in contact with the solution. (Electrode is "dirty" with distilled water used for rinsing between samples.) After stabilization of the value, read the ph on a display. Put the sample back into the small plastic bottle. Sample ph estimated by indicator strip ph measured by ph meter 1

2 Demonstration of buffer functioning Buffers are solutions that maintain a relatively stable ph and resist changes in ph, upon addition of small amounts of acid or base. At your working place, there are two bottles with solutions to compare how they are resistant to changes in ph. One bottle contains unbuffered solution - deionized (ultrapure) water (in theory, ph=7), the other one contains phosphate buffer at ph close to 7. Unbuffered solution - water Using a graduated cylinder, measure 50 ml of deionized water, pour it into a clean beaker and determine the ph by ph meter. Record the value (measurement 1). Pour out the water from the beaker. Using the same graduated cylinder, measure again 50 ml of deionized water, pour it into the same beaker and determine the ph by ph meter (measurement 2). After the second measurement, do not remove the combined electrode from the beaker, let it dipped there. By pipetting add 100 μl of HCl solution (c=0.1 mol/l) into the solution in the beaker and gently mix the content. After stabilization of the value record the ph. ph of deionized water measurement 1 measurement 2 ph after addition of HCl Describe how stable is the ph of an unbuffered solution: Buffer Using a graduated cylinder, measure 50 ml of phosphate buffer, pour it into a clean beaker and determine the ph by ph meter. Record the value (measurement 1). Pour out the buffer from the beaker. Using the same graduated cylinder, measure again 50 ml of phosphate buffer, pour it into the same beaker and determine the ph by ph meter (measurement 2). After the second measurement, do not remove the combined electrode from the beaker, let it dipped there. By pipetting add 100 μl of HCl solution (c=0.1 mol/l) into the solution in the beaker and gently mix the content. After stabilization of the value record the ph. ph of the buffer measurement 1 measurement 2 ph after addition of HCl Describe how stable is the ph of a buffer solution: Describe the differences between the behaviour of the buffer solution, and the pure water, upon the addition of a small amount of a strong acid: 2

3 Determination of concentration by potentiometric titration Potentiometric titration is a volumetric method in which the potential between two electrodes is measured as a function of the added reagent volume. In potentiometric titrations, there is no need for indicator. The titration is not stopped at the equivalence point, the whole titration curve is constructed instead. Volume of the standard reagent consumed to reach the equivalence point is found by analysis of the titration curve. A titration curve has a characteristic sigmoid shape. The part of the curve that has the maximum change marks the equivalence point of the titration. You will be performing two potentiometric titrations to determine the unknown concentrations of two acids. In order to perform these titrations you will utilize a ph meter. 1) Strong acid: hydrochloric acid (HCl) 2) Weak acid: acetic acid (CH 3 COOH) 1) Titration of a strong acid, graphical analysis of the titration curve Procedure: Into a clean small beaker, using a glass pipette measure exactly 10.0 ml of the sample (strong acid HCl) which concentration you want to determine. Add a small stirring bar (little white corpuscle similar to Tic Tac mints) into the beaker. Close the burette tap, and fill the burette with the standard solution of NaOH (c=0.100 mol/l) until the meniscus is about 1-2 cm above the zero mark. Remove the funnel. Open the tap and allow the solution to drain (into the waste bottle) until the meniscus falls to zero mark. Fill the burette with the standard solution. The burette is ready for the titration. Set up the apparatus so that you can perform the potentiomeric titration. Place the beaker with the sample on a magnetic stirrer. Dip the electrode of the ph meter into the solution in the beaker. If the electrode is not sufficiently submerged, add a little of distilled water. Place the burette so that the orifice is slightly above the beaker and is possible to use it for adding standard solution to the sample. Switch on the stirring (not heating!) and adjust the speed of it to optimal (not extremely fast to prevent damage of the electrode). Before adding any NaOH from the burette, record the initial ph on the display of the ph meter. Put the data into the table further in this instruction sheet. You are now ready to begin the titration. You will be adding NaOH solution in increments 0.5 ml until 10.0 ml. After every addition of NAOH, record the ph. Be sure that the ph has stabilized! There is a delay between the addition of NaOH and a stable ph reading. There is a computer in the students' laboratory with a MS Excel file prepared to put the collected data and plot the graph (titration curve). Print the filled MS Excel form. Use a graphical method to find out the equivalence point. Two parallel lines are drawn tangent to the flat portions of the curve. A line perpendicular to both the upper and the lower tangent is drawn to help you find the middle between them so that you can plot the third parallel line exactly in the middle. The point where this middle parallel crosses the titration curve is the equivalence point. 3

4 Potentiometric titration of a strong acid (HCl) data sheet Added NaOH volume (ml) ph HCl Consumption of NaOH read from titration curve: Calculation: (M = 36.5 g/mol) Molar (substance) concentration c = mmol/l Mass concentration = g/l 4

5 1) Titration of a weak acid, graphical + methematical analysis of the titration curve Procedure: (the same as for strong acid) Into a clean small beaker, using a glass pipette measure exactly 10.0 ml of the sample (weak acid CH 3 COOH) which concentration you want to determine. Add a small stirring bar (little white corpuscle similar to Tic Tac mints) into the beaker. Close the burette tap, and fill the burette with the standard solution of NaOH (c=0.100 mol/l) until the meniscus is about 1-2 cm above the zero mark. Remove the funnel. Open the tap and allow the solution to drain (into the waste bottle) until the meniscus falls to zero mark. Fill the burette with the standard solution. The burette is ready for the titration. Set up the apparatus so that you can perform the potentiomeric titration. Place the beaker with the sample on a magnetic stirrer. Dip the electrode of the ph meter into the solution in the beaker. If the electrode is not sufficiently submerged, add a little of distilled water. Place the burette so that the orifice is slightly above the beaker and is possible to use it for adding standard solution to the sample. Switch on the stirring (not heating!) and adjust the speed of it to optimal (not extremely fast to prevent damage of the electrode). Before adding any NaOH from the burette, record the initial ph on the display of the ph meter. Put the data into the table further in this instruction sheet. You are now ready to begin the titration. You will be adding NaOH solution in increments 0.5 ml until 10.0 ml. After every addition of NAOH, record the ph. Be sure that the ph has stabilized! There is a delay between the addition of NaOH and a stable ph reading. There is a computer in the students' laboratory with a MS Excel file prepared to put the collected data and plot the graph (titration curve). Print the filled MS Excel form. Use both, a graphical method and mathematical analysis to find out the equivalence point. Mathematical analysis of the titration curve Consumption of the standard reagent in equivalence point (V) can be calculated using the formula: 2 Δ ph V V 2 2 Δ ph Δ ph ΔV V + "added NaOH volume" at last positive 2 ph 2 ph + the last positive 2 ph 2 ph - V absolute value of the first negative 2 ph the difference in "added NaOH volume" between the last positive and the first negative 2 ph (In our experiment, it must always be 0.5 ml.) 5

6 Potentiometric titration of a weak acid (CH 3 COOH) data sheet Added NaOH volume (ml) 0.0 ph ph 2 ph ph = ph x+1 - ph x 2 ph = ph x+1 - ph x 6

7 CH 3 COOH Consumption of NaOH read by graphical method from a titration curve: Consumption of NaOH calculated: Calculation: (M = 60.0 g/mol) Molar (substance) concentration c = mmol/l Mass concentration = g/l 7

8 Determination of the isoelectric point of the amino acid Added NaOH volume (ml) ph Added NaOH volume (ml) ph Calculation of pi: 8

# 12 ph-titration of Strong Acids with Strong Bases

# 12 ph-titration of Strong Acids with Strong Bases # 12 ph-titration of Strong Acids with Strong Bases Purpose: A strong acid solution is titrated with a strong base solution. A titration curve is then used to determine the endpoint and find the concentration

More information

#13 ph-titration of Weak Acids with Strong Bases

#13 ph-titration of Weak Acids with Strong Bases #13 ph-titration of Weak Acids with Strong Bases Purpose: A weak acid solution is titrated with a strong base solution. A titration curve is then used to identify the unknown acid and to find its concentration.

More information

Chemistry with Mr. Faucher. Acid-Base Titration

Chemistry with Mr. Faucher. Acid-Base Titration Chemistry with Mr. Faucher Name Date Acid-Base Titration 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment,

More information

Acid-Base Titration. Evaluation copy

Acid-Base Titration. Evaluation copy Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Chemical Kinetics. Reaction rate and activation energy of the acid hydrolysis of ethyl acetate LEC 05. What you need: What you can learn about

Chemical Kinetics. Reaction rate and activation energy of the acid hydrolysis of ethyl acetate LEC 05. What you need: What you can learn about LEC 05 Chemical Kinetics Reaction rate and activation energy of the acid hydrolysis What you can learn about Reaction rate Rate law for first and second order reactions Reactions with pseudo-order Arrhenius

More information

6 Acid Base Titration

6 Acid Base Titration E x p e r i m e n t Acid Base Titration Experiment : http://genchemlab.wordpress.com/-titration/ objectives To understand the concept of titration. To explain the difference between the analyte and standard

More information

Determination of the K a Value and Molar Mass of an Unknown Weak Acid

Determination of the K a Value and Molar Mass of an Unknown Weak Acid 10 Determination of the K a Value and Molar Mass of an Unknown Weak Acid Introduction In this experiment you will titrate a monoprotic weak acid with a strong base, and measure the titration curve with

More information

Titration with an Acid and a Base

Titration with an Acid and a Base Skills Practice Titration with an Acid and a Base Titration is a process in which you determine the concentration of a solution by measuring what volume of that solution is needed to react completely with

More information

Titration of a strong acid with a strong base with Cobra4

Titration of a strong acid with a strong base with Cobra4 Titration of a strong acid with a strong base with Cobra4 TEC Related topics Strong and weak acids and bases, ph value, titration curves, equivalence point, potentiometry. Principle Hydrochloric acid is

More information

INTRODUCTION TO ACIDS, BASES AND TITRATION

INTRODUCTION TO ACIDS, BASES AND TITRATION Experiment INTRODUCTION TO ACIDS, BASES AND TITRATION The CCLI Initiative Computers in chemistry Laboratory Instruction LEARNING OBJECTIVES The objectives of this experiment are to... introduce the nature

More information

Experiment 8 Introduction to Volumetric Techniques I. Objectives

Experiment 8 Introduction to Volumetric Techniques I. Objectives Experiment 8 Introduction to Volumetric Techniques I Objectives 1. To learn the proper technique to use a volumetric pipette. 2. To learn the proper technique to use a volumetric flask. 3. To prepare a

More information

Acid-Base Titration Curves Using a ph Meter

Acid-Base Titration Curves Using a ph Meter Acid-Base Titration Curves Using a ph Meter Introduction: In this experiment you will use a ph sensor to collect volume and ph data as you titrate two acids with sodium hydroxide. You will obtain titration

More information

Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements

Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements Experiment 6 Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that

More information

Titration 2: CH 3 COOH Titrated with NaOH

Titration 2: CH 3 COOH Titrated with NaOH Titration 2: CH 3 COOH Titrated with NaOH Titration 1: Acid is CH 3 COOH, phenolphthalein as the indicator 1. Obtain about 60 ml of the standardized ( 0.1 M) NaOH solution. CAUTION: Sodium hydroxide solution

More information

Volumetric Measurement Techniques. Technique #1 Use of a Burette. Technique #2 Use of a Pipette. Technique #3 Use of a Volumetric Flask

Volumetric Measurement Techniques. Technique #1 Use of a Burette. Technique #2 Use of a Pipette. Technique #3 Use of a Volumetric Flask Volumetric Measurement Techniques Technique #1 Use of a Burette Technique #2 Use of a Pipette Technique #3 Use of a Volumetric Flask Technique #4 Use of a Bottle-Top Dispenser Last updated 12/6/2009 5:46

More information

ph Titration of H 3 PO 4 Mixtures Calculation of K 1, K 2, and K 3

ph Titration of H 3 PO 4 Mixtures Calculation of K 1, K 2, and K 3 ph Titration of H 3 PO 4 Mixtures Calculation of K 1, K 2, and K 3 Purpose In this experiment the titration of pure H 3 PO 4 and H 3 PO 4 with HCl or NaH 2 PO 4 is followed by measuring the ph of the solution

More information

12.01 Determination of the isoelectric point of an amino acid (glycine)

12.01 Determination of the isoelectric point of an amino acid (glycine) Biochemistry LEB 12 Determination of the isoelectric point of an amino acid (glycine) What you can learn about Isoelectric point Acidic anions Basic cations Zwitterions Equivalence (inflection) points

More information

O H 3 O 1 1 A. O 1 1 OH (K w

O H 3 O 1 1 A. O 1 1 OH (K w CHAPTER 8 Acid Base Titration Curves Objectives The objectives of this experiment are to: Understand the titration curves for the following solutions: a strong acid: hydrochloric acid, HCl. a weak acid:

More information

Chemical Reactions: Titrations

Chemical Reactions: Titrations 1 Chemical Reactions: Titrations ORGANIZATION Mode: laboratory work, work in pairs Grading: lab notes, lab performance (titration accuracy), and post-lab report Safety: goggles, lab coat, closed-toe shoes,

More information

Titration 3: NH 3 Titrated with HCl

Titration 3: NH 3 Titrated with HCl Titration 3: NH 3 Titrated with HCl Titration 1: Base is NH 3, Brom Blue in the indicator 1. Obtain about 60 ml of the standardized ( 0.1 M) HCl solution. CAUTION: Avoid spilling it on your skin or clothing.

More information

Acid-Base Titration. Sample

Acid-Base Titration. Sample Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Eye on Ions: Electrical Conductivity of Aqueous Solutions

Eye on Ions: Electrical Conductivity of Aqueous Solutions Eye on Ions: Electrical Conductivity of Aqueous Solutions Pre-lab Assignment: Reading: 1. Chapter sections 4.1, 4.3, 4.5 and 4.6 in your course text. 2. This lab handout. Questions: 1. Using table 1 in

More information

Determination of the Equivalent Weight and the K a or K b for a Weak Acid or Base

Determination of the Equivalent Weight and the K a or K b for a Weak Acid or Base INTRODUCTION Determination of the Equivalent Weight and the K a or K b for a Weak Acid or Base Chemists frequently make use of the equivalent weight (eq. wt.) as the basis for volumetric calculations.

More information

Experiment #7. Titration of Vinegar

Experiment #7. Titration of Vinegar Experiment #7. Titration of Vinegar Goals 1. To determine the mass percent of acetic acid in a solution via titration. 2. To master the technique of titration. Introduction Vinegar is a common household

More information

Laboratory Exercises in Medical Chemistry II

Laboratory Exercises in Medical Chemistry II Laboratory Exercises in Medical Chemistry II 1 st year, General Medicine Faculty of Medicine in Pilsen Charles University Name: Confirmation of the attendance at the labs Study group: Date: (stamp, tutor's

More information

Acid-Base Titration. Volume NaOH (ml) Figure 1

Acid-Base Titration. Volume NaOH (ml) Figure 1 LabQuest 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment, you will titrate hydrochloric acid solution,

More information

Lab 3: The titration of amino acids

Lab 3: The titration of amino acids Chemistry 123 Objective: Lab 3: The titration of amino acids Introduction: Alpha amino acids are the building blocks of proteins. Almost all proteins consist of various combinations of the same 20 amino

More information

PRACTICAL 3 ph AND BUFFERS

PRACTICAL 3 ph AND BUFFERS PRACTICAL 3 ph AND BUFFERS ph and Buffers Structure 3.1 Introduction 3.2 ph and Buffers: Basic Concept 3.2.1 ph 3.2.2 Buffers and Buffer Solutions 3.3 Methods for Determining ph Experiment 1: Measurement

More information

EXPERIMENT 6. Properties of Buffers INTRODUCTION

EXPERIMENT 6. Properties of Buffers INTRODUCTION EXPERIMENT 6 Properties of Buffers INTRODUCTION A chemical buffer is any substance in a solution that tends to stabilize the hydronium ion concentration by neutralizing any added acid or base. Buffers

More information

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers Pre-Laboratory Assignments Reading: Textbook Chapter 16 Chapter 17:1-3 This Laboratory Handout Pre-Laboratory Assignments: Complete

More information

Electrochemistry LEC Potentiometric ph titration (phosphoric acid in a soft drink) What you need: What you can learn about

Electrochemistry LEC Potentiometric ph titration (phosphoric acid in a soft drink) What you need: What you can learn about Electrochemistry LEC 06 What you can learn about Galvanic cell Types of electrodes Nernst equation Potentiometry Principle and tasks The cell voltage and the Galvani voltage of the electrodes of an galvanic

More information

Using Conductivity to Find an Equivalence Point

Using Conductivity to Find an Equivalence Point Experiment 25 PRE LAB DISCUSSION In this experiment, you will monitor conductivity during the reaction between sulfuric acid, and barium hydroxide in order to determine the equivalence point. From this

More information

Chem(Bio) Week 6 Expt F: Amino Acid pka from potentiometry. Identification of an Amino Acid through Potentiometric Titration

Chem(Bio) Week 6 Expt F: Amino Acid pka from potentiometry. Identification of an Amino Acid through Potentiometric Titration Objectives: Identification of an Amino Acid through Potentiometric Titration Keywords: Amino acid, zwitterions, enderson asselbach, pka, p arry out rough and then an accurate potentiometric titration of

More information

TEC. Titration curves and buffering capacity with Cobra4

TEC. Titration curves and buffering capacity with Cobra4 Related concept Strong and weak electrolytes, hydrolysis, dissociation of water, amphoteric electrolytes, isoelectric point, law of mass action, indicators, glass electrode, activity coefficient, buffering

More information

Acid-Base Titration. Computer OBJECTIVES

Acid-Base Titration. Computer OBJECTIVES Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Chemistry Potentiometric Titration of a Chloride-Iodide Mixture

Chemistry Potentiometric Titration of a Chloride-Iodide Mixture Chemistry 3200 Silver iodide, AgI, is much less soluble than AgCl. The solubility products of the two salts are 9.8 x 10 17 and 1.78 x 10 10, respectively. Therefore, if a mixture of I and Cl is titrated

More information

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Safety Note: Safety glasses and laboratory coats are required when performing this experiment The Determination of Hypochlorite in Bleach Reading assignment: Burdge, Chemistry 4 th edition, section 4.6. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions Partner: Alisa 1 March 2012 Preparation and Properties of Buffer Solutions Purpose: The purpose of this experiment is to compare the ph effect on buffered and non-buffered solutions as well as making a

More information

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION Purpose: Determine molarity of a solution of unknown concentration by performing acid-base titrations Performance Goals: Apply the concepts

More information

Titration of Acetic Acid in Vinegar Minneapolis Community and Technical College v.9.17

Titration of Acetic Acid in Vinegar Minneapolis Community and Technical College v.9.17 Titration of Acetic Acid in Vinegar Minneapolis Community and Technical College v.9.17 Objective: To practice the correct use of the burette, volumetric pipette, and volumetric flask in analytical titrations.

More information

Percentage of Acetic Acid in Vinegar

Percentage of Acetic Acid in Vinegar Microscale Percentage of Acetic Acid in Vinegar When sweet apple cider is fermented in the absence of oxygen, the product is an acid, vinegar. Most commercial vinegars are made by fermentation, but some,

More information

POGIL LAB EXERCISE 15 HOW DO YOU STANDARDIZE AN ACID AND BASE?

POGIL LAB EXERCISE 15 HOW DO YOU STANDARDIZE AN ACID AND BASE? POGIL LAB EXERCISE 15 HOW DO YOU STANDARDIZE AN ACID AND BASE? POGIL LAB 15 Page 1 of 10 Each member should assume his or her role at this time. The new manager takes charge of the POGIL folder and hands

More information

CHM111 Lab Titration of Vinegar Grading Rubric

CHM111 Lab Titration of Vinegar Grading Rubric Name Team Name CHM111 Lab Titration of Vinegar Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal

More information

Experimental Procedure

Experimental Procedure Experimental Procedure Overview The ph meter is used in conjunction with a titration apparatus and a standardized sodium hydroxide solution to determine the molar concentration of a weak acid solution

More information

Experiment 7 Buffer Capacity & Buffer Preparation

Experiment 7 Buffer Capacity & Buffer Preparation Chem 1B Dr. White 57 Experiment 7 Buffer Capacity & Buffer Preparation Objectives To learn how to choose a suitable conjugate acid- base pair for making a buffer of a given ph To gain experience in using

More information

PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION INDUSTRIAL COATINGS CS59 PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION is a chromium-free concentrate for use as a final rinse after phosphate with CHEMFOS iron or zinc

More information

Volumetric analysis involving acids and alkalis

Volumetric analysis involving acids and alkalis Chapter 19 Volumetric analysis involving acids and alkalis 19.1 Standard solutions 19.2 Acid-alkali titrations 19.3 Calculations on volumetric analysis 19.4 Writing a laboratory report on volumetric analysis

More information

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry.

Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry. Conductometric titration with Cobra4 TEC Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry. Principle The electric conductivity

More information

Lab #3 ph and Buffers

Lab #3 ph and Buffers Page1 Lab #3 ph and Objectives: Learn to construct a proper data table and line graph Understand how the ph scale works Use a ph meter to measure the ph of common household substances Understand the meaning

More information

CHEM Experiment 6

CHEM Experiment 6 CHEM 1515.001-006 Name Exam I John I. Gelder TA's Name Week of March 25, 2002 Section Experiment #6 Acid and Base Classifications Problem Statement: What are the characteristics of acid and base solutions?

More information

Experiment 3: Acids, Bases, and Buffers

Experiment 3: Acids, Bases, and Buffers Experiment 3: Acids, Bases, and Buffers Reading: Chemistry the Central Science, Chapter 16.1-16.7 Introduction: The reaction of an acid and a base is a neutralization reaction. The technique of accurately

More information

Acid-Base Titration Curves Using a ph Meter

Acid-Base Titration Curves Using a ph Meter Acid-Base Titration Curves Using a ph Meter Introduction: In this experiment you will use a ph sensor to collect volume and ph data as you titrate two acids with sodium hydroxide. You will obtain titration

More information

Identification Of The Common Laboratory Glassware, Pipettes And Equipment. BCH 312 [Practical]

Identification Of The Common Laboratory Glassware, Pipettes And Equipment. BCH 312 [Practical] Identification Of The Common Laboratory Glassware, Pipettes And Equipment BCH 312 [Practical] (1) Identification of the common laboratory glassware : Conical flasks and beakers: Graduated cylinders Volumetric

More information

Experiment #10: Analysis of Antacids

Experiment #10: Analysis of Antacids Experiment #10: Analysis of Antacids Purpose: In this experiment you will prepare one solution that is approximately 0.1 M NaOH. Then you will standardize this solution, which means that you will experimentally

More information

Acid-Base Titration. M M V a

Acid-Base Titration. M M V a Acid-Base Titration Pre-Lab Discussion In the chemistry laboratory, it is sometimes necessary to experimentally determine the concentration of an acid solution or a base solution. A procedure for making

More information

ph Measurement and its Applications

ph Measurement and its Applications ph Measurement and its Applications Objectives: To measure the ph of various solutions using indicators and ph meters. To perform a ph titration. To create and study buffer solutions. To determine the

More information

GETTING THE END POINT TO APPROXIMATE. Two hours

GETTING THE END POINT TO APPROXIMATE. Two hours Chem 1312 Handout Experiment ONE Laboratory Time Required Special Equipment and Supplies Objective Safety First Aid GETTING THE END POINT TO APPROXIMATE THE EQUIVALENCE POINT Two hours Balance Potassium

More information

Potentiometric Determination of the pka and the Equivalent Weight of a Weak Acid

Potentiometric Determination of the pka and the Equivalent Weight of a Weak Acid Potentiometric Determination of the pka and the Equivalent Weight of a Weak Acid Introduction In this experiment you will use a ph meter to follow changes in H + concentration during a titration. The laboratory

More information

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

Standardizing a Solution of Sodium Hydroxide. Evaluation copy Standardizing a Solution of Sodium Hydroxide Computer 6 It is often necessary to test a solution of unknown concentration with a solution of a known, precise concentration. The process of determining the

More information

Chloride, HR, Direct Measurement ISE Method Method g/l to 35 g/l Cl Powder Pillow ISA

Chloride, HR, Direct Measurement ISE Method Method g/l to 35 g/l Cl Powder Pillow ISA , 10255 DOC316.53.01322 Direct Measurement ISE Method Method 10255 3.55 g/l to 35 g/l Cl Powder Pillow ISA Scope and Application: For the determination of high concentrations (1 M) of chloride in brine

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

Experimental Procedure. Lab 406

Experimental Procedure. Lab 406 Experimental Procedure Lab 406 Overview A large number of qualitative tests and observations are performed. The effects that concentration changes and temperature changes have on a system at equilibrium

More information

Experiment 20: Analysis of Vinegar. Materials:

Experiment 20: Analysis of Vinegar. Materials: Experiment 20: Analysis of Vinegar Materials: graduated cylinder 6 M NaOH: Dilute Sodium Hydroxide 1000 ml Florence Flask & stopper KHC 8 H 4 O 4 : Potassium Hydrogen Phthalate (KHP) 125 ml Erlenmeyer

More information

Titrations Worksheet and Lab

Titrations Worksheet and Lab Titrations Worksheet and Lab Vocabulary 1. Buret: a piece of glassware used for dispensing accurate volumes, generally reads to two places of decimal. 2. Titrant: the substance of known concentration added

More information

To measure ph s in a variety of solutions and mixtures and to account for the results obtained.

To measure ph s in a variety of solutions and mixtures and to account for the results obtained. Acid-Base Studies PURPOSE To measure ph s in a variety of solutions and mixtures and to account for the results obtained. GOALS 1 To learn to use ph paper and a ph meter to measure the ph of a given solution.

More information

iworx Sample Lab Experiment GB-2: Membrane Permeability

iworx Sample Lab Experiment GB-2: Membrane Permeability Experiment GB-2: Membrane Permeability Exercise 1: Movement of Small Positive Ions Across a Membrane Aim: To determine if small, positively charged, hydrogen ions can move across a membrane from a region

More information

THE RACI TITRATION STAKES 2018

THE RACI TITRATION STAKES 2018 THE ROYAL AUSTRALIAN CHEMICAL INSTITUTE INCORPORATED THE RACI TITRATION STAKES 08 INSTRUCTIONS FOR TEAM MEMBERS THE CHALLENGE Vinegar is used to prepare many different kinds of sauces. The main constituent

More information

Prince George s Community College PL 2: CHARACTERIZATION OF A MONOPROTIC WEAK ACID BY POTENTIOMETRIC TITRATION

Prince George s Community College PL 2: CHARACTERIZATION OF A MONOPROTIC WEAK ACID BY POTENTIOMETRIC TITRATION Prince George s Community College Name Section Partner(s) Date PL 2: CHARACTERIZATION OF A MONOPROTIC WEAK ACID BY POTENTIOMETRIC TITRATION PRE-LAB QUERIES 1. Complete the neutralization reactions given

More information

TRATION: ANALYSIS OF VINE

TRATION: ANALYSIS OF VINE Experiment 10 Name: 22 Ti TRATION: ANALYSIS OF VINE 31 Ga R In this experiment, you will learn the concept and technique of titration. You will determine the concentration of acetic acid in commercial

More information

Final Concentration 0 excess 0.1 M 0.1 M

Final Concentration 0 excess 0.1 M 0.1 M PURPOSE: 1. To estimate the Acid-Ionization Constant (Ka) for acetic acid by conductivity testing comparisons. 2. To become familiar with the ph meter and ph measurements. 3. To determine the Acid-Ionization

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

Conductometric Titration & Gravimetric Determination of a Precipitate

Conductometric Titration & Gravimetric Determination of a Precipitate Conductometric Titration & Gravimetric Determination of a Precipitate Experiment 9 In this experiment, you will monitor conductivity during the reaction between sulfuric acid, H2SO4, and barium hydroxide,

More information

Acid-Base Titration Acetic Acid Content of Vinegar

Acid-Base Titration Acetic Acid Content of Vinegar Acid-Base Titration Acetic Acid Content of Vinegar Prelab Assignment Read the entire lab. Write an objective and any hazards associated with this lab in your laboratory notebook. On a separate sheet of

More information

ph and Titrations Lesson Created by: Length of lesson: Description of the class: Name of course: Grade level: Honors or regular:

ph and Titrations Lesson Created by: Length of lesson: Description of the class: Name of course: Grade level: Honors or regular: and Titrations Lesson Created by: Lauryn Atwood Length of lesson: 1 week Description of the class: Heterogeneous Name of course: Chemistry Grade level: 10-12 Honors or regular: Regular Source of the lesson:

More information

K a Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13

K a Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13 K a Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13 I. Introduction Acetic Acid Monoprotic acetic acid, CH 3 COOH is sometimes written as

More information

Experiment 32C APPLICATIONS OF ACID-BASE EQUILIBRIA

Experiment 32C APPLICATIONS OF ACID-BASE EQUILIBRIA Experiment 32C APPLICATIONS OF ACID-BASE EQUILIBRIA FV 23Feb18 MATERIALS: 50 ml buret (2), 25 ml graduated cylinder (2), 50 ml beaker (2), 150 ml beaker (2), small plastic vials (6), stirring rods (2),

More information

Laboratory Exercises in Medical Chemistry III

Laboratory Exercises in Medical Chemistry III Laboratory Exercises in Medical Chemistry III 1 st year, General Medicine Faculty of Medicine in Pilsen Charles University Name: Confirmation of the attendance at the labs Study group: Date: (stamp, tutor's

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases PURPOSE To investigate the resulting ph s of different mixtures of acid and base solutions. GOALS To calculate the ph of pure acid and base solutions. To calculate the ph of

More information

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Functional Genomics Research Stream Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Agenda Lab Work: Last Week New Equipment Solution Preparation: Fundamentals Solution Preparation: How

More information

CHM 152 updated May 2011 Lab 8: Titration curve of a Weak Acid

CHM 152 updated May 2011 Lab 8: Titration curve of a Weak Acid CHM 152 updated May 2011 Lab 8: Titration curve of a Weak Acid Introduction A titration curve plots the ph of a solution as a second solution (the titrant) is slowly added, usually via a burette. Titration

More information

TITRATION STAKES 2018 INSTRUCTIONS TO TEAM MEMBERS

TITRATION STAKES 2018 INSTRUCTIONS TO TEAM MEMBERS THE ROYAL AUSTRALIAN CHEMICAL INSTITUTE INCORPORATED TITRATION STAKES 2018 INSTRUCTIONS TO TEAM MEMBERS (A copy of these instructions is to be given to every participant before commencement of the competition.

More information

#12. Acids and Bases.

#12. Acids and Bases. #12. Acids and Bases. Goals: To determine the ph of common substances and observe buffer behavior. Background Acids and bases are very common in chemistry and biology. Understanding acids and bases is

More information

Australian National Titration Competition. Basics of Titration

Australian National Titration Competition. Basics of Titration Basics of Titration prepared by Elaine Bergmann on behalf of the Chemical Education Group of the Royal Australian Chemical Institute, Queensland Branch Contents: 1 Basic Theory of Acid-Base Titration 2

More information

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems Name: Date: AP Chemistry Titrations - Volumetric Analysis Term Volumetric analysis Burette Pipette titrate titre aliquot end point equivalence point indicator primary standard standardisation secondary

More information

H + [ ] [ ] H + NH 3 NH 4. = poh + log HB +

H + [ ] [ ] H + NH 3 NH 4. = poh + log HB + Titration Lab: Determination of a pk a for an Acid and for a Base Theory A Brønsted-Lowry acid is a substance that ionizes in solution (usually aqueous, but it doesn t have to be, ammonia is often used

More information

Experiment 2: Reaction Stoichiometry by Thermometric Titration

Experiment 2: Reaction Stoichiometry by Thermometric Titration Experiment 2: Reaction Stoichiometry by Thermometric Titration Introduction The net result of a reaction (a chemical change) is summarized by a chemical equation. In order to write a chemical equation,

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory Calibration of Volumetric Glassware Introduction Volumetric glassware is a class of glass vessels that are calibrated to contain or deliver certain volumes of substances. Graduated cylinders, pipettes

More information

This lab will be conducted in groups but the lab report must be completed and submitted individually.

This lab will be conducted in groups but the lab report must be completed and submitted individually. CHM 106 Potentiometric Titration of Phosphoric Acid BACKGROUND Potentiometric titrations are a useful method of determining unknown concentrations in many different types of chemical systems. They may

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

NCEA Chemistry 2.1 Quantitative Analysis AS 91161

NCEA Chemistry 2.1 Quantitative Analysis AS 91161 NCEA Chemistry 2.1 Quantitative Analysis AS 91161 What is this NCEA Achievement Standard? When a student achieves a standard, they gain a number of credits. Students must achieve a certain number of credits

More information

Titration of HCl with Sodium Hydroxide

Titration of HCl with Sodium Hydroxide Titration of HCl with Sodium Hydroxide Lab Report for the Subject of Advanced Chemistry Anon Durongpisitkul, Karis Katekovit, Varun Saketharam,Thanon Thamvorapol, Chanon Anektanasup- January 28, 2017 1

More information

Reaction Stoichiometry

Reaction Stoichiometry Reaction Stoichiometry PURPOSE To determine the stoichiometry of acid-base reactions by measuring temperature changes which accompany them. GOALS To learn to use the MicroLab Interface. To practice generating

More information

Chapter 9. Volumetric Analysis

Chapter 9. Volumetric Analysis Chapter 9 Volumetric Analysis The terms volumetric analysis, titrimetry and titration are used interchangeably to describe a procedure which analyses chemicals in solution by accurate volume measurement.

More information

Ka Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16

Ka Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 Ka Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 I. Introduction Monoprotic acetic acid, CH 3 COOH is sometimes written as HCH 3 COO, HC

More information

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate In this experiment you, as a class, will determine the solubility of sodium tetraborate decahydrate (Na 2 B 4 O 7 10 H 2 O or Na 2 [B

More information

Titration of Acids and Bases

Titration of Acids and Bases Exercise 3 Page 1 Illinois Central College CHEMISTRY 132 Titration of Acids and Bases Name: Equipment 1-25 ml burette 1-pH electrode 1-50 and 1-150 ml beaker 1-stir plate and stir bar 1-Vernier Interface

More information

11 Understanding the Importance of Buffers in Biological

11 Understanding the Importance of Buffers in Biological 11 Understanding the Importance of Buffers in Biological Systems 11.1 Learning Objectives You should be aware that buffers play a critical role in almost all biochemical systems. Biochemical experiments

More information

As always, start with a fresh right-hand page, and write the title and purpose of lab 3. Include also your name, your lab partner s name and the date.

As always, start with a fresh right-hand page, and write the title and purpose of lab 3. Include also your name, your lab partner s name and the date. As always, start with a fresh right-hand page, and write the title and purpose of lab 3. Include also your name, your lab partner s name and the date. You may cut and paste the Skills through Procedure

More information

EXPERIMENT 9 SALTWATER CONDUCTANCE: The Effect of Concentration

EXPERIMENT 9 SALTWATER CONDUCTANCE: The Effect of Concentration EXPERIMENT 9 SALTWATER CONDUCTANCE: The Effect of Concentration Introduction According to the Theory of Ionization proposed by S. Arrhenius, about 1880, ionic compounds dissolve in water forming cations

More information