Chap 24. Transition Metals and Coordination Compounds. Hsu Fu-Yin

Size: px
Start display at page:

Download "Chap 24. Transition Metals and Coordination Compounds. Hsu Fu-Yin"

Transcription

1 Chap 24. Transition Metals and Coordination Compounds Hsu Fu-Yin

2 Gemstones Rubies are deep red and emeralds are brilliant green, yet the color of both gemstones is caused by the same ion Cr 3+ ions. Rubies are crystals of aluminum oxide (Al 2 O 3 ) in which about 1% of the Al 3+ ions are replaced by Cr 3+ ions. Emeralds are crystals of beryllium aluminum silicate [Be 3 Al 2 (SiO 3 ) 6 ] in which a similar percentage of the Al 3+ ions are replaced by Cr 3+. Ruby Emerald

3 Transition Metals

4 24.2 Properties of Transition Metals - Electron Configurations

5 Properties and Electron Configuration of Transition Metals The properties of the transition metals are similar to each other. And very different from the properties of the main group metals High melting points, high densities, moderate to very hard, and very good electrical conductors The similarities in properties come from similarities in valence electron configuration; they generally have two valence electrons.

6 TABLE 24.1 First-Row Transition Metal Orbital Occupancy

7 EXAMPLE 24.1 Writing Electron Configurations for Transition Metals Write the ground state electron configuration for Zr.

8 FIGURE 24.1 Trends in Atomic Radius Mo W Cr The atomic radius of Mo is larger than that of Cr Atomic radius of W is the same as that of Mo Why? 18 electrons are added in progressing from Cr to Mo, and all of them enter s, p, and d subshells. Between Mo and W, however, 32 electrons must be added, and 14 of them enter the 4f subshell. In the series of elements in which 4f the subshell is filled, atomic radii decrease. EX: This phenomenon occurs in the lanthanide series ( Z=58 to 71) and is called the lanthanide contraction.

9 24.2 Properties of Transition Metals - Ionization Energy The first Ionization Energy of the transition metals slowly increases across a series. The first Ionization Energy of the third transition series is generally higher than the first and second series Indicating the valence electrons are held more tightly Trend opposite to main group elements

10 24.2 Properties of Transition Metals - Electronegativity The electronegativity of the transition metals slowly increases across a series. Except for last element in the series Electronegativity slightly increases between first and second series, but the third transition series atoms are about the same as the second. Trend opposite to main group elements

11 24.2 Properties of Transition Metals - Oxidation States Unlike main group metals, transition metals often exhibit multiple oxidation states. The highest oxidation state for a transition metal is +7 for manganese (Mn). Highest oxidation state is the same as the group number for groups 3B to 7B.

12 24.3 Coordination Compounds When a monatomic cation combines with multiple monatomic anions or neutral molecules it makes a complex ion. The attached anions or neutral molecules are called ligands. The charge on the complex ion can then be positive or negative, depending on the numbers and types of ligands attached. [PtCl 4 ] 2- Co(NH 3 ) 6 3+

13 Coordination compound a complex ion combines with one or more counterions (ions of opposite charge that are not acting as ligands), the resulting neutral compound is a coordination compound. EX:

14 Coordination compounds Swiss chemist Alfred Werner studied coordination compounds. He proposed that the central metal ion has two types of interactions that he named primary valence and secondary valence. The primary valence is the oxidation state on the central metal atom the secondary valence is the number of molecules or ions directly bound to the metal atom, called the coordination number. the primary valence is +3 coordination number is 6

15 Coordination compounds CoCl 3 6H 2 O = [Co(H 2 O) 6 ]Cl 3 the primary valence is +3 coordination number is 6

16 Complex Ion Formation Complex ion formation is a type of Lewis acid base reaction. the ligands in coordination complexes is the ability to donate electron pairs to central metal atoms or ions. Ligand act as Lewis bases. In accepting electron pairs, central metal atoms or ions act as Lewis acids. A bond that forms when the pair of electrons is donated by one atom is called a coordinate covalent bond.

17 Ligands Ligands that donate only one electron pair to the central metal are monodentate. Ligands have the ability to donate two pairs of electrons (from two different atoms) to the metal; these are bidentate. Ligands, called polydentate ligands, can donate even more than two electron pairs (from more than two atoms) to the metal.

18 TABLE 24.2 Common Ligands

19 Chelating agent A chelate is a complex ion containing a multidentate ligand. The ligand is called the chelating agent.

20 Geometries in Complex Ions Metal ions with a d 8 electron configuration (such as [PdCl 4 ] 2- ) exhibit square planar geometry, Metal ions with a d 10 electron configuration (such as [Zn(NH 3 ) 4 ] 2+ ) exhibit tetrahedral geometry.

21 Naming Coordination Compounds Anions as ligands are named by using the ending o. normally -ide endings change to -o, -ite to -ito, and -ate to -ato.

22 Naming Coordination Compounds Neutral molecules as ligands generally carry the unmodified name. the name ethylenediamine is used both for the free molecule and for the molecule as a ligand. Aqua, ammine, carbonyl, and nitrosyl are important exceptions

23 Naming Coordination Compounds The number of ligands of a given type is denoted by a prefix. Mono, di, tri, tetra, penta, hexa Ex: pentaaqua signifies five molecules. If the ligand name is a composite name that itself contains a numerical prefix, such as ethylenediamine, place parentheses around the name and precede it with bis, tris, tetrakis, pentakis EX: presence of two ethylenediamine ligands, bis(ethylenediamine)

24 Names of Common Metals when Found in Anionic Complex Ions

25 Naming Coordination Compounds When we name a complex, ligands are named first, in alphabetical order followed by the name of the metal center. The oxidation state of the metal center is denoted by a Roman numeral If the complex is an anion, the ending -ate is attached to the name of the metal EX: Tetraaquadichlorochromium (III)

26 EXAMPLE 24.3 Naming Coordination Compounds Pentaaquachlorochromium(III) chloride. Potassium hexacyanoferrate(iii)

27 24.4 Structure and Isomerization Structural isomers are molecules that have the same number and type of atoms, but they are attached in a different order. Stereoisomers are molecules that have the same number and type of atoms, and that are attached in the same order, but the atoms or groups of atoms point in a different spatial direction.

28 Types of Isomers

29 Linkage Isomers Linkage isomers are structural isomers that have ligands attached to the central cation through different ends of the ligand structure.

30 Ligands Capable of Linkage Isomerization

31 Geometric Isomers Geometric isomers are stereoisomers that differ in the spatial orientation of ligands. cis trans isomerism in square-planar complexes MA 2 B 2

32 Geometric Isomers In cis trans isomerism, two identical ligands are either adjacent to each other (cis) or opposite to each other (trans) in the structure. cis trans isomerism in octahedral complexes MA4B2

33 Geometric Isomers In fac mer isomerism three identical ligands in an octahedral complex either are adjacent to each other making one face (fac) or form an arc around the center (mer) in the structure. fac mer isomerism in octahedral complexes MA3B3

34 EXAMPLE 24.5 Identifying and Drawing Geometric Isomers Draw the structures and label the type of all the isomers of Sol: The ethylenediamine (en) ligand is bidentate, Cl - is monodentate The total coordination number is 6, so this must be an octahedral complex. MA 4 B 2

35 Optical Isomers Optical isomers are stereoisomers that are nonsuperimposable mirror images of each other. Superimposable and nonsuperimposable objects an open-top box Superimposable nonsuperimposable ( 可重疊 ) ( 不可重疊 )

36 Optical Isomers Structures that are nonsuperimposable mirror images of each other are called enantiomers ( 鏡像異構物 ) and are said to be chiral ( 對掌 ) Structures that are superimposable are achiral.

37 24.5 Bonding in Coordination Compounds Valence Bond Theory

38 Crystal Field Theory Crystal Field Theory: Bonding in a complex ion is considered to be an electrostatic attraction between the positively charged nucleus of the central metal ion and electrons in the ligands. Repulsions also occur between the ligand electrons and electrons in the central ion. Crystal field theory focuses on the repulsions between ligand electrons and d electrons of the central ion.

39 d orbitals six anions to a metal ion to form a complex ion with octahedral structure

40 Repulsions between ligand electrons and d-orbital electrons are strengthened in the direct, head-to-head approach of ligands to the d z 2 orbitals and orbitals d x 2 -y 2 These two orbitals have their energy raised with respect to an average d-orbital energy for a central metal ion in the field of the ligands.

41 d xy, d xz, and d yz orbital energies are lowered with respect to the average d-orbital energy. The difference in energy between the two groups of d orbitals is called crystal field splitting (represented by the symbol o )

42 Splitting of d Orbital Energies Due to Ligands in an Octahedral Complex The size of the crystal field splitting energy, D, depends on the kinds of ligands and their relative positions on the complex ion, as well as the kind of metal ion and its oxidation state.

43 The Color of Complex Ions and Crystal Field Strength The color of an object is related to the absorption of light energy by its electrons. If a substance absorbs all of the visible wavelengths, it appears black. If it transmits (or reflects) all the wavelengths (absorbs no light), it appears colorless.

44 Complex Ion Color The observed color is the complementary color of the one that is absorbed. A substance that absorbs green light (the complement of red) will appear red.

45 Complex Ion Color To measure the energy difference between the d orbitals in a complex ion is to use spectroscopy to determine the wavelength of light absorbed when an electron makes a transition from the lower energy d orbitals to the higher energy ones.

46 Consider the [Ti(H 2 O) 6 ] 3+ absorption spectrum shown in Figure. The maximum absorbance is at 498 nm.

47 High spin & Low spin Whether the fourth electron enters the lowest level and becomes paired or, instead, enters the upper level with the same spin as the first three electrons depends on the magnitude of o o is less than the pairing energy, greater stability is obtained by keeping the electrons unpaired. (high spin) o 有電子排斥力 (pairing energy) 高能階

48 Ligands and Crystal Field Strength Ligands such as H 2 O and F - produce only a small crystal field splitting, leading to high-spin complexes; such ligands are said to be weak-field ligands. Ligands, such as NH 3 and CN - produce large crystal field splitting, leading to low-spin complexes; such ligands are said to be strong-field ligands. The size of the energy gap depends on what kind of ligands are attached. Strong field ligands include CN > NO 2 > en > NH 3 Weak field ligands include H 2 O > OH > F > Cl > Br > I. The size of the energy gap also depends on the type of cation. Increases as the charge on the metal cation increases Co 3+ > Cr 3+ > Fe 3+ > Fe 2+ > Co 2+ > Ni 2+ > Mn 2+

49 Magnetic Properties and Crystal Field Strength consider these two complexes of Co(III): sp 3 d 2 d 2 sp 3 paramagnetic (unpaired electrons) diamagnetic (paired electrons)

50 Tetrahedral Complexes For a tetrahedral complex, the d orbital splitting pattern is the opposite of the octahedral splitting pattern: three d orbitals (d xy, d xz, and d yz ) are higher in energy, and two d orbitals (d x 2 -y 2 and d z 2) are lower in energy

51 Square Planar Complexes A square planar complex gives us the most complex splitting pattern of the three geometries Z 軸的配位基跑至無窮遠處, 形成 Square-planar complex 造成有 z 的 d 軌域能量變低

52 EX: The complex ion [Ni(CN) 4 ] 2- is diamagnetic. Use ideas from the crystal field theory to speculate on its probable structure. Sol: The electron configuration of Ni is [Ar]3d 8 4s 2 and that of Ni(II) is [Ar]3d 8. Because the complex ion is diamagnetic, all 3d electrons must be paired. (a) if the structure were tetrahedra paramagnetic (b) if the structure were square-planar. diamagnetic

53 Applications of Coordination Compounds Extraction of metals from ores Silver and gold as cyanide complexes Nickel as Ni(CO) 4 (g) Use of chelating agents in heavy metal poisoning EDTA for Pb poisoning Chemical analysis Qualitative analysis for metal ions Blue = CoSCN + Red = FeSCN 2+ Ni 2+ and Pd 2+ form insoluble colored precipitates with dimethylglyoxime.

54 Biomolecules

55 Applications of Coordination Compounds Commercial coloring agents Prussian blue = mixture of hexacyanofe(ii) and Fe(III) Inks, blueprinting, cosmetics, paints

56 Applications of Coordination Compounds Cisplatin: A Cancer-Fighting Drug

57 Biological Applications: Porphyrins porphyrin structure metal porphin complex is called a porphyrin.

58 Biological Applications: Cytochrome C & Hemoglobin

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University Lecture Presentation Chapter 24 Transition Metals and Coordination Compounds Sherril Soman Grand Valley State University Gemstones The colors of rubies and emeralds are both due to the presence of Cr 3+

More information

Ch. 23: Transition metals and Coordination Chemistry

Ch. 23: Transition metals and Coordination Chemistry Ch. 23: Transition metals and Coordination Chemistry Learning goals and key skills: Determine the oxidation number and number of d electrons for metal ions in complexes Name coordination compounds given

More information

Transition Metals and Complex Ion Chemistry

Transition Metals and Complex Ion Chemistry Transition Metals and mplex Ion Chemistry Definitions mplex ion - a metal ion with Lewis bases attached to it through coordinate covalent bonds. A mplex (or ordination compound) is a compound consisting

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 23 Study Guide Concepts 1. In the transition metals, the ns orbital fills before the (n-1)d orbitals. However, the ns orbital

More information

Metallic best heat conductor of heat and e the second. Ionic compounds often contain more than one oxidation state

Metallic best heat conductor of heat and e the second. Ionic compounds often contain more than one oxidation state 21 Transition metals and coordination chemistry Transition metals in general Importance Cr stainless steel Mn steelmaking Pt, Pd catalysts Fe transport of oygen nitrogen fiation (Mo also) Zn catalyst in

More information

Chapter 23 Transition Metals and Coordination Chemistry

Chapter 23 Transition Metals and Coordination Chemistry Chapter 23 Transition Metals and Coordination Chemistry Many compounds of transition metals are colored (used in paints and to stain glass; produce color in gemstones). 23.1 The Transition Metals Most

More information

Chapter 23. Transition Metals and Coordination Chemistry ( 전이금속과배위화학 ) Lecture Presentation

Chapter 23. Transition Metals and Coordination Chemistry ( 전이금속과배위화학 ) Lecture Presentation Lecture Presentation Chapter 23 and Coordination Chemistry ( 전이금속과배위화학 ) John D. Bookstaver St. Charles Community College Cottleville, MO 1 Most metals, including transition metals, are found in solid

More information

Chapter 21: Transition Metals and Coordination Chemistry

Chapter 21: Transition Metals and Coordination Chemistry Chapter 21: Transition Metals and Coordination Chemistry Mg, Cr, V, Co Pt Fe complexes O2 Mo and Fe complexes: nitrogen fixation Zn: 150 Cu, Fe: Co: B12 21.1 Transition Metals show great similarities within

More information

Transition Metal Chemistry and Coordination Compounds

Transition Metal Chemistry and Coordination Compounds Transition Metal Chemistry and Coordination Compounds Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of the Transition Metals All transition metals

More information

Transition Metals and Coordination Chemistry

Transition Metals and Coordination Chemistry Transition Metals and Coordination Chemistry Transition Metals Similarities within a given period and within a given group. Last electrons added are inner electrons (d s, f s). 20_431 Ce Th Pr Pa d U

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation #

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation # Practice Problems: Transition Elements and Coordination Chemistry 1. Complete the valence level orbital notation for the following monatomic ions. KEY CHEM 1B a) Ag + b) Co 3+ 4d 5s 3d 4s c) Fe 3+ d) Cr

More information

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2. CdS Fe 2 3 Cr 2 3 Co 2 3 Ti 2 Mn 3 (P 4 ) 2 Fe 3+ Co 2+ Ni 2+ Cu 2+ Zn 2+ CHEMISTRY 1000 iron copper Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to 12.3 Cr 2 3 Cu 2 Co

More information

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a. Transition Metals and Coordination Chemistry 1. In the transition metals section chemical similarities are found within a and across a. 2. What are 2 transition metals that have unique electron configurations?

More information

Chapter 25 Transition Metals and Coordination Compounds Part 1

Chapter 25 Transition Metals and Coordination Compounds Part 1 Chapter 25 Transition Metals and Coordination Compounds Part 1 Introduction The transition elements are defined as: those metallic elements that have a partially but incompletely filled d subshell or easily

More information

Transition Metal Chemistry and Coordination Compounds

Transition Metal Chemistry and Coordination Compounds Alfred Werner FRENCH-BORN SWISS CHEMIST 1866 19191919 Winner of the 1913 Nobel Prize in chemistry, "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier

More information

Coordination Compounds. Compounds containing Transition Metals

Coordination Compounds. Compounds containing Transition Metals Coordination Compounds Compounds containing Transition Metals Coordination Compounds Transition Metals Sc 6 Cu 1st row Y 6 Ag 2nd row La 6 Au 3rd row Properties of metals Not as reactive as group 1 or

More information

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Unidentate ligands: Ligands with only one donor atom, e.g. NH3, Cl -, F - etc. Bidentate ligands:

More information

Coordination compounds

Coordination compounds Coordination compounds Multiple choice questions 1. In the complex formation, the central metal atom / ion acts as a) Lewis base b) Bronsted base c) Lewis acid d) Bronsted acid 2. The groups satisfying

More information

Complexes. Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds.

Complexes. Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds. Complexes Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds. Coordination Compounds Coordinate covalent bond both electrons

More information

Chapter 23 Transition Metals and Coordination Chemistry

Chapter 23 Transition Metals and Coordination Chemistry Lecture Presentation Chapter 23 and Coordination Chemistry James F. Kirby Quinnipiac University Hamden, CT Color Catalysts Magnets 23.1 The 1036 Why are of Interest? Biological roles Coordination compounds

More information

Coordination chemistry and organometallics

Coordination chemistry and organometallics Coordination chemistry and organometallics Double salt and Complex salt A salt that keeps its identity only in solid state is called a double salt. In solution they dissociate into component ions. E.g.:

More information

Chapter 19: Phenomena

Chapter 19: Phenomena Chapter 19: Phenomena Phenomena: Transition metal complexes are often used in paints for coloration due to their wide range of colors. Using the data below identify any patterns in the colors of compounds.

More information

Chapter 19: Phenomena

Chapter 19: Phenomena Chapter 19: Phenomena Phenomena: Transition metal complexes are often used in paints for coloration due to their wide range of colors. Using the data below identify any patterns in the colors of compounds.

More information

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds Chemistry: The Central Science Chapter 24: Chemistry of Coordination Compounds Metal compounds with complex assemblies of metals surrounded by molecules and ions are called coordination compounds 24.3:

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 2815 1 The aqueous chemistry of cations ydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

Structure of Coordination Compounds

Structure of Coordination Compounds Chapter 22 COORDINATION CHEMISTRY (Part II) Dr. Al Saadi 1 Structure of Coordination Compounds The geometry of coordination compounds plays a significant role in determining their properties. The structure

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic Table Elements are divided into four categories Main-group elements (S-Block) Transition metals 1.

More information

Inorganic Pharmaceutical Chemistry. Coordination compounds

Inorganic Pharmaceutical Chemistry. Coordination compounds Inorganic Pharmaceutical Chemistry Lecture No. 5 Date : 22/11 /2012 Dr. Mohammed Hamed --------------------------------------------------------------------------------------------------------------------------------------

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic table Elements are divided into four categories Main-group elements Transition metals 1. Main-group

More information

Chemistry of Coordination Compounds - Chapter 19

Chemistry of Coordination Compounds - Chapter 19 Page III-19-1 / Chapter Nineteen Lecture Notes Chemistry of Coordination Compounds - Chapter 19 Color Theory Where does the color of objects come from? From the paint covering the object! Where does the

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

Chapter 24. Chemistry of Coordination Compounds

Chapter 24. Chemistry of Coordination Compounds Chapter 24. Chemistry of Coordination Compounds 24.1 Metal Complexes Metal complexes (or complexes) have a metal ion (which can have a 0 oxidation state) bonded to a number of molecules or ions. If the

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic table Elements are divided into four categories 1.Main-group elements 2.Transition metals 3.Lanthanides

More information

Chemistry 1B. Fall Topics Lectures Coordination Chemistry

Chemistry 1B. Fall Topics Lectures Coordination Chemistry Chemistry 1B Fall 2016 Topics Lectures 17-18 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 good reasons for studying coordination chemistry

More information

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016 Chemistry 1B Fall 2016 Topics Lectures 17-18 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 Page 1 good reasons for studying coordination

More information

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability Induced dipole moment, polarisability in electric field: Van der Waals forces Intermolecular forces other than covalent bonds or other than electrostatic interactions of ions induced d. moment µ * = α

More information

Chemistry 1B. Fall Lectures Coordination Chemistry

Chemistry 1B. Fall Lectures Coordination Chemistry Chemistry 1B Fall 2013 Lectures 13-14 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 good reasons for studying coordination chemistry a

More information

Chemistry of Transition Metals. Part 1. General Considerations

Chemistry of Transition Metals. Part 1. General Considerations Chemistry of Transition Metals Part 1. General Considerations Filling of 3d, 4d, and 5d shells In s- and p-block, electrons added to outer shell In I d-block, electrons added d to penultimate t shell expanding

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals F325 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become acidic

More information

Chemistry 1B. Fall Lectures Coordination Chemistry

Chemistry 1B. Fall Lectures Coordination Chemistry Chemistry 1B Fall 2012 Lectures 13-14 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (pp. 933-937; 946-948; 958-966) [940-944;952-954;963-970] 7th 2 good reasons for

More information

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10 Main Group and Transition Metal Chemistry: Reading: Moore chapter 22, sections 22.1, 22.6 Questions for Review and Thought: 14, 16, 24, 26, 30, 34, 36, 42, 48, 50, 58, 60. Key ncepts and Skills: definition

More information

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016

Topics Coordination Complexes Chemistry 1B-AL, Fall 2016 Chemistry 1B Fall 2016 LISTEN UP!!! Topics Lectures 17-18 Coordination Chemistry WE WILL ONLY COVER LIMITED PARTS OF CAPTER 19 (940-944;952-954;963-970) 1 2 good reasons for studying coordination chemistry

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds Co-ordination compounds: a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely

More information

TM compounds. TM magnetism

TM compounds. TM magnetism TM compounds TM compounds are often coloured. Colours originate from electronic transitions between different dorbitals of the same principle QN. Wait.aren t all d orbitals the same energy? We will learn

More information

Crystal Field Theory. 2. Show the interaction between the d-orbital and the negative point charge ligands

Crystal Field Theory. 2. Show the interaction between the d-orbital and the negative point charge ligands 1. What is the crystal field model? Crystal Field Theory It is a model that views complex ions as being held together ionically (this is not actually the case, but it allows for a simplification of the

More information

UNIT 9 Topic: Coordination Compounds

UNIT 9 Topic: Coordination Compounds UNIT 9 Topic: Coordination Compounds 1. State the postulates of Werner s theory of coordination compounds. Postulates: 1. Central metal ion in a complex shows two types of valences - primary valence and

More information

Dr. Fred O. Garces Chemistry 201

Dr. Fred O. Garces Chemistry 201 23.4 400! 500! 600! 800! The relationship between Colors, Metal Complexes and Gemstones Dr. Fred O. Garces Chemistry 201 Miramar College 1 Transition Metal Gems Gemstone owe their color from trace transition-metal

More information

UNIT IX COORDINATION COMPOUNDS ( 3 : MARKS)

UNIT IX COORDINATION COMPOUNDS ( 3 : MARKS) TEACHER ORIENTED UNIT IX COORDINATION COMPOUNDS ( 3 : MARKS) 1) Coordination compounds - introduction, 2) Ligands, 3) Coordination number, 4) Colour, 5) Magnetic properties and shapes, 6) IUPAC nomenclature

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

Some chemistry of the Periodic Table. Electronic configuration and oxidation states of the transition metals

Some chemistry of the Periodic Table. Electronic configuration and oxidation states of the transition metals Some chemistry of the Periodic Table Electronic configuration and oxidation states of the transition metals Electronic configuration The d-block transition metals are defined as metals with an incomplete

More information

CHEMISTRY - CLUTCH CH.23 - TRANSITION METALS AND COORDINATION COMPOUNDS

CHEMISTRY - CLUTCH CH.23 - TRANSITION METALS AND COORDINATION COMPOUNDS H.23 - TRANSITIN METALS AND RDINATIN MPUNDS!! www.clutchprep.com H.23 - TRANSITIN METALS AND RDINATIN MPUNDS NEPT: THE TRANSITIN METALS The transition metals represent elements found in the block of the

More information

The d -Block Elements & Coordination Chemistry

The d -Block Elements & Coordination Chemistry Chapter The d -Block Elements & ordination Chemistry Hill, Petrucci, McCreary & Perry 4 th Ed. The d-block Elements Groups 3-1 in the Periodic chart associated with the filling of the 3d, 4d, 5d electronic

More information

CO-ORDINATION COMPOUNDS

CO-ORDINATION COMPOUNDS Unit - 9 CO-ORDINATION COMPOUNDS QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term coordination compound? 2. Write the names of counter ions in (i) Hg [Co (SCN and (ii) [Pt(NH 3. 3. Write

More information

Chemistry of Coordination Compounds - Chapter 22

Chemistry of Coordination Compounds - Chapter 22 Chemistry of Coordination Compounds - Chapter 22 Color Theory Where does the color of objects come from? From the paint covering the object! Where does the paint gets its color? From the paint pigments!

More information

TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout

TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout TRANSITION METAL COMPLEXES Chapter 25, VB/CF Handout The energy of a covalent bond is largely the energy of resonance of two electrons between two atoms the resonance energy increases in magnitude with

More information

CHAPTER - 9 ORDINATION COMPOUNDS

CHAPTER - 9 ORDINATION COMPOUNDS CHAPTER - 9 CO-O ORDINATION COMPOUNDS Formulas for coordinationn compounds: Tetraamineaquachloridocobalt (III) chloride ---- [Co(NH 3 ) 4 (H 2 O) Cl]Cl 2 Potassium tetrahydroxozincate (II) ------- K 2

More information

Chemistry 1000 Lecture 26: Crystal field theory

Chemistry 1000 Lecture 26: Crystal field theory Chemistry 1000 Lecture 26: Crystal field theory Marc R. Roussel November 6, 18 Marc R. Roussel Crystal field theory November 6, 18 1 / 18 Crystal field theory The d orbitals z 24 z 16 10 12 8 0 0 10 10

More information

Transition Metal Elements and Their Coordination Compounds

Transition Metal Elements and Their Coordination Compounds Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Transition Metal Elements and Their Coordination Compounds 2 Compounds. Naming and Geometry. 1 3 p.1046a 4 Fig.

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

The Transition Elements and Coordination Compounds

The Transition Elements and Coordination Compounds Chapter 22 The Transition Elements and Coordination Compounds Concept Check 22.1 Another complex studied by Werner had a composition corresponding to the formula PtCl 4 2KCl. From electrical-conductance

More information

Answer Key, Problem Set 11

Answer Key, Problem Set 11 Chemistry 122 Mines, Spring 2018 Answer Key, Problem Set 11 NOTE: Tro always writes the formulas of complex ions in brackets, even when they are not part of a coordination compound (i.e., even if no counterions

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding Bonding in Octahedral and Tetrahedral Metal Complexes 327 Molecular Orbital Theory and Crystal Field/Ligand Field Theory Predict how the d orbitals are affected by the Metal- Ligand Bonding d z 2, d x

More information

Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal 22: Isomerism part

More information

401 Unit 3 Exam Spring 2018 (Buffers, Titrations, Ksp, & Transition Metals)

401 Unit 3 Exam Spring 2018 (Buffers, Titrations, Ksp, & Transition Metals) Seat# : 401 Unit 3 Exam Spring 2018 (Buffers, Titrations, Ksp, & Transition Metals) Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (3 pts each)

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

CHEM N-3 November Transition metals are often found in coordination complexes such as [NiCl 4 ] 2. What is a complex?

CHEM N-3 November Transition metals are often found in coordination complexes such as [NiCl 4 ] 2. What is a complex? CHEM100 014-N-3 November 014 Transition s are often found in coordination complexes such as [NiCl 4 ]. What is a complex? 8 A complex contains a cation surrounded by ligands which bond to the cation using

More information

Coordination Number Six

Coordination Number Six Coordination Number Six 241 Octahedral is a very important geometry. It is the starting point for the shapes of most transition metal complexes. 1. Regular octahedron all distances are EQUIVALENT 2. Distorted

More information

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9 Unit 9 COORDINATION COORDINA COMPOUNDS I. Multiple Choice Questions (Type-I) 1. Which of the following complexes formed by Cu 2+ ions is most stable? (i) Cu 2+ + 4NH 3 [Cu(NH 3 ] 2+, logk = 11.6 (ii) Cu

More information

The d -Block Elements

The d -Block Elements The d-block Elements Introduction d-block elements locate between the s-block and p-block known as transition elements occur in the fourth and subsequent periods of the Periodic Table 2 d-block elements

More information

CHEM N-2 November Explain the following terms or concepts. Lewis base. Marks 1

CHEM N-2 November Explain the following terms or concepts. Lewis base. Marks 1 CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Lewis base Marks 1 CHEM1612 2014-N-10 November 2014 Give the oxidation number of the indicated atom in the following compounds.

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Frequency of scores on exam 2. Grade = n(right)/28 x 100

Frequency of scores on exam 2. Grade = n(right)/28 x 100 1 Frequency of scores on exam 2 Grade = n(right)/28 x 100 2 Photochemistry and biology Photons can be toxic (cause DNA bases to dimerize) Photons can be therapeutic: phototherapy Photons can track thoughts,

More information

Chem 1102 Semester 2, 2011!

Chem 1102 Semester 2, 2011! Chem 1102 Semester 2, 2011! 1) Naming Ligands: The normal chemical name is used unless the ligand is negatively charged in which cases o is used as the suffix. Name Formula Neutral Ligands Aqua H 2 O Ammine

More information

Introduction to Inorganic Chemistry

Introduction to Inorganic Chemistry Introduction to Inorganic Chemistry What is inorganic chemistry? Inorganic Chemistry Organimetallic Bioinorganic Organic vs Inorganic Introduction to Inorganic Chemistry Organic vs Inorganic Introduction

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

Coordination Inorganic Chemistry

Coordination Inorganic Chemistry Coordination Inorganic Chemistry Practice Exam Coordination Chem Name (last) (irst) Read all questions before you start. Show all work and explain your answers to receive full credit. Report all numerical

More information

Transition Metals. Tuesday 09/22/15. Tuesday, September 22, 15

Transition Metals. Tuesday 09/22/15. Tuesday, September 22, 15 Transition Metals Tuesday 09/22/15 Agenda Topic 13.2 - Colored Complexes Topic 13.1 - First Row Transition Elements handout (this will be classwork for Wednesday & Thursday) The Periodic Table - The Transition

More information

ion can co-ordinate either through nitrogen or through oxygen atom to the central metal atom/ion. If the donor atom is N, it is written as NO 2

ion can co-ordinate either through nitrogen or through oxygen atom to the central metal atom/ion. If the donor atom is N, it is written as NO 2 Page 1 CO-ORDINATION COMPOUNDS Double salt and Complex salt A salt that keeps its identity only in solid state is called a double salt. In solution they dissociate into component ions. E.g.: Mohr s salt

More information

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers Topics: Name(s): Element: 1. Periodic trends and the transition metals 4. Polydentate ligands

More information

CHEM J-2 June 2014

CHEM J-2 June 2014 CHEM1102 2014-J-2 June 2014 Compounds of d-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Co 2+. 2 Co 2+ has

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

Periodicity HL (answers) IB CHEMISTRY HL

Periodicity HL (answers) IB CHEMISTRY HL Periodicity HL (answers) IB CHEMISTRY HL 13.1 First row d-block elements Understandings: Transition elements have variable oxidation states, form complex ions with ligands, have coloured compounds, and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Choose the polydentate ligand from the substances below. 1) A) oxalate ion B) nitrite

More information

Unit IV. Covalent Bonding

Unit IV. Covalent Bonding Unit IV. Covalent Bonding READING ASSIGNMENT 1: Read 16.1 pp. 437-451. Complete section review questions 1-12. Lewis Theory of Covalent Bonding- The driving force of bond formation is the desire of each

More information

Practice Final # Jim and Tim s Excellent Adventure s in Final Exam Preparation. Practice Final

Practice Final # Jim and Tim s Excellent Adventure s in Final Exam Preparation. Practice Final Jim and Tim s Excellent Adventure s in Final Exam Preparation Practice Final 1 2013 1. What type of orbital is designated by the quantum numbers n = 3, l = 1, and m l = 0? A. 4p B. 1f C. 3s D. 3p E. 3d

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together When atoms form chemical bonds their valence electrons move around. This makes atoms

More information

Bonding in Transition Metal Compounds Oxidation States and Bonding

Bonding in Transition Metal Compounds Oxidation States and Bonding Bonding in Transition Metal ompounds Oxidation States and Bonding! Transition metals tend to have configurations (n 1)d x ns 2 or (n 1)d x ns 1, Pd having 4d 10 5s 0. K All lose ns electrons first, before

More information

Chemical Bonding. Chemical Bonds. Metals, Ions, or Molecules. All Matter Exists as Atoms,

Chemical Bonding. Chemical Bonds. Metals, Ions, or Molecules. All Matter Exists as Atoms, Chemical Bonding Valence electrons (the outer most electrons) are responsible for the interaction between atoms when forming chemical compounds. Another way to say that is that valence electrons are the

More information

CHM-115-A Sample Exam a

CHM-115-A Sample Exam a 1. Which of the following is not a mode of nuclear decay? a. neutron capture b. positron emission c. electron capture d. alpha emission e. electron emission 2. Which one of the following processes results

More information

Chapter 19 d-block metal chemistry: general considerations

Chapter 19 d-block metal chemistry: general considerations Chapter 19 d-block metal chemistry: general considerations Ground state electronic configurations Reactivity, characteristic properties Electroneutrality principle Kepert Model Coordination Numbers Isomerism

More information

Crystal Field Theory History

Crystal Field Theory History Crystal Field Theory History 1929 Hans Bethe - Crystal Field Theory (CFT) Developed to interpret color, spectra, magnetism in crystals 1932 J. H. Van Vleck - CFT of Transition Metal Complexes Champions

More information