Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

Size: px
Start display at page:

Download "Electronic Spectra and Magnetic Properties of Transition Metal Complexes)"

Transcription

1 Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal 22: Isomerism part IV Optical isomerism

2 TABLE OF CONTENTS 1. Learning outcomes 2. Optical isomerism in octahedral complexes 3. Isomerism from ligand distribution and unsymmetrical ligands 3.1 Octahedral complexes with monodentate ligands 3.2 Octahedral complexes with bidentate ligands 4. Isomerism from ligand conformation and chirality 5. Solved problem 6. Physical and chemical properties of optical isomers 7. Summary

3 Prerequisites Before going into the details of this module we should be aware of definition of isomerism and types of isomerism. That is: Isomerism in Coordination Complexes The compounds having identical empirical formula but different physical and chemical properties are known as isomers. This phenomenon is known as isomerism. Two principal types of isomerism are known among coordination compounds. Each one of them can be further subdivided. 1. Constitutional / Structural Isomerism (a) Coordination isomerism, (b) Polymerization isomerism, (c) Ionization isomerism, (d) Hydrate isomerism, (e) Linkage isomerism and (f) Ligand isomerism 2. Stereoisomerism (a) Geometrical isomerism and (b) Optical isomerism We should be aware of (a) Coordination isomerism, (b) Polymerization isomerism, (c) Ionization isomerism, (d) Hydrate isomerism (e) Linkage isomerism and (f) Ligand isomerism in details. Moreover, we should be aware of geometrical isomerism. We should also be aware of the term optical isomerism and how optical isomerism is possible for tetrahedral as well as square planar metal complexes. In this module we will start our discussion from optical isomerism in octahedral complexes.

4 1. Learning Outcomes After studying this module, you shall be able to Know about optical isomerism in octahedral metal complexes Learn how optical isomerism is possible for octahedral complexes with monodentate ligands Learn how optical isomerism is possible for octahedral complexes with bidentate ligands Identify the structures of possible optical isomers for octahedral complexes with monodentate as well as bidentate ligands Evaluate the number of possible optical isomers for octahedral complexes 2.Optical isomerism in Octahedral Complexes As we know that the most important criterion for the existence of an enantiomer of a molecule is that it should be dissymmetric; that is, it can possess other elements of symmetry but must lack S n axis. There are instances of chirality and optical isomerism that do not depend on having four different groups attached to a tetrahedral central atom. Indeed there are six ways for octahedral complexes to be dissymmetric: a) The distribution of monodentate ligands about the central metal. b) The distribution of chelate rings about the central metal. c) The coordination of unsymmetrical multidentate ligands. d) The conformation of chelate rings. e) The coordination of a chiral ligand. f) The coordination of a donor atom that is asymmetric. The important cases are described below: 3. Isomerism from Ligand Distribution and Unsymmetrical Ligands 3.1 Octahedral Complexes with Monodentate Ligands In an octahedral complex, chiral metal center can be produced by the appropriate arrangement of different types of monodentate ligands. Among numrous ways some of them are discussed below: 1. Octahedral complex, MABCDEF: Octahedral complexes with all six different ligands. There are numerous ways to arrange six ligands around the central metal ion and this complex will have maximum number of stereoisomers possible. In such a system, it is very difficult to find out the number of isomers possible. For this Bailer suggested a method for the isomer enumeration, which is as follows:

5 Table I II III AB AB CF DF DE AB CD EF BD EF AD BC EF BC DF BC DE BE DF AD BE CF BD CF BD BF DE AD BF BF CD BE CD 1. Take one ligand A as a fixed point of reference. 2. Place remaining five ligands in other possible positions. 3. Arrange the ligands in such a way, that AB, CD and EF, make a trans pair (Figure 1). The resulting pair is listed in the first row (1) and first column (I) of the table 1 4. Now to write another isomer, hold one trans pair constant (AB) and hold one of the pair constant in the next row (C), Continue changing second ligand until done (CD), then (), then (CF). The resulting pairs are listed in the column (II) and column (III) of the first row (1). In the above steps, three isomers are generated that are possible: when AB trans pair is fixed and remaining ligands are permuted on the other coordination positions. 5. Now if we replace ligand B by C (Figure 1) and other four ligands (B, D, E and F) are permuted on the other remaining positions, there will be again three isomers generated as listed in the second row (2) of the table 1.

6 Figure 1 6. If we continue the process of replacing ligand trans to A and changing the position of other ligands, will get third, fourth and fifth rows of the table 1. There are five rows and three columns in the table 1. Thus, 15 stereoisomers are generated in this way. Now each isomer listed in table 1 is dissymmetric (Figure 2), but they are not related to each other as mirror images so they are called diastereomers. Diastereoisomers may be chiral or they may be achiral. Thus, this complex will have 15 chiral diastereomers. Now each of the 15 diastereomers, is dissymmetric (Figure 2), will have a nonsuperimposable mirror image means enantiomer. Consequently total 30 stereoisomers are possible for this complex. Figure 2 2. Octahedral complex, MA 2 C 2 EF:There are two sets of identical ligands. The two sets are A (A=B in MABCDEF) and C (C=D in MABCDEF). Only ligands E and F are different. On substituting, A for B and C for D in table 1, will generate table 2. It is clear from the table 2 that there are duplicate configurations. 1(II)= 1(III), 2(I)= 3(I), 2(II)= 3(II), 4(I) and 4(II), 2(III)= 3(III), 5(I) and 5(II), 4(III)= 5(III) The duplicates are indicated in table 2 by red colour. This leaves six distinguished configurations. Out of which two are dissymmetric and have enantiomers.

7 Table I II III AA AA CF CF AA CC EF EF EF CF CF CF CF CC CC For example, [Cr(Br) 2 (NH 3 ) 2 (CH 3 )(H 2 O)] +, will have eight stereoisomers (Figure 3). For drawing stereoisomers we will first fix position of at least two of the ligands attached and then rotate the other ligands one by one. In the complex, [Cr(Br) 2 (NH 3 ) 2 (CH 3 )(H 2 O)] +, we will fix two Br - ligands on trans position and then arrange the other ligands trans to each other, then we can rotate the position of ligands other than Br -. Thereby we get eight stereoisomers, out of them two isomers form enantiomeric pair. Figure 3 3. Octahedral complex, M(A 2 C 2 E 2 ): There are three sets of identical ligands and these three sets are A (A=B in MABCDEF), C (C=D in MABCDEF) and E (E=F in MABCDEF).. On substituting, A for B, C for D and E for F in table 1, will generate table 3. It is clear from the table 3 that there are duplicate configurations. 1(II)= 1(III), 2(I)= 3(I), 2(II)= 2(III), 3(II), 4(I) and 4(II),

8 2(III)= 3(III), 5(I) and 5(II), 4(III)= 5(III) Table I II III AA AA AA CC EE EE EE CC CC The further duplicated configurations are indicated in table 3 by green colour. This leaves five distinguished configurations. Out of which only one isomer (Figure 4, V) is dissymmetric and will have enantiomer. Other four diastereomers (Figure 4, I, II, III and IV) have plane of symmetry. Figure 4 For example, [Co(NH 3 ) 2 (H 2 O) 2 Cl 2 ] has been resolved into its enantiomers I & II (Figure 5). Other configurations for this complex are having plane of symmetryand they are therefore achiral.

9 Figure 5 The number of stereoisomers possible for the given complex with monodentate ligands can be calculated using Bailer s method. By this method possible number of stereoisomers is calculated for different cases and tabulated in table 4 Table 4 Total number of stereoisomers Pair of enantiomers General Formula MA MA 5 B 1 0 MA 4 B MA 3 B MA 4 BC 2 0 MA 3 BCD 5 1 MA 2 BCDE 15 6 MABCDEF MA 2 B 2 C MA 2 B 2 CD 8 2 MA 3 B 2 C Octahedral Complexes with Bidentate Ligands Any octahedral trischelate, whether with a symmetrical bidentate ligand, is chiral and will have optical isomers. Thus, the octahedral complexes containing bidentate or higher chelating ligands can form optical isomers. 1. Octahedral complex, M(A-A) 3 :For example, the tris(ethylenediamine)cobalt(iii) ion (Figure 6) is chiral, in spite of the fact that the three ethylenediamine ligands are identical and are themselves symmetrical. Complexes with three rings, such as [Co(en) 3 ] 3+, can be viewed like a propeller with three blades. The structure can be either left or right handed, with non-superimposable mirror images.

10 Rotate Nonsuperimposable Figure 6 2. Octahedral complex, M(A-A) 2 X 2 :There will be two geometrical isomers possible for this type of complex: cis and trans. cis-m(a-b) 2 X 2 is chiral and will also have optical isomers. On the other hand, trans-m(a-b) 2 X 2 is achiral and will have only one structure. The optical isomers of cis-[co(en) 2 Cl 2 ] + are shown in figure7. The figure 8 describes the structure of trans - [Co(en) 2 Cl 2 ] +. Structures I and II are enantiomers to each other, however the pairs I & III and II & III are diastereoisomers or diastereomers. Figure 7 Figure 8

11 3. Octahedral complex, M(A-B) 2 X 2 :Dissymmetry can be introduced in a octahedral complex by introducing unsymmetrical bidentate ligand to it as well. For example, the complex [Cu(H 2 NCH 2 COO) 2 (H 2 O) 2 ] is chiral (Figure 9). In this complex, glycinate ion can bind to the metal center in two ways; (i) Nitrogen and oxygen of one ligand can be cis; (ii) They can be trans to the nitrogen and oxygen of another ligand. All the possible arrangements can give rise to five diastereomers and out of which three are enantiomers. This means a total of eight stereoisomers are possible. Figure 9 4. Octahedral complex, M(A-B) 3 : Any octahedral tris-chelate, with an unsymmetrical bidentate ligand is chiral and will have optical isomers. Thus, the octahedral complexes containing bidentate or higher chelating ligands can form optical isomers. For example, the tris(glycinato)cobalt(iii) complex, [Co(H 2 NCH 2 COO) 3 ] (Figure 10) is chiral. The nitrogen and oxygen atom of one ligand can be cis or trans to the nitrogen and oxygen atom of other ligand. Thus, four stereoisomers are possible for this complex. Figure 10 The numbers of stereoisomers possible for the given complex with bidentate ligands can be calculated using Bailer s method. By this method possible number of stereoisomers is calculated for different cases and tabulated in table 5

12 Table 5 Total number of stereoisomers Pair of enantiomers General Formula M(A-A)(B-C)DE 10 5 M(A-B) 2 CD 11 5 M(A-B)(C-D)EF M(A-B) Isomerism from Ligand Conformation and Chirality Coordination complexes can be made dissymmetric by attaching a multidentate ligand so that the chelate rings thereby formed can exist in more than one conformation. For example, ethylenediamine bound to a metal ion creates a five membered puckered ring with a two-fold axis of symmetry (Figure 11). Two conformations are clearly possible for the ring; one is labeled as λ and the other as δ. It is also clear from the figure 11, that these conformations are nonsuperimposable mirror images. However, they have little conformational stability (low energy barrier for ring inversion), so it is not possible to isolate two optical isomers of a complex such as [Co(en)(NH 3 ) 4 ] 3+. Figure 11 Another way to introduce chirality into a coordination complex is to use a chiral ligand. For example [Co(NH 3 ) 5 (S-amH)] 3+ (Figure 12) is optically active complex, where S-amH is a zwitterions of S-alanine, which is achiral ligand. Figure Solved problem

13 Question1. For each of the hypothetical complex [Co (en)(cl) (NH 3 ) 2 (H 2 O)], draw structures of all the possible stereoisomers and indicate which one is chiral. Solution:For drawing stereoisomers we first fix position of at least two of the attached ligands and then rotate the other ligand one by one. For the complex [Co(en)(Cl)(NH 3 ) 2 (H 2 O)], we will fix the position of ethylenediamine ligand and rotate the others. Thus, we can get six stereoisomers, out of them two isomers form enantiomeric pair (Figure 13). Figure 13 6.Physical and Chemical Properties of Optical Isomers Unlike geometric isomers, optical isomers (enantiomers) have identical physical and chemical properties, such as: Solubility Boiling point Color Dipole moment Chemical reactivity towards non chiral reagents However, they have different optical properties. That means interaction of enantiomers with plane polarized light is different.

14 7. Summary In this module, we discussed about Optical isomerism in octahedral complexes Enantiomers and diastereomers Enantiomers have identical physical and chemical properties Diastereomers have different chemical and physical properties

CHEMISTRY PAPER No. : 7 MODULE No. : 23 (Optical Isomerism)

CHEMISTRY PAPER No. : 7 MODULE No. : 23 (Optical Isomerism) Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7 : Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) 23

More information

Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal 20: Isomerism part

More information

Names. Chiral: A chiral object is not superimposable upon its mirror image. A chiral object contains the property of "handedness.

Names. Chiral: A chiral object is not superimposable upon its mirror image. A chiral object contains the property of handedness. CEM 241 IN-CLASS #3 MOLECULAR MODELS EXERCISE Names Stereoisomerism Construct a model containing a tetrahedral carbon (black ball) that is attached to four different atoms (use the green, orange, purple

More information

240 Chem. Stereochemistry. Chapter 5

240 Chem. Stereochemistry. Chapter 5 240 Chem Stereochemistry Chapter 5 1 Isomerism Isomers are different compounds that have the same molecular formula. Constitutional isomers are isomers that differ because their atoms are connected in

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

Structure of Coordination Compounds

Structure of Coordination Compounds Chapter 22 COORDINATION CHEMISTRY (Part II) Dr. Al Saadi 1 Structure of Coordination Compounds The geometry of coordination compounds plays a significant role in determining their properties. The structure

More information

Chapter 25 Transition Metals and Coordination Compounds Part 1

Chapter 25 Transition Metals and Coordination Compounds Part 1 Chapter 25 Transition Metals and Coordination Compounds Part 1 Introduction The transition elements are defined as: those metallic elements that have a partially but incompletely filled d subshell or easily

More information

Solutions 80 CHAPTER a) trans b) not stereoisomeric c) trans d) trans e) trans f) not stereoisomeric g) cis

Solutions 80 CHAPTER a) trans b) not stereoisomeric c) trans d) trans e) trans f) not stereoisomeric g) cis 80 CAPTE 5 killbuilder 5.9 Assigning configuration from a Fischer projection AIG TE CFIGUATI F TE CIALITY CETE I TE FLLWIG CMPUD C 2 olutions 5.1. trans not stereoisomeric trans trans trans f) not stereoisomeric

More information

Chapter 6. Isomers and Stereochemistry

Chapter 6. Isomers and Stereochemistry Chapter 6. Isomers and Stereochemistry Learning objectives: 1. Differentiate chiral and achiral molecules. 2. Recognize and draw structural isomers (constitutional isomers), stereoisomers including enantiomers

More information

STEREOCHEMISTRY A STUDENT SHOULD BE ABLE TO:

STEREOCHEMISTRY A STUDENT SHOULD BE ABLE TO: A STUDENT SHOULD BE ABLE TO: STEREOCHEMISTRY 1. Determine the relationship between two given structures (which may be any of the kinds below). Also, define the following terms, and give examples of pairs

More information

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a. Transition Metals and Coordination Chemistry 1. In the transition metals section chemical similarities are found within a and across a. 2. What are 2 transition metals that have unique electron configurations?

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

Chapter 5 Stereochemistry. Stereoisomers

Chapter 5 Stereochemistry. Stereoisomers Chapter 5 Stereochemistry Stereoisomers Same bonding sequence Different arrangement in space Example: OOC-C=C-COO has two geometric (cis-trans) isomers: COO COO COO COO Stereochemistry Slide 5-2 1 Chirality

More information

4Types of Isomers. 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B.

4Types of Isomers. 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B. 4Types of Isomers 1. Structural Isomers/(Constitutional) 2. Geometric Isomers/(Cis/Trans) 3. Optical Isomers A. Enantiomers B. Diastereomers 4Types of Isomers C 4 10 C 4 10 O O O O O O O O O O O O C 3

More information

Coordination compounds - Isomerism

Coordination compounds - Isomerism Coordination compounds - Isomerism K.Sridharan Dean School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Page 1 of 9 Table of Contents 1 Types of isomerism... 3 1.1 Types of isomerism...

More information

HO C. Explain briefly (in one or two short sentences) the meaning of the following basic stereochemical terms.

HO C. Explain briefly (in one or two short sentences) the meaning of the following basic stereochemical terms. Chem 232 D. J. Wardrop wardropd@uic.edu Problem et 3 Answers Question 1. Four compounds, each having the molecular formula C 3 5, have the I spectra summarized below. What are their structures? a. ne sharp

More information

Experiment 8 Optical Isomers. In this experiment you will be given the opportunity to see the 3-dimensional aspects of

Experiment 8 Optical Isomers. In this experiment you will be given the opportunity to see the 3-dimensional aspects of Experiment 8 Optical Isomers In this experiment you will be given the opportunity to see the 3-dimensional aspects of stereochemistry and optical isomers. Previously in class you were exposed to the concept

More information

Suggested answers to in-text activities and unit-end exercises Topic 8 Unit 30

Suggested answers to in-text activities and unit-end exercises Topic 8 Unit 30 Suggested answers to in-text activities and unit-end exercises In-text activities Checkpoint (page 60) 1 Any two of the following: 2 a) A 2-bromo-2-methylpropane B 1-bromobutane b) 3 4 a) position isomers

More information

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds

Chemistry: The Central Science. Chapter 24: Chemistry of Coordination Compounds Chemistry: The Central Science Chapter 24: Chemistry of Coordination Compounds Metal compounds with complex assemblies of metals surrounded by molecules and ions are called coordination compounds 24.3:

More information

CHAPTER 5. Stereoisomers

CHAPTER 5. Stereoisomers CHAPTER 5 Stereoisomers We have already covered two kinds of isomerism: Constitutional Isomers (structural isomers) Stereoisomers Examples of Constitutional Isomers: Examples of Stereoisomers: Another

More information

Ch. 23: Transition metals and Coordination Chemistry

Ch. 23: Transition metals and Coordination Chemistry Ch. 23: Transition metals and Coordination Chemistry Learning goals and key skills: Determine the oxidation number and number of d electrons for metal ions in complexes Name coordination compounds given

More information

(S)-(-)-Dopa, used to treat Parkinson's disease, and its medically ineffective (R)-(+) enantiomer

(S)-(-)-Dopa, used to treat Parkinson's disease, and its medically ineffective (R)-(+) enantiomer C h a p t e r F i v e: Stereoisomerism N 2 2 N (S)-(-)-Dopa, used to treat Parkinson's disease, and its medically ineffective (R)-(+) enantiomer CM 321: Summary of Important Concepts YConcepts for Chapter

More information

Chapter 21: Transition Metals and Coordination Chemistry

Chapter 21: Transition Metals and Coordination Chemistry Chapter 21: Transition Metals and Coordination Chemistry Mg, Cr, V, Co Pt Fe complexes O2 Mo and Fe complexes: nitrogen fixation Zn: 150 Cu, Fe: Co: B12 21.1 Transition Metals show great similarities within

More information

The d -Block Elements & Coordination Chemistry

The d -Block Elements & Coordination Chemistry Chapter The d -Block Elements & ordination Chemistry Hill, Petrucci, McCreary & Perry 4 th Ed. The d-block Elements Groups 3-1 in the Periodic chart associated with the filling of the 3d, 4d, 5d electronic

More information

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Unidentate ligands: Ligands with only one donor atom, e.g. NH3, Cl -, F - etc. Bidentate ligands:

More information

Lecture 8: September 13, 2012

Lecture 8: September 13, 2012 CHM 223 Organic Chemistry I Fall 2012, Des Plaines Prof. Chad Landrie Lecture 8: September 13, 2012 Skillbuilder 2 Ch. 5: Stereochemistry (Sec8ons 5.1-5.5) CHM 223 Organic Chemistry I Fall 2012, Des Plaines

More information

Organic Chemistry. Chemical Bonding and Structure (2)

Organic Chemistry. Chemical Bonding and Structure (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Chemical Bonding and Structure (2) by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty of Industrial Science & Technology seema@ump.edu.my

More information

Isomerism - Stereoisomers

Isomerism - Stereoisomers Isomerism - Stereoisomers 6 CN ; Octahedron, Triethylentetraamine H 2 N H N N H NH 2 No coplanar rings Two coplanar rings Three coplanar rings Isomerism - Stereoisomers Number of possible Isomers Isomerism

More information

9. Stereochemistry. Stereochemistry

9. Stereochemistry. Stereochemistry 9. Stereochemistry Stereochemistry Some objects are not the same as their mirror images (technically, they have no plane of symmetry) A right-hand glove is different than a left-hand glove (See Figure

More information

4 1,2,3 - Clockwise 1,2,3 - Counterclockwise S

4 1,2,3 - Clockwise 1,2,3 - Counterclockwise S Assigning Stereochemistry using Fischer Projections: Fischer projections can be used to assign stereochemistry. If the th (lowest) priority group is vertical the other three groups will show clockwise

More information

MODULE No.9 : Symmetry and optical activity and dipole moment. Paper No 13 Applications of Group Theory

MODULE No.9 : Symmetry and optical activity and dipole moment. Paper No 13 Applications of Group Theory 1 Subject Chemistry Paper No and Title Paper No 13 Applications of Group Theory Module No and Title 9 :Symmetry and optical activity and dipole moment Module Tag CE_P13_M9 CEMISTRY 1 2 TABLE O CONTENTS

More information

Transition Metals and Complex Ion Chemistry

Transition Metals and Complex Ion Chemistry Transition Metals and mplex Ion Chemistry Definitions mplex ion - a metal ion with Lewis bases attached to it through coordinate covalent bonds. A mplex (or ordination compound) is a compound consisting

More information

CH 3 C 2 H 5. Tetrahedral Stereochemistry

CH 3 C 2 H 5. Tetrahedral Stereochemistry Ch 5 Tetrahedral Stereochemistry Enantiomers - Two non-superimposable mirror image molecules - They are stereoisomers with the same atoms and bonds, but different spatial geometries. - The two molecules

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds Co-ordination compounds: a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely

More information

Isomerism. Introduction

Isomerism. Introduction Isomerism Introduction The existence of two or more compounds with same molecular formula but different properties (physical, chemical or both) is known as isomerism; and the compounds themselves are called

More information

Lecture 4: 12.4 Isomerism

Lecture 4: 12.4 Isomerism Lecture 4: 12.4 Isomerism Learning Outcomes: At the end of the lesson the students should be able to : Define isomerism. Explain constitutional isomerism. chain isomers positional isomers functional group

More information

Enantiomers. nonsuperimposable mirror image Both Configuration will be opposite. Both Configuration will be opposite

Enantiomers. nonsuperimposable mirror image Both Configuration will be opposite. Both Configuration will be opposite Optical Isomerism Isomerism of Organic Molecules: Two chiral centers Many organic compounds have more than one asymmetric carbon. The more asymmetric carbons a compound has, the more number of stereoisomers

More information

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10 Main Group and Transition Metal Chemistry: Reading: Moore chapter 22, sections 22.1, 22.6 Questions for Review and Thought: 14, 16, 24, 26, 30, 34, 36, 42, 48, 50, 58, 60. Key ncepts and Skills: definition

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 6. Stereochemistry Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry Some objects

More information

Transition Metal Chemistry and Coordination Compounds

Transition Metal Chemistry and Coordination Compounds Transition Metal Chemistry and Coordination Compounds Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of the Transition Metals All transition metals

More information

Stereochemistry. Based on McMurry s Organic Chemistry, 6 th edition

Stereochemistry. Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry Based on McMurry s Organic Chemistry, 6 th edition Stereochemistry! Some objects are not the same as their mirror images (technically, they have no plane of symmetry)! A right-hand glove

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) Atom (usually carbon) to which 4 different groups are attached: W Z C X Y STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

Due Date: 2) What is the relationship between the following compounds?

Due Date: 2) What is the relationship between the following compounds? Assignment #5 Name CHEM201 Student #: Due Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What type of isomers are CH3CH2OCH3 and CH3CH2CH2OH?

More information

CHAPTER 26 STEREOISOMERISM SOLUTIONS TO REVIEW QUESTIONS. ƒ C Cl ƒ

CHAPTER 26 STEREOISOMERISM SOLUTIONS TO REVIEW QUESTIONS. ƒ C Cl ƒ EINS26-400-417.v1.qxd 11/9/07 1:13 PM Page 400 APTER 26 STEREOISOMERISM SOLUTIONS TO REVIEW QUESTIONS 1. A chiral carbon atom is one to which four different atoms or groups are attached and is a center

More information

Chapter 5 Stereochemistry

Chapter 5 Stereochemistry Chapter 5 Stereochemistry References: 1. Title: Organic Chemistry (fifth edition) Author: Paula Yurkanis Bruice Publisher: Pearson International Edition 2. Title: Stereokimia Author: Poh Bo Long Publisher:

More information

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon.

a. Does the model have a plane of symmetry? Yes No The central carbon is said to be a stereocenter, stereogenic center, or chiral carbon. Name: TA Name Lab Section: Day Time OPTICAL ISOMERISM 1. Construct a model that has a central carbon atom with 4 different colored spheres attached to it, representing four different atoms or groups. Draw

More information

C 4 H 10 O. butanol. diethyl ether. different carbon skeleton different functional group different position of FG

C 4 H 10 O. butanol. diethyl ether. different carbon skeleton different functional group different position of FG hapter 5: Stereoisomerism- three-dimensional arrangement of atoms (groups) in space 5. verview of Isomerism Isomers: different chemical compounds with the same formula onstitutional isomers: same formula,

More information

Stereochemistry CHAPTER SUMMARY

Stereochemistry CHAPTER SUMMARY 2 7 2 7. Introduction APTER SUMMARY Isomers are compounds with identical molecular formulas but different structural formulas. Structural or constitutional isomers differ in the bonding arrangement of

More information

Transition Metal Complexes

Transition Metal Complexes 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 4 - Transition Metal Complexes Transition Metal Complexes: Definitions and Terminology. Isomerism in Transition Metal Complexes: Structural

More information

Chapter 6. Isomers and Stereochemistry

Chapter 6. Isomers and Stereochemistry hapter 6. Isomers and Stereochemistry Learning objectives: 1. Differentiate chiral and achiral molecules. 2. Recognize and draw structural isomers (constitutional isomers), stereoisomers including enantiomers

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic table Elements are divided into four categories 1.Main-group elements 2.Transition metals 3.Lanthanides

More information

Transition Metal Chemistry and Coordination Compounds

Transition Metal Chemistry and Coordination Compounds Alfred Werner FRENCH-BORN SWISS CHEMIST 1866 19191919 Winner of the 1913 Nobel Prize in chemistry, "in recognition of his work on the linkage of atoms in molecules by which he has thrown new light on earlier

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Concept Check: Topic 1: Conformation Winter 2009 Page 112 Concept Check: Topic 1: Conformation Winter 2009 Page 113 1 STEREOCHEMISTRY Winter 2009 Page 114 We have already covered two kinds of isomerism:

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals F325 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects.

Stereochemistry. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. Stereochemistry This is study of the 3 dimensional arrangement in space of molecules. In organic chemistry, subtle differences in spatial arrangements can give rise to prominent effects. E.g. the isomers

More information

Stereochemistry Terminology for two pure isomeric compounds, both of which are chiral? A pair of stereoisomers

Stereochemistry Terminology for two pure isomeric compounds, both of which are chiral? A pair of stereoisomers Name Last, irst STEECEMISTY This handout will help you understand stereoisomerism, naming conventions and relationships between stereoisomers. I hope that you will use this to help you study for exam 1.

More information

More Tutorial at

More Tutorial at 1. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question (50 pts). 1) Which of the following statements about propene, CH3CH CH2, is 1) correct? A) There

More information

Stereochemistry. 3-dimensional Aspects of Tetrahedral Atoms

Stereochemistry. 3-dimensional Aspects of Tetrahedral Atoms Stereochemistry 3-dimensional Aspects of Tetrahedral Atoms Chiral Entire molecules or simply atoms that do not possess a plane of symmetry are called chiral. Conversely, the term achiral is applied to

More information

STEREOGENIC CENTER (Chiral Center,Asymmetric Center)

STEREOGENIC CENTER (Chiral Center,Asymmetric Center) STEREOGENI ENTER (hiral enter,asymmetric enter) Atom (usually carbon) to which 4 different groups are attached: W Z X Y Many, but not all, molecules which contain a stereogenic center are chiral. (A molecule

More information

STEREOCHEMISTRY. 2. Define the following, and tell whether or not a given compound or structure fits the description or possesses the feature.

STEREOCHEMISTRY. 2. Define the following, and tell whether or not a given compound or structure fits the description or possesses the feature. A STUDENT SOULD BE ABLE TO: STEREOEMISTRY 1. Determine the relationship between two given structures (which may be any of the kinds below). Also, define each of the following terms, and give examples of

More information

Organic Chemistry. 2 nd Stage Pharmacy/ Undergraduate

Organic Chemistry. 2 nd Stage Pharmacy/ Undergraduate Organic Chemistry 2 nd Stage Pharmacy/ Undergraduate Time of Lectures: Saturday; 8:30-11:30 am Instructor: Wrya O. Karim University email: wrya.karim@univsul.edu.iq Personal email: wrya.othman49@gmail.com

More information

Chapter 5 Stereoisomerism

Chapter 5 Stereoisomerism Chapter 5 tereoisomerism eview of Concepts Fill in the blanks below. To verify that your answers are correct, look in your textbook at the end of Chapter 5. Each of the sentences below appears verbatim

More information

Chem 341 Jasperse Ch. 9 Handouts 1

Chem 341 Jasperse Ch. 9 Handouts 1 Chem 341 Jasperse Ch. 9 andouts 1 Ch. 9 Stereochemistry Stereoisomers have the same condensed formulas and basic bonding sequence, but have different 3-dimensional shape and cannot be interconverted 9.1,2

More information

Chapter 6 Principles of Stereochemistry

Chapter 6 Principles of Stereochemistry 6.1 (a) This compound is chiral. Methane is achiral. Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 6 Principles of Stereochemistry Solutions to In-Text Problems

More information

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth

Organic Chemistry Chapter 5 Stereoisomers H. D. Roth Organic Chemistry Chapter 5 Stereoisomers. D. Roth 11. Chirality of conformationally mobile systems ring compounds Monosubstituted cycloalkanes cannot have an asymmetric carbon in the ring, because there

More information

For more info visit

For more info visit Bond Fission: a) Homolytic fission: Each atom separates with one electron, leading to the formation of highly reactive entities called radicals, owing their reactivity to their unpaired electron. b) Heterolytic

More information

Chapter 5 Stereochemistry

Chapter 5 Stereochemistry Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 5 Stereochemistry Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies,

More information

(1) Check to see if the two compounds are identical. (2) Recall the definitions of stereoisomers, conformational isomers, and constitutional isomers.

(1) Check to see if the two compounds are identical. (2) Recall the definitions of stereoisomers, conformational isomers, and constitutional isomers. MCAT Organic Chemistry Problem Drill 04: Stereochemistry Question No. 1 of 10 Question 1. Determine the relationship of the molecules shown: O O Question #01 (A) Identical (B) Constitutional isomers (C)

More information

Coordination compounds

Coordination compounds Coordination compounds Multiple choice questions 1. In the complex formation, the central metal atom / ion acts as a) Lewis base b) Bronsted base c) Lewis acid d) Bronsted acid 2. The groups satisfying

More information

Organic Chemistry. Stereochemistry

Organic Chemistry. Stereochemistry Organic Chemistry by Nurlin Abu Samah, Dr. Md. Shaheen & Dr. Nadeem Akhtar Faculty of Industrial Sciences & Technology nurlin@ump.edu.my Chapter Description Aims The students should understand the fundamental

More information

Lesson 4. Molecular Geometry and Isomers II. Lesson 4 CH 3 HO H OH

Lesson 4. Molecular Geometry and Isomers II. Lesson 4 CH 3 HO H OH Lesson 4 Molecular Geometry and Isomers II 4 Lesson 4 3 O O 3 Organic Edge A. Structural Isomers (onstitutional Isomers) 1. Structural isomers are molecules that share the same molecular formula but differ

More information

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional)

Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional) Stereochemistry Structural or constitutional isomers... have the same molecular formula but different connectivity (skeletal, positional, functional) Stereoisomers... have the same connectivity but a different

More information

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES - 1 - STEREOCHEMISTRY AND STEREOELECTRONICS NOTES Stereochemistry in Organic Molecules Conventions used in drawing molecules Also, Fischer projections can sometimes be useful for acyclic molecules with

More information

Name. Optical Isomers

Name. Optical Isomers Name KEY Lab Day Optical Isomers Introduction: Stereoisomers are compounds that have the same structural formulas, but differ in their spatial arrangements. Two major types of stereoisomers are geometric

More information

Exam 2 Chem 109a Fall 2004

Exam 2 Chem 109a Fall 2004 Exam 2 Chem 109a Fall 2004 Please put your name and perm number on both the exam and the scantron sheet. Next, answer the following 34 multiple-choice questions on the scantron sheet. Then choose one A-type

More information

UNIT 9 Topic: Coordination Compounds

UNIT 9 Topic: Coordination Compounds UNIT 9 Topic: Coordination Compounds 1. State the postulates of Werner s theory of coordination compounds. Postulates: 1. Central metal ion in a complex shows two types of valences - primary valence and

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic table Elements are divided into four categories Main-group elements Transition metals 1. Main-group

More information

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University Lecture Presentation Chapter 24 Transition Metals and Coordination Compounds Sherril Soman Grand Valley State University Gemstones The colors of rubies and emeralds are both due to the presence of Cr 3+

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic Table Elements are divided into four categories Main-group elements (S-Block) Transition metals 1.

More information

CHEM 261 Feb. 2, Stereochemistry and Chirality

CHEM 261 Feb. 2, Stereochemistry and Chirality 70 EM 261 eb. 2, 2017 Stereochemistry and hirality hiral object or molecule: has a non-superimposable mirror image Achiral object: not chiral, has a superimposable mirror image 1848 - Louis Pasteur separated

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 16. Transition Metals Complexes: Structure and Isomers Topics: Name(s): Element: 1. Periodic trends and the transition metals 4. Polydentate ligands

More information

(2/94)(6,7,9/95)(8,9/97)(12/99)(1/00) Neuman Chapter 4

(2/94)(6,7,9/95)(8,9/97)(12/99)(1/00) Neuman Chapter 4 4: Stereochemistry Tetrahedral Carbon Configurations Stereoisomers and R,S Assignments The Number and Types of Stereoisomers Drawing Structures of Stereoisomers Cyclic Molecules Optical Activity Preview

More information

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below.

CHEM J-10 June The structure of ( )-linalool, a commonly occurring natural product, is shown below. CEM1102 2014-J-10 June 2014 The structure of ( )-linalool, a commonly occurring natural product, is shown below. 4 What is the molecular formula of ( )-linalool? C 10 18 O Which of the following best describes

More information

Transition Metals and Coordination Chemistry

Transition Metals and Coordination Chemistry Transition Metals and Coordination Chemistry Transition Metals Similarities within a given period and within a given group. Last electrons added are inner electrons (d s, f s). 20_431 Ce Th Pr Pa d U

More information

CHAPTER - 9 ORDINATION COMPOUNDS

CHAPTER - 9 ORDINATION COMPOUNDS CHAPTER - 9 CO-O ORDINATION COMPOUNDS Formulas for coordinationn compounds: Tetraamineaquachloridocobalt (III) chloride ---- [Co(NH 3 ) 4 (H 2 O) Cl]Cl 2 Potassium tetrahydroxozincate (II) ------- K 2

More information

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation #

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation # Practice Problems: Transition Elements and Coordination Chemistry 1. Complete the valence level orbital notation for the following monatomic ions. KEY CHEM 1B a) Ag + b) Co 3+ 4d 5s 3d 4s c) Fe 3+ d) Cr

More information

Experiment 10 Organic Molecules: Description, Nomenclature and Modeling

Experiment 10 Organic Molecules: Description, Nomenclature and Modeling Experiment 10 Organic Molecules: Description, Nomenclature and Modeling Objectives The objectives for this lab are: Part I: To learn the structures of and construct models for simple organic molecules,

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become acidic

More information

Massachusetts Institute of Technology. Chemistry 5.43 February 28 th, Exam #1. Question 1a /4 points Question 2b /10 points

Massachusetts Institute of Technology. Chemistry 5.43 February 28 th, Exam #1. Question 1a /4 points Question 2b /10 points Massachusetts Institute of Technology Chemistry 5.43 February 28 th, 2007 Professor M. Movassaghi Exam #1 Question 1a /4 points Question 2b /10 points Question 1b /2 points Question 2c /6 points Question

More information

Lecture Topics: I. Stereochemistry Stereochemistry is the study of the three dimensional structure of molecules

Lecture Topics: I. Stereochemistry Stereochemistry is the study of the three dimensional structure of molecules Stereochemistry eading: Wade chapter 5, sections 5-- 5-7 Study Problems: 5-26, 5-3, 5-32, 5-33, 5-34 Key oncepts and Skills: assify molecules as chiral or achiral, and identify planes of symmetry. Identify

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 23 Study Guide Concepts 1. In the transition metals, the ns orbital fills before the (n-1)d orbitals. However, the ns orbital

More information

Metallic best heat conductor of heat and e the second. Ionic compounds often contain more than one oxidation state

Metallic best heat conductor of heat and e the second. Ionic compounds often contain more than one oxidation state 21 Transition metals and coordination chemistry Transition metals in general Importance Cr stainless steel Mn steelmaking Pt, Pd catalysts Fe transport of oygen nitrogen fiation (Mo also) Zn catalyst in

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

02/07/2017. Isomerism. Structural isomerism. 1. Structural isomerism different linkages of atoms. Same molecular formula Different structural formulae

02/07/2017. Isomerism. Structural isomerism. 1. Structural isomerism different linkages of atoms. Same molecular formula Different structural formulae hain isomerism Position isomerism Metamerism Tautomerism Functional group isomerism Geometrical isomerism Optical isomerism 02/07/2017 Isomerism The presence of two or more compounds which has the same

More information

Chapter 23. Transition Metals and Coordination Chemistry ( 전이금속과배위화학 ) Lecture Presentation

Chapter 23. Transition Metals and Coordination Chemistry ( 전이금속과배위화학 ) Lecture Presentation Lecture Presentation Chapter 23 and Coordination Chemistry ( 전이금속과배위화학 ) John D. Bookstaver St. Charles Community College Cottleville, MO 1 Most metals, including transition metals, are found in solid

More information

1. (3 pts) Circle the highest priority substituent of the following list:

1. (3 pts) Circle the highest priority substituent of the following list: Ch 334 Midterm #3 November 17, 2006 Code 1. (3 pts) Circle the highest priority substituent of the following list: 2. (4 pts) Rank the following groups in order of increasing priority. Place the letter

More information

18-Jul-12 Chemsheets A

18-Jul-12 Chemsheets A www.chemsheets.co.uk 18-Jul-12 Chemsheets A2 038 1 SECTIN 1 - INTRDUCTIN 1) ELECTRN STRUCTURE & DEFINITIN F TRANSITIN METALS 2s 3s 1s 2p 3p 1s 4s fills before 3d. 4s also empties before 3d. 4s 3d Give

More information