Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines

Size: px
Start display at page:

Download "Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines"

Transcription

1 Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines Cornelius Krull 1, Roberto Robles 2, Aitor Mugarza 1, Pietro Gambardella 1,3 1 Catalan Institute of Nanotechnology (ICN), UAB Campus, E Barcelona, Spain 2 Centre d Investigacions en Nanociència i Nanotecnologia (CIN2), UAB Campus, E Barcelona, Spain 3 Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Física, Universitat Autonoma de Barcelona, E Barcelona, Spain Contents I. Rare LiMPc configurations II. III. IV. DFT calculations Vibronic excitations Atom-by-atom manipulation sequence V. Supplementary References Supplementary Figures S1 S5 Supplementary Table SI NATURE MATERIALS 1

2 I. Rare LiMPc configurations More than 75% of the observed LiMPc species correspond to the configurations L A and M described in the main text. In some instances, however, we observed different LiMPc configurations, which we report in Fig. S1. The first case (Fig. S1a) corresponds to a configuration obtained after manipulating a LiCuPc-L A species. After trying to push the Li atom away from the molecule, this remained bonded to the aza-n site, as can be observed in the topographic image. Such configuration corresponds to the LiCuPc-L B complex obtained by DFT (see Fig. 2a). Further attempts to separate this complex resulted in the diffusion of the whole molecule without changing the position of the Li atom relative to the Pc ring. This complex appears therefore to be stable and its electronic structure is very similar to LiCuPc-L A, as revealed by the di/dv spectra shown in Fig. S1a. A second case is that of a LiCuPc complex with the ligand axes rotated by 45º with respect to the high symmetry directions of the substrate rather than the usual ±30º common to both undoped and doped molecules (Fig. S1b). A bright benzene ring is observed, indicating the presence of a Li ion similar to the LiCuPc-L A case. Here, however, the di/dv spectrum is similar to that of LiNiPc-L A, corresponding to a charge transfer of Q = 1, rather than LiCuPc-L A with Q = 2. After lateral manipulation of the complex, the configuration changes to that of the stable LiCuPc-L A configuration with Q = 2 (not shown). A third configuration of doped CuPc complexes exhibits a bright protrusion which is laterally shifted from the center (Fig. S1c). The shift is of approximately 1 Å, as measured from the topographic profile of the image. The di/dv spectrum is very similar to that of the stable LiCuPc-M species, indicating that charge transfer occurs through the d-states. Finally, Fig. S1d shows an image of a fuzzy LiNiPc complex. The bright center and four-fold symmetry of the complex suggest that this is an M type configuration. The unstability of this 2 NATURE MATERIALS

3 SUPPLEMENTARY INFORMATION configuration, evidenced by the fuzziness of the image, is in full agreement with its large formation energy of about1 ev calculated by DFT for LiNiPc-M (see Table SI). Figure S1. Rare LiMPc configurations. Topography (left), schematics (right), and di/dv spectra (bottom) obtained for: a, LiCuPc-L B, with the Li bonded to the aza-n. Both di/dv spectra measured on the Cu and benzene sites are very similar to those obtained for the L A species (dashed lines). b, LiCuPc-L A azimuthally rotated by +45º with respect to the high symmetry directions of the substrate. The spectrum is very similar to that of LiNiPc-L A, corresponding to a charge state for the 2e g orbital of Q = 1. c, Asymmetric LiCuPc-M, indicating that the Li ion is laterally shifted from the center of the molecule. The spectra is very similar to the symmetric case (dashed line) discussed in the text. A background spectrum acquired on Ag(100) has been subtracted to the data in this case in order to enhance molecular features. d, Unstable LiNiPc-M. The fuzzy appearance is attributed to the unstability of the Li ion at the center. Spectroscopy could not be performed on this type of molecules. NATURE MATERIALS 3

4 II. DFT calculations Charge density maps In the ligand-doped molecules (L) there is a clear correspondence between the position of the Li atom and the 2e g acceptor level that shifts below the Fermi level. This is also evidenced by the charge density maps calculated by DFT (Fig. S2, left) of the formerly degenerate 2e g orbital, which splits into a filled state localized along the axis containing the Li ion, and an empty state at higher energy along the orthogonal axis, as observed by STM. Note that empty states present an increased charge density at the Cu ion due to the energy overlap with the b 1g state (see Fig. 2e). In contrast, the M configuration (right) retains the four-fold symmetry of the doubly degenerate 2e g state. Figure S2. Charge density distribution of the 2e g resonance of the L and M configurations of LiCuPc computed by DFT. The left panel shows the two orthogonal isocharge contours originating from the splitting of the 2e g state for ligand-doped molecules. The right panel shows the four-fold symmetric contour of the 2e g state for metal-doped species. 4 NATURE MATERIALS

5 SUPPLEMENTARY INFORMATION STM topographic images Topographic images of LiCuPc complexes have been simulated using the Tersoff and Hamman theory 1,2 using the method of Ref. 3. A set of images obtained at -1.5 V for each configuration is displayed in Fig. S3. Comparison between the calculated and experimental images allows discriminating between different configurations. For example, in the case of the alkali adatom u interacting with a benzene ring, only the L A configuration reproduces the double-lobe structure observed in the experimental images of the charged ring. This is also in agreement with the lower energy calculated for this configuration relative to L A0. Finally, the image calculated for the M configuration, with brighter intensity at the center, can be univocally associated to the doping of the metal site, consistently with the experimental results presented in the main text. Figure S3. Topographic images of the different LiCuPc configurations computed by DFT. The images are obtained at V bias = -1.5 V. The different features, such as the double-lobe structure and the bright center of the L A u and the M configurations Charge transfer, magnetic moment and total energy The values for the total energy, magnetic moment and charge transfer displayed in Fig. 2 are listed in Table SI for the undoped and singly doped molecules. It can be noted that the total charge is higher than that derived from the experimental di/dv spectra. This overestimation is related to the intrinsic difficulty of DFT in treating electron correlation, especially in highly delocalized orbitals such as the NATURE MATERIALS 5

6 2e g π-orbital. 4-6 For the same reason, the spin related to the presence of unpaired electrons in this orbital is missing in the calculations. As a consequence, we consider only quantitative values obtained for the transition-metal site (TM), related to the localized d-orbitals. The charge evolution in the 2e g orbital is studied by following relative trends. For instance, the different charge states of u u the LiCuPc-L A and LiNiPc-L A complexes derived from the experimental data is reflected in the lower charge computed for the latter. N (MPc) N (TM) N (Li) N (Ag) m (TM) E 0 Li CuPc NiPc Li u L A o L A L B L C M Table SI. Charge transfer, magnetic moment, and formation energies of doped LiMPc complexes calculated by DFT. Differential charge N (in electron units) of the adsorbed molecules, transition metal ion (TM), Li ion, and Ag substrate relative to gas-phase MPc and unperturbed Ag surface. Magnetic moment m (in units of B ) of the metal ions. Relative formation energy E (in ev). Rows corresponding to CuPc (NiPc) are grey (white). Note that, due to the hybridized 3d x2-y2 /2p character of the molecular b 1g orbital, the magnetic moment projected onto the metal ion captures only part of the S = ½ spin present in this orbital. 6 NATURE MATERIALS

7 SUPPLEMENTARY INFORMATION III. Vibronic excitations Electrons tunneling to a molecular orbital having relatively large lifetime can inelastically excite vibrational states of the same orbital. This is often the case for molecules deposited on insulating layers, as the molecular orbitals hybridize only weakly with the substrate, which leads to an extended lifetime for the transient state. Such vibronic excitations will appear in di/dv spectra as equidistant peaks overlaying the actual molecular orbital resonance. 7-9 The energy spacing is equal to the energy of the excited vibration. The detailed analysis of the peak structures found below the Fermi level for all LiMPc-L A complexes shows a series of equidistant peaks. The energy of the vibrational excitation is found to be between 173 and 193 mev. Literature values for the C-C and C-N stretching modes lie exactly within this energy range ( mev). 10 Furthermore, PES measurements for thin films of CuPc on HOGP 10,11 and in the gas-phase 12 show a vibronic coupling of the HOMO of CuPc at the energy of 150 mev. We therefore interpret the multi-peak structure below E F as a vibronic progression inside the molecules. Its presence indicates an increase of the electron lifetime within the molecules, and hence a Li-induced decoupling from the substrate. 7 Figure S4. Vibronic coupling in L A species. Fitting of the vibronic satellite peaks with Lorentzian functions: a, Example of the fit obtained for the singly occupied 2e g orbital in LiNiPc-L A. b, The energy separation obtained for the multiple peaks is around 170 mev in both LiCuPc and Li 2 CuPc species, and around 190 mev in LiNiPc. NATURE MATERIALS 7

8 IV. Atom-by-atom manipulation sequence Although the LiMPc species form spontaneously by depositing Li atoms at low temperature, doping levels higher than one were rarely achieved due to the low coverage of Li required for the detailed study of individual molecules. Doping levels higher than two were studied for CuPc by using the STM tip to manipulate Li adsorbates. By laterally moving individual Li atoms one-by-one, up to six dopants could be introduced in the same molecule (see Methods for technical details). Figure S5 shows such a manipulation sequence including successful as well as failed doping attempts. We observed that dragging Li atoms towards the benzene rings yields L A configurations and that the molecules can rotate upon incorporation of dopants. We explored also the possibility of forming configurations with dopants occupying sites along the ligand axis orthogonal to that already occupied by other dopants. In such cases the molecule would rotate in order to incorporate the dopant in the same ligand axis (see doping with the 3 rd Li atom in Fig. S5). di/dv spectroscopy measurements carried out in between manipulation events were found to induce diffusion or rotation of metastable configurations. This resulted in an internal rearrangement of dopants, as shown in Fig. S4 for the case of Li 3 CuPc. In this case the dopants could even be accommodated in orthogonal axes. However, this configuration proved particularly unstable, preventing us from performing spectroscopy measurements. The topography of the stable Li 4 CuPc to Li 6 CuPc configurations suggests accommodation of the Li atoms along the same ligand axis, consistently with the widening of the 2eg - 2eg gap observed in Fig NATURE MATERIALS

9 SUPPLEMENTARY INFORMATION Figure S5. Atom-by-atom doping of CuPc induced by lateral manipulation of Li atoms. Arrows indicate the direction of the lateral motion of the tip between successive images. NATURE MATERIALS 9

10 V. Supplementary References 1. Tersoff, J., Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett. 50, (1983). 2. Tersoff, J., Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, (1985). 3. Bocquet, M.-L., Lesnard, H., Monturet, S., Lorente, N. In Computational Methods in Catalysis and Materials Science; van Santen, R. A., Sautet, P., Eds.; Wiley-VCH: Weinheim, Germany. 4. Mugarza, A. et al. Electronic and magnetic properties of molecule-metal interfaces: Transition-metal phthalocyanines adsorbed on Ag(100). Phys. Rev. B 85, (2012). 5. Mugarza, A. et al. Spin coupling and relaxation inside molecule metal contacts. Nat Commun 2, 490 (2011). 6. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into Current Limitations of Density Functional Theory. Science 321, (2008). 7. Nazin, G. V., Wu, S. W., Ho, W. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope. Proc. Natl. Acad. Sci. U.S.A. 102, (2005). 8. Wu, S. W., Nazin, G. V., Chen, X., Qiu, X. H., Ho, W. Control of Relative Tunneling Rates in Single Molecule Bipolar Electron Transport. Phys. Rev. Lett. 93, (2004). 9. Qiu, X. H., Nazin, G. V., Ho, W. Vibronic States in Single Molecule Electron Transport. Phys. Rev. Lett. 92, (2004). 10. Kera, S., Yamane, H., Ueno, N. First-principles measurements of charge mobility in organic semiconductors: Valence hole vibration coupling in organic ultrathin films. Prog. Surf. Sci. 84, (2009). 11. Kera, S., Yamane, H., Sakuragi, I., Okudaira, K. K., Ueno, N. Very narrow photoemission bandwidth of the highest occupied state in a copper-phthalocyanine monolayer. Chem. Phys. Lett. 364, (2002). 12. Evangelista, F. et al. Electronic structure of copper phthalocyanine: An experimental and theoretical study of occupied and unoccupied levels. J. Chem. Phys. 126, (2007). 10 NATURE MATERIALS

Supplementary Information. Spin coupling and relaxation inside molecule-metal contacts

Supplementary Information. Spin coupling and relaxation inside molecule-metal contacts Supplementary Information Spin coupling and relaxation inside molecule-metal contacts Aitor Mugarza 1,2*, Cornelius Krull 1,2, Roberto Robles 2, Sebastian Stepanow 1,2, Gustavo Ceballos 1,2, Pietro Gambardella

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Real-space imaging of interfacial water with submolecular resolution Jing Guo, Xiangzhi Meng, Ji Chen, Jinbo Peng, Jiming Sheng, Xinzheng Li, Limei Xu, Junren Shi, Enge Wang *, Ying Jiang * International

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007 Microscopy and Spectroscopy with Tunneling Electrons STM Sfb Kolloquium 23rd October 2007 The Tunnel effect T ( E) exp( S Φ E ) Barrier width s Barrier heigth Development: The Inventors 1981 Development:

More information

A Momentum Space View of the Surface Chemical Bond - Supplementary Information

A Momentum Space View of the Surface Chemical Bond - Supplementary Information A Momentum Space View of the Surface Chemical Bond - Supplementary Information Stephen Berkebile, a Thomas Ules, a Peter Puschnig, b Lorenz Romaner, b Georg Koller, a Alexander J. Fleming, a Konstantin

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

Many-body correlations in STM single molecule junctions

Many-body correlations in STM single molecule junctions Many-body correlations in STM single molecule junctions Andrea Donarini Institute of Theoretical Physics, University of Regensburg, Germany TMSpin Donostia Many-body correlations in STM single molecule

More information

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications Chapter 6 Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications 6.1 Structures of Ni, Cu substituted Phthalocyanine Almost all of the metals

More information

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supplementary Figure 1 Ribbon length statistics. Distribution of the ribbon lengths and the fraction of kinked ribbons for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

Protection of excited spin states by a superconducting energy gap

Protection of excited spin states by a superconducting energy gap Protection of excited spin states by a superconducting energy gap B. W. Heinrich, 1 L. Braun, 1, J. I. Pascual, 1, 2, 3 and K. J. Franke 1 1 Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee

More information

Spin coupling and relaxation inside molecule metal contacts

Spin coupling and relaxation inside molecule metal contacts Received 28 Mar 211 Accepted Sep 211 Published 4 Oct 211 DOI: 1.138/ncomms1497 Spin coupling and relaxation inside molecule metal contacts Aitor Mugarza 1,2, Cornelius Krull 1,2, Roberto Robles 2, Sebastian

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Spin-Flip and Element-Sensitive Electron Scattering in the BiAg 2 Surface Alloy. Supplementary Material

Spin-Flip and Element-Sensitive Electron Scattering in the BiAg 2 Surface Alloy. Supplementary Material SpinFlip and ElementSensitive Electron Scattering in the BiAg 2 Surface Alloy Supplementary Material S. Schirone, 1 E. E. Krasovskii, 2, 3, 4 G. Bihlmayer, 5 R. Piquerel, 1 P. Gambardella, 1, 6, 7 and

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Electronic Supporting Information for

Electronic Supporting Information for Electronic Supplementary Material (ESI) for Materials Horizons. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information for Probing the Energy Levels in Hole-doped Molecular

More information

Supplementary Figure 1: Change of scanning tunneling microscopy (STM) tip state. a, STM tip transited from blurred (the top dark zone) to orbital

Supplementary Figure 1: Change of scanning tunneling microscopy (STM) tip state. a, STM tip transited from blurred (the top dark zone) to orbital Supplementary Figure 1: Change of scanning tunneling microscopy (STM) tip state. a, STM tip transited from blurred (the top dark zone) to orbital resolvable (the bright zone). b, Zoomedin tip-state changing

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Z. F. Wang 1,2,3+, Huimin Zhang 2,4+, Defa Liu 5, Chong Liu 2, Chenjia Tang 2, Canli Song 2, Yong Zhong 2, Junping Peng

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Quantum wells and Dots on surfaces

Quantum wells and Dots on surfaces Lecture in the course Surface Physics and Nano Physics 2008 Quantum wells and Dots on surfaces Bo Hellsing Department of Physics, Göteborg University, Göteborg, S Collaborators: QW Johan Carlsson, Göteborg

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Simultaneous and coordinated rotational switching of all molecular rotors in a network Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera, Y. Li, A. Deshpande, K.-F. Braun, C. Joachim,

More information

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Adrian Radocea,, Tao Sun,, Timothy H. Vo, Alexander Sinitskii,,# Narayana R. Aluru,, and Joseph

More information

Theoretical Modelling and the Scanning Tunnelling Microscope

Theoretical Modelling and the Scanning Tunnelling Microscope Theoretical Modelling and the Scanning Tunnelling Microscope Rubén Pérez Departamento de Física Teórica de la Materia Condensada Universidad Autónoma de Madrid Curso Introducción a la Nanotecnología Máster

More information

Substrate-mediated band-dispersion of adsorbate molecular states - Supplementary Information

Substrate-mediated band-dispersion of adsorbate molecular states - Supplementary Information Substrate-mediated band-dispersion of adsorbate molecular states - Supplementary Information M. Wießner, 1, 2 J. Ziroff, 1, 2 F. Forster, 1, 2 M. Arita, 3 K. Shimada, 3 P. Puschnig, 4 A. Schöll*, 1, 2,

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Curriculum Vitae December 2006

Curriculum Vitae December 2006 Appendix: (A brief description of some representative results) (1) Electronic states of Pb adatom and Pb adatom chains on Pb(111) have been investigated by spatially scanning tunneling spectroscopy (STS)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Many-body transitions in a single molecule visualized by scanning tunnelling microscopy

Many-body transitions in a single molecule visualized by scanning tunnelling microscopy DOI:.8/NPHYS Many-body transitions in a single molecule visualized by scanning tunnelling microscopy Fabian Schulz, Mari Ijäs, Robert Drost, Sampsa K. Hämäläinen, Ari Harju,, Ari P. Seitsonen,, 4 and Peter

More information

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates Peng Cai 1, Wei Ruan 1, Yingying Peng, Cun Ye 1, Xintong Li 1, Zhenqi Hao 1, Xingjiang Zhou,5,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

Lecture 12 Multiplet splitting

Lecture 12 Multiplet splitting Lecture 12 Multiplet splitting Multiplet splitting Atomic various L and S terms Both valence and core levels Rare earths Transition metals Paramagnetic free molecules Consider 3s level emission from Mn2+

More information

Apparent reversal of molecular orbitals reveals entanglement

Apparent reversal of molecular orbitals reveals entanglement Apparent reversal of molecular orbitals reveals entanglement Andrea Donarini P.Yu, N. Kocic, B.Siegert, J.Repp University of Regensburg and Shanghai Tech University Entangled ground state Spectroscopy

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Measured versus calculated optical transitions in the CPX. The UV/Vis/NIR spectrum obtained experimentally for the 1:1 blend of 4T and F4TCNQ (red curve) is

More information

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor www.sciencemag.org/cgi/content/full/332/6036/1410/dc1 Supporting Online Material for Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor Can-Li Song, Yi-Lin Wang, Peng Cheng, Ye-Ping

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework Supporting Information: Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework Chen Chen 1, Trinity Joshi 2, Huifang Li 3, Anton D. Chavez 4,5, Zahra Pedramrazi 2,

More information

Imaging electrostatically confined Dirac fermions in graphene

Imaging electrostatically confined Dirac fermions in graphene Imaging electrostatically confined Dirac fermions in graphene quantum dots 3 4 5 Juwon Lee, Dillon Wong, Jairo Velasco Jr., Joaquin F. Rodriguez-Nieva, Salman Kahn, Hsin- Zon Tsai, Takashi Taniguchi, Kenji

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NPHYS3965 Control of the millisecond spin lifetime of an electrically probed atom William Paul 1, Kai Yang 1,2, Susanne Baumann 1,3, Niklas

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Region mapping. a Pristine and b Mn-doped Bi 2 Te 3. Arrows point at characteristic defects present on the pristine surface which have been used as markers

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor

Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor Engineering the spin couplings in atomically crafted spin chains on an elemental superconductor Kamlapure et al, 1 Supplementary Figures Supplementary Figure 1 Spectroscopy on different chains. a, The

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Ultraviolet Photoelectron Spectroscopy (UPS)

Ultraviolet Photoelectron Spectroscopy (UPS) Ultraviolet Photoelectron Spectroscopy (UPS) Louis Scudiero http://www.wsu.edu/~scudiero www.wsu.edu/~scudiero; ; 5-26695 scudiero@wsu.edu Photoemission from Valence Bands Photoelectron spectroscopy is

More information

Unified description of inelastic propensity rules for electron transport through nanoscale junctions

Unified description of inelastic propensity rules for electron transport through nanoscale junctions Downloaded from orbit.dtu.dk on: Dec 17, 17 Unified description of inelastic propensity rules for electron transport through nanoscale junctions Paulsson, Magnus; Frederiksen, Thomas; Ueba, Hiromu; Lorente,

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules

Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules (4-bromo-1-ethyl-2-fluorobenzene) are dosed on a Cu(111) surface and annealed to 80

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Real-space investigation of energy transfer with Single-molecule luminescence and Absorption Spectroscopy

Real-space investigation of energy transfer with Single-molecule luminescence and Absorption Spectroscopy AuGuSt 2018 vol. 28 no. 4 feature articles DOI: 10.22661/AAPPSBL.2018.28.4.03 Real-space investigation of energy transfer with Single-molecule luminescence and Absorption Spectroscopy HIROSHI IMADA AND

More information

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope MPhil Thesis Defense Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope Presented by CHEN Cheng 12 th Aug.

More information

Supporting Information

Supporting Information Supporting Information Spatially-resolved imaging on photocarrier generations and band alignments at perovskite/pbi2 hetero-interfaces of perovskite solar cells by light-modulated scanning tunneling microscopy

More information

For preparing Sn adatoms on the Si(111)-(7 7) surface, we used a filamenttype

For preparing Sn adatoms on the Si(111)-(7 7) surface, we used a filamenttype Supplementary Methods 1 1.1 Germanium For preparing Ge adatoms on the Si(111)-(7 7) surface, we used a filamenttype source which wrapped a grain of Ge (Purity: 99.999 %). After preparing the clean Si(111)-(7

More information

Hints on Using the Orca Program

Hints on Using the Orca Program Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Hints on Using the Orca Program

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1488 Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules Ying Jiang 1,2*, Qing Huan 1,3*, Laura Fabris 4, Guillermo C. Bazan

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Copyright: Link to published article: Date deposited: This work is licensed under a Creative Commons Attribution-NonCommercial 3.

Copyright: Link to published article: Date deposited: This work is licensed under a Creative Commons Attribution-NonCommercial 3. Liu L, Yang K, Jiang Y, Song B, Xiao W, Song S, Du S, Ouyang M, Hofer WA, Castro-Neto AH, Gao HJ. Revealing Atomic Site-dependent g-factor within a single Magnetic Molecule via Extended Kondo Effect. Physical

More information

Help me understanding the effect of organic acceptor molecules on coinage metals.

Help me understanding the effect of organic acceptor molecules on coinage metals. Help me understanding the effect of organic acceptor molecules on coinage metals. Gerold M. Rangger, 1 Oliver T. Hofmann, 1 Anna M. Track, 1 Ferdinand Rissner, 1 Lorenz Romaner, 1,2 Georg Heimel, 2 Benjamin

More information

Supporting information for: Coverage-driven. Electronic Decoupling of Fe-Phthalocyanine from a. Ag(111) Substrate

Supporting information for: Coverage-driven. Electronic Decoupling of Fe-Phthalocyanine from a. Ag(111) Substrate Supporting information for: Coverage-driven Electronic Decoupling of Fe-Phthalocyanine from a Ag() Substrate T. G. Gopakumar,, T. Brumme, J. Kröger, C. Toher, G. Cuniberti, and R. Berndt Institut für Experimentelle

More information

Theory of doping graphene

Theory of doping graphene H. Pinto, R. Jones School of Physics, University of Exeter, EX4 4QL, Exeter United Kingdom May 25, 2010 Graphene Graphene is made by a single atomic layer of carbon atoms arranged in a honeycomb lattice.

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

G. Gantefdr and W. Eberhardt Institut fiir Festkiirperforschung, Forschungszentrum Jiilich, 5170 Jiilich, Germany

G. Gantefdr and W. Eberhardt Institut fiir Festkiirperforschung, Forschungszentrum Jiilich, 5170 Jiilich, Germany Shell structure and s-p hybridization in small aluminum clusters G. Gantefdr and W. Eberhardt Institut fiir Festkiirperforschung, Forschungszentrum Jiilich, 5170 Jiilich, Germany Photoelectron spectra

More information

Electronic Properties of Atomic Wires: from Semiconductor Surfaces to Organic Chains and DNA. F. J. Himpsel

Electronic Properties of Atomic Wires: from Semiconductor Surfaces to Organic Chains and DNA. F. J. Himpsel Electronic Properties of Atomic Wires: from Semiconductor Surfaces to Organic Chains and DNA F. J. Himpsel One-dimensional phenomena Ultimate limit of nanowires, electronics Single chain of overlapping

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Method: Epitaxial graphene was prepared by heating an Ir(111) crystal to 550 K for 100 s under 2 x 10-5 Pa partial pressure of ethylene, followed by a flash anneal to 1420 K 1.

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Free Electron Model for Metals

Free Electron Model for Metals Free Electron Model for Metals Metals are very good at conducting both heat and electricity. A lattice of in a sea of electrons shared between all nuclei (moving freely between them): This is referred

More information

Free Electron Model for Metals

Free Electron Model for Metals Free Electron Model for Metals Metals are very good at conducting both heat and electricity. A lattice of in a sea of electrons shared between all nuclei (moving freely between them): This is referred

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

1. Robust hexagonal rings on Cu(111) Figure S1 2. Details of Monte Carlo simulations

1. Robust hexagonal rings on Cu(111) Figure S1 2. Details of Monte Carlo simulations Supporting Information for Influence of Relativistic Effects on Assembled Structures of V-Shaped Bispyridine Molecules on M(111) Surfaces where M = Cu, Ag, Au Xue Zhang, 1,ǁ Na Li, 1, Hao Wang, 1 Chenyang

More information

Organic semiconductor heterointerfaces containing bathocuproine

Organic semiconductor heterointerfaces containing bathocuproine JOURNAL OF APPLIED PHYSICS VOLUME 86, NUMBER 8 15 OCTOBER 1999 Organic semiconductor heterointerfaces containing bathocuproine I. G. Hill a) and A. Kahn Department of Electrical Engineering, Princeton

More information

Supporting Information

Supporting Information Supporting Information Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure- Property Relationships Hui Jiang 1*, Jun Ye 2,

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.5: Course Review and Summary Bryan W. Boudouris Chemical Engineering Purdue University 1 Understanding

More information

MPI Stuttgart. Atomic-scale control of graphene magnetism using hydrogen atoms. HiMagGraphene.

MPI Stuttgart. Atomic-scale control of graphene magnetism using hydrogen atoms. HiMagGraphene. MPI Stuttgart Atomic-scale control of graphene magnetism using hydrogen atoms HiMagGraphene ivan.brihuega@uam.es www.ivanbrihuega.com Budapest, April, 2016 Magnetism in graphene: just remove a p z orbital

More information

Supplementary Information. Reversible Spin Control of Individual Magnetic Molecule by. Hydrogen Atom Adsorption

Supplementary Information. Reversible Spin Control of Individual Magnetic Molecule by. Hydrogen Atom Adsorption Supplementary Information Reversible Spin Control of Individual Magnetic Molecule by Hydrogen Atom Adsorption Liwei Liu 1, Kai Yang 1, Yuhang Jiang 1, Boqun Song 1, Wende Xiao 1, Linfei Li 1, Haitao Zhou

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Photoelectron Spectroscopy

Photoelectron Spectroscopy Stefan Hüfner Photoelectron Spectroscopy Principles and Applications Third Revised and Enlarged Edition With 461 Figures and 28 Tables JSJ Springer ... 1. Introduction and Basic Principles 1 1.1 Historical

More information

Table S2. Pseudopotentials PBE 5.2 applied in the calculations using VASP

Table S2. Pseudopotentials PBE 5.2 applied in the calculations using VASP Supporting Information for Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy 1. Used vdw Coefficients PBE-vdW

More information

Chapter 14: Phenomena

Chapter 14: Phenomena Chapter 14: Phenomena p p Phenomena: Scientists knew that in order to form a bond, orbitals on two atoms must overlap. However, p x, p y, and p z orbitals are located 90 from each other and compounds like

More information

High resolution STM imaging with oriented single crystalline tips

High resolution STM imaging with oriented single crystalline tips High resolution STM imaging with oriented single crystalline tips A. N. Chaika a, *, S. S. Nazin a, V. N. Semenov a, N. N Orlova a, S. I. Bozhko a,b, O. Lübben b, S. A. Krasnikov b, K. Radican b, and I.

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/10/e1701661/dc1 Supplementary Materials for Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface Jun Hong Park,

More information

Molecular and carbon based electronic systems

Molecular and carbon based electronic systems Molecular and carbon based electronic systems Single molecule deposition and properties on surfaces Bottom Up Top Down Fundamental Knowledge & Functional Devices Thilo Glatzel, thilo.glatzel@unibas.ch

More information

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Weyl semimetal phase in the non-centrosymmetric compound TaAs Weyl semimetal phase in the non-centrosymmetric compound TaAs L. X. Yang 1,2,3, Z. K. Liu 4,5, Y. Sun 6, H. Peng 2, H. F. Yang 2,7, T. Zhang 1,2, B. Zhou 2,3, Y. Zhang 3, Y. F. Guo 2, M. Rahn 2, P. Dharmalingam

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information