Intercalation Compounds: Dichalcogenides

Size: px
Start display at page:

Download "Intercalation Compounds: Dichalcogenides"

Transcription

1 Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Intercalation Compounds: Dichalcogenides Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova

2 Metal dichalcogenides TM dichalcogenides often possess layered structures (a). The lattices consist of two close-packed chalcogen layers between which reside the metal ions. metal ions can be found in sites of trigonal prismatic (b) or octahedral (c) symmetry. Intralayer bond: strong and largely ionic Interlayer bond: van der Waals

3 Metal dichalcogenides The ability of the metal atom to adopt octahedral and trigonal prismatic coordination and for the X-M-X units to stack in different sequences gives rise to a wide variety of polymorphic and polytypic forms Brown and Beernsten notation Polytype designation Stacking sequence Examples Metal coordination 1T ab/ca MX 2 (M=Ti, Zr, Hf, V; X = S, Se, Te) Octahedral 2Ha BaB/CaC MX 2 (M=Ta, Nb; X = S, Se) Trigonal prismatic 2Hb BcB/CbC TaSe 2, NbSe 2 Trigonal prismatic 4Hb ab/cac/bac/bab/ca TaSe 2, TaS 2 Octahedral, Trigonal prismatic Chalcogen layer illustrating the stacking sequence notation A, B, C = different anions in the layer; a, b, c = different metal sites; [a], [b], [c] = intercalated guest ions.

4 Metal dichalcogenides 1T = the simplest structure: all octahedral metals and one X-T-X slab per unit cell; 2Ha and 2Hc = the two most common polytypes of the all-prismatic structures; two layers per unit cell. 2Ha (frequently referred to as 2H): the metal atoms lie directly above each other. 2Hc (frequently referred as 2H MoS 2 ): the metal atoms are staggered. 4Hb = mixed octahedral/trigonal prismatic structure (110) Projections of layered TM dichalcogenides

5 Organic intercalation compounds A wide range of organic molecules form intercalation compounds. All the reactions are characterized by an expansion of the crystal lattice along the c direction to an extent that may be correlated with the molecular dimensions of the guest and the stoichiometry. Stabilities vary and depend on the nature of guest and host; highest stabilities = 2H TaS 2, 2H NbS 2, 1T TiS 2 ; 2H NbSe 2 does not form organic IC compounds with the exception of ethylendiamine. Generic class Amines Phosphines Amides Amine oxides Phosphine oxides N-heterocycles Isocyanides Examples RNH 2, R 2 N, R 3 N, H 2 N(CH 2 ) n NH 2 R 3 P RCONH 2, CO(NH 2 ) 2 Pyridine N-oxide R 3 PO Pyridine, substituted pyridines RNC Organic molecules that form IC compounds

6 Organic intercalation compounds: synthesis Intercalation reactions with organic compounds are usually carried out by direct reaction of the dichalcogenide in powder form with the organic compound or with a benzene or toluene solution for high molecular weight systems. In some cases reactions are facilitated by pretreatment of the dichalcogenide with ammonia or hydrazine. The progress of the reaction can be followed (qualitatively) by observing the volume expansion of the solid phase or (quantitatively) by means of XRD. The host lattice may be recovered unchanged by thermal deintercalation of the organic molecules at temperature higher than the initial reaction T ( C).

7 n-alkylamines: C n H 2n+1 NH 2 2H TaS 2 A complete series of samples for n = 1 to 18 was prepared by direct reaction with the amine or amine in benzene solution for n > 12 at 25 C for 30 days. n 4: hydrocarbon chains parallel to the dichalcogenide layers; 5 n 11:?; n 12: perpendicular orientation; composition = A 2/3 TaS 2 (A = amine) NH 2 - groups adjacent to the layers to interact with the Ta through the nitrogen lone pair. Schematic representation of the structure of (octadecylamine) 2/3 TaS 2

8 n-alkylamines: C n H 2n+1 NH 2 2H TaS 2 Increase in the interlayer spacing (triangles) and the onset temperature for superconduttivity (circles) as a function of n in C n H 2n+1 NH 2 for the n-alkylamine intercalation compounds of TaS 2.

9 TaS 2, TiS 2, NbS 2 n 9,10 Direct reaction C for several days; Indirect reaction: dichalcogenide preintercalated n-alkylamines: C n H 2n+1 NH 2 with ammonia or hydrazine and then reacted for some hours at 100 C. n > 10 Displacement reactions of amine intercalation compound of lower C number. d = d host + 2[(n-1) )]Å CH 2 C-N NH 2 CH 3

10 Groups VI dichalcogenides n-alkylamines: C n H 2n+1 NH 2 IC compounds can be prepared by ion-exchange reactions of the hydrated sodium intercalation compound Na 0.1 (H 2 O) 0.6 MoS 2 1 n 5; c-spacing = constant; 6 n < 11: c increases linearly with Δd/n = 2.3 per C, implying a bilayer tilted at 68 ; n > 11 alkylammonium cations are perpendicular.

11 Organic guests: Pyridine The reactivity of pyridine is closely analogous to that exhibited by ammonia. Direct reaction of 2H-TaS 2 with pyridine leads to the formation of the first stage phase with limiting composition The reaction proceeds until the limiting first stage composition TaS 2 (py) 0.5. Three models for the orientation of pyridine molecules between dichalcogenide layers

12 Organic guests: Pyridine Neutron diffraction studies on TaS 2 (py-d 5 ) 0.5 have determined that the nitrogen lone pair is directed parallel to the layers. Pyridine sublattice is ordered at RT in both (py) 1/2 TaS 2 and (py) 1/2 NbS 2 : rectangular superlattice 2a 3 x 13a. Schematic representation of the packing and orientation of the guests in TaS 2 (Py) 0.5

13 Bonding in organic intercalation compounds Correlation was observed between pyridine basicity and intercalation capability. Difficulty with the lone pair donor model because NH 3 and py IC compounds have the nitrogen lone pair midway between and parallel to the layers precluding a direct interaction with the d z 2 orbital. Bonding is described as an electrostatic interaction between negatively charged layers and cations, analogous to alkali and organometallic intercalation compounds. 2 py bipy + 2H e - x py + xh+ xpyh + xpyh + + (0.5 x)py + xe - + TaS 2 (pyh + ) x (py) 0.5-x TaS 2

14 Metal Ion Guests 1959 Rudorff and Sick Alkali metals in liquid ammonia + TiS Rudorff Alkaline earth ions, Eu 2+, Yb 2+ + TiS 2 Whittingham and Gamble Rouxel et al Hydrated metal intercalates: A x MX 2 (H 2 O) y

15 a) High-temperature synthesis from the host material and the metal of the elements; b) Intercalation of the host material with a solution of the metal (alkali metal in liquid ammonia, butyllithium, sodium naphthalide); c) Electrochemical intercalation. Synthesis Cointercalation of the solvent is also possible with metods b) and c) (cointercalated ammonia, as an example, has to be removed by heat treatment); Methods b) and c) are RT methods so metastable phases may be produced and equlibration may take long time. Example: Na x TiS 2 Method Stage 3 Stage 2 Stage 1 (trigonal prismatic) Stage 1 (trigonal antiprismatic) b 0.17 < x < < x < < x 1 b? < x < < x < < x 1 c?? 0.46 < x < < x 1 c? < x < < x < < x <? 0.81 < x 1

16 Ordering of the intercalate ions At low enough temperatures the ions will order on superlattices for certain fractional values of the composition; as the temperature increases, the disorder increases, and, at a critical temperature, le long-range order collapses and the system becomes disordered. At low temperatures these ordered phases will have a compositional range. The stoichiometry can be varied within certain limits by creating vacancies or adding interstitial atoms. Depending on the coordination of the intercalate ion, the sublattice in the van der Waals gap is (1) a honeycomb lattice (trigonal prismatic coordination, TP), (2) a triangular lattice (octahedral coordination, O), or (3) a puckered honeycomb lattice (tetrahedral coordination, T).

17 Selected examples of intercalation compounds formed by the metal disulphides with different guest ions and molecules CRD Li + K + Cs Ionic radii

18 Lithium intercalated lamellar metal dichalcogenides Host = TiS 2 A single homogeneous phase has been found for the entire stoichiometry range Li x TiS 2 (0 x 1) Lithium occupies the octahedral interlayer sites and the final product, LiTiS 2, is isostructural with LiVS 2 and LiCrS 2. only a small expansion along the c-axis is required to accomodate this cation.

19 Alkali metal intercalated lamellar dichalcogenides The structures adopted by intercalation compounds formed with other alkali metals are much more varied, as these larger ions can occupy either octahedral or trigonal prismatic interlayer sites. Phase relations for the alkali metal intercalates of TiS 2 and ZrS 2. I, II and IV indicate 1st, 2nd and 4th stage intercalates, respectively. At low alkali metal concentrations (except lithium) staging results in the formation of compounds with alternating sequences of filled and empty van der waals gaps.

20 Ammonia as a guest Anhydrous ammonia + layered metal dichalcogenide at 78 C followed by warming to RT leads to a rapid reaction. The onset of intercalation is marked by swelling of the sample and often a slight colouration of the solution. The reaction proceeds until the limiting first stage composition MX 2 NH 3 is achieved. readily loses NH 3 to go to the second stage material MX 2 (NH 3 ) 0.5. (1+x/3) NH 3 + TaS 2 x/6 N 2 + (NH 4+ ) x (NH 3 ) 1-x TaS 2 These materials contain NH 4+ solvated by neutral molecules. Ammonia orientation seems to be determined by the ion-dipole interactions with the NH 4+ cations Schematic representation of the packing and orientation of the guests in TaS 2 (NH 3 )

21 Organometallic guests and orientation The lattice expansion of ca 5.3 Å observed for all simple metallocene intercalates does not immediately reveal the orientation of the guest. These molecules have almost a spherical van der Waals surface Van der Waals dimensions of cobaltocene X-ray and neutron diffraction techniques applied to MS 2 {Co(Cp) 2 } x (M = Zr, Sn, Ta; x = ):

22 Organometallic guests and orientation > Second ring size > lattice expansion In general organometallic sandwich complexes always adopt a preferred orientation in which their metal-to-ring centroid axes lie parallel to the host layer planes.

23 Macromolecular guests Intercalation of poly(ethyleneoxide) PEO with an average molecular weight of ca Daltons into MS 2 (M = Mo, Ti) by means of two synthetic approaches: Delamination of the metal sulphides in aqueous suspension with an acetonitrile solution of PEO/LiClO 4 followed by reconstitution of the lamellar structure upon drying. Treatment of the lithium intercalate LiMS 2 with an aqueous solution of PEO and LiClO 4. These materials behave as semiconductors with reduced band gaps.

24 Electronic Structure and Bonding Schematic representation of the band structures of the layered Group IVB, VB, and VIB TM dichalcogenides The valence electrons of the alkali atoms are transferred to the TX 2 sandwich filling the lowest unoccupied d-band levels. The dispersion and relative position of the d bands stay almost unchanged upon intercalation. The upper conduction and lower valence bands change considerably

25 PROFOUND CHANGES IN THE ELECTRONIC PROPERTIES OF THE HOST Host Host Properties Intercalate Intercalate Properties 1T-HfS 2 2H-NbSe 2 2H-MoS 2 wide band gap semiconductor metal superconductor diamagnetic semiconductor K x HfS 2 metal K x NbSe 2 poor metal (x = 1) expect a semiconductor K x MoS 2 superconductor

Solid-gas reactions. Direct reaction of between the elements

Solid-gas reactions. Direct reaction of between the elements Solid-gas reactions Overcoming the problems related to poor contact in solid-solid reactions Excess gas is often used in order to shift reaction towards products. Example: Si 3 N 4 α- and β-phase. (α-si

More information

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: New materials

Laurea Magistrale in Scienza dei Materiali. Materiali Inorganici Funzionali. Electrolytes: New materials Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Electrolytes: New materials Prof. Antonella Glisenti - Dip. Scienze Chimiche - Università degli Studi di Padova PEROVSKITES AS

More information

Intercalation Compounds: Metal phosphate and phosponates Metal phosphorus trisulphides

Intercalation Compounds: Metal phosphate and phosponates Metal phosphorus trisulphides Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali Intercalation Compounds: Metal phosphate and phosponates Metal phosphorus trisulphides Prof. Dr. Antonella Glisenti -- Dip. Scienze

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Subject Chemistry Paper No and Title Paper 1: ORGANIC - I (Nature of Bonding Module No and Title Module Tag CHE_P1_M10 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Non-Covalent Interactions

More information

TOPIC 4 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 IONIC BONDING

TOPIC 4 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 IONIC BONDING TOPIC 4 ANSWERS & MARK SCEMES QUESTIONSEET 1 IONIC BONDING a) A bond formed by the complete transfer of one or more electrons from one atom to another to form ions of opposite charge which attract each

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

Chem Selected Aspects of Main Group Chemistry

Chem Selected Aspects of Main Group Chemistry Selected Aspects of Main Group Chemistry For the rest of the course, we will look at some aspects of the chemistry of main group compounds. The basic principles that you have learned concerning atoms,

More information

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to 62. 2. In 1869 Russian

More information

NAME: FIRST EXAMINATION

NAME: FIRST EXAMINATION 1 Chemistry 64 Winter 1994 NAME: FIRST EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

4. Interpenetrating simple cubic

4. Interpenetrating simple cubic 2 1. The correct structure t of CsClCl crystal is 1. Simple cubic 2. Body centered cubic 3. Face centered cubic 4. Interpenetrating simple cubic If corner as well as the particle at the center are same

More information

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid

The Solid State. Phase diagrams Crystals and symmetry Unit cells and packing Types of solid The Solid State Phase diagrams Crystals and symmetry Unit cells and packing Types of solid Learning objectives Apply phase diagrams to prediction of phase behaviour Describe distinguishing features of

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Polar Molecules. Textbook pg Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule

Polar Molecules. Textbook pg Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule Textbook pg. 251-283 Polar Molecules Molecules in which the charge is not distributed symmetrically among the atoms making up the molecule Electronegativity and Polar Molecules Pauling realized that electron

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements

Topic 2. Structure and Bonding Models of Covalent Compounds of p-block Elements Topic 2 2-1 Structure and Bonding Models of Covalent Compounds of p-block Elements Bonding 2-2 Many different approaches to describe bonding: Ionic Bonding: Elements with large electronegativity differences;

More information

Metallic and Ionic Structures and Bonding

Metallic and Ionic Structures and Bonding Metallic and Ionic Structures and Bonding Ionic compounds are formed between elements having an electronegativity difference of about 2.0 or greater. Simple ionic compounds are characterized by high melting

More information

CHEMICAL BONDING. Chemical bond is the force which holds two or more atoms or ions together in a stable molecule.

CHEMICAL BONDING. Chemical bond is the force which holds two or more atoms or ions together in a stable molecule. SN Kansagra School CHEMISTRY CHAPTER - 2 CHEMICAL BONDING STD. X Chemical bond is the force which holds two or more atoms or ions together in a stable molecule. AN ATOM An atom is the smallest unit of

More information

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur QUESTION (2017:1) (iii) Sodium chloride, NaCl, is another compound that is excreted from the body in sweat. Use your knowledge of structure and bonding to explain the dissolving process of sodium chloride,

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production by photocatalytic water splitting Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Hydrogen production by photocatalytic water splitting Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Some properties of water

Some properties of water Some properties of water Hydrogen bond network Solvation under the microscope 1 Water solutions Oil and water does not mix at equilibrium essentially due to entropy Substances that does not mix with water

More information

CAREER POINT. PRE FOUNDATON DIVISION FACULTY SELECTION TEST CHEMISTRY [Time : 2 Hr.] [Max. Marks : 60]

CAREER POINT. PRE FOUNDATON DIVISION FACULTY SELECTION TEST CHEMISTRY [Time : 2 Hr.] [Max. Marks : 60] CAREER POINT PRE FOUNDATON DIVISION FACULTY SELECTION TEST CHEMISTRY [Time : 2 Hr.] [Max. Marks : 60] INSTRUCTIONS : 1. Attempt all questions. 2. Indicate your answer on the question paper itself. 3. Each

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

(for tutoring, homework help, or help with online classes)

(for tutoring, homework help, or help with online classes) www.tutor-homework.com (for tutoring, homework help, or help with online classes) Question 1 An atom loses an electron to another atom. Is this an example of a physical or chemical change? Question 2 Physical

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Topics in the June 2006 Exam Paper for CHEM1901

Topics in the June 2006 Exam Paper for CHEM1901 June 006 Topics in the June 006 Exam Paper for CHEM1901 Click on the links for resources on each topic. 006-J-: 006-J-3: 006-J-4: 006-J-5: 006-J-6: 006-J-7: 006-J-8: 006-J-9: 006-J-10: 006-J-11: 006-J-1:

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Study on Magnetic Properties of Vermiculite Intercalation compounds

Study on Magnetic Properties of Vermiculite Intercalation compounds Study on Magnetic Properties of Vermiculite Intercalation compounds M. Suzuki and I.S. Suzuki Department of Physics, State University of New York at Binghamton (October, ) I. INTRODUCTION In recent years

More information

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M11/4/CHEMI/SPM/ENG/TZ/XX 116116 CHEMISTRY STANDARD LEVEL PAPER 1 Monday 9 May 011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

PROGRESS IN INTERCALATION RESEARCH

PROGRESS IN INTERCALATION RESEARCH PROGRESS IN INTERCALATION RESEARCH Edited by W. MÜLLER-WARMUTH Institute ofphysical Chemistry Westphalian Wilhelms University Münster, Germany and R. SCHÖLLHORN Institute of Inorganic and Analytical Chemistry

More information

Covalent bonding does not involve electrostatic attraction between oppositely charged particles.

Covalent bonding does not involve electrostatic attraction between oppositely charged particles. SCH3U7 - Topic 4: Bonding Review SL Which of these bonding types would not be classified as strong? Metallic Covalent Ionic Dipole dipole The bond dissociation energy of NaCl is 411 kj mol -1, while that

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

St. Joseph s College of Arts & Science (Autonomous) Cuddalore QUESTION BANK SECTION-A

St. Joseph s College of Arts & Science (Autonomous) Cuddalore QUESTION BANK SECTION-A St. Joseph s College of Arts & Science (Autonomous) Cuddalore 607001 QUESTION BANK CLASS: II - B.Sc., CHEMISTRY SUBJECT: INORGANIC CHEMISTRY-II SUBJECT CODE: CH305T UNIT-I 1) The golden spangle is a) PbCrO4

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Core UNIT 4: The Octet Rule & Chemical Bonding

Core UNIT 4: The Octet Rule & Chemical Bonding Core UNIT 4: The Octet Rule & Chemical Bonding Section 1: The Octet Rule Section 2: Ionic Bonding & Ionic Compounds Section 3: Covalent Bonding & Molecules Section 4: Periodic Table Trends Core UNIT 4

More information

Unit Test: Bonding. , is best described as: A. bent. B. linear. C. T-shaped. D. triangular.

Unit Test: Bonding. , is best described as: A. bent. B. linear. C. T-shaped. D. triangular. Unit Test: Bonding SCH3UE_2009-2010_V1 NAME: Multiple Choice ( 10) 1. Which substance has the lowest electrical conductivity? A. Al (s) B. Al 2 O 3(s) C. KCl (aq) D. HCl (aq) 2. Which bond has the lowest

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

201. The Nature o f the Metallic Bond. III

201. The Nature o f the Metallic Bond. III No. 8] 913 201. The Nature o f the Metallic Bond. III Atomic Interactions in Alloys. I By San-ichiro MIZUSHIMA, M.J.A., and Isao Ichishima Tokyo Research Institute, Yawata Iron and Steel Co. Ltd., Ida,

More information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New

More information

Atoms and The Periodic Table

Atoms and The Periodic Table Atoms and The Periodic Table A. Early Models of the Atom 1. The earliest models of the atom came in the 5 th century B.C. when In the 4 th century, B.C., rejected this idea and proposed that earthly matter

More information

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Types of Chemical Bonds Information about the strength of a bonding interaction is obtained by measuring the bond energy, which is the energy

More information

1.1 The Fundamental Chemistry of life

1.1 The Fundamental Chemistry of life 1.1 The Fundamental Chemistry of life Matter makes up everything in the universe, including all living organisms. Matter is composed of elements, a pure substance that cannot be broken down into simpler

More information

NAME: Inorganic Chemistry 412/512 Final Exam. Please show all work, partial credit may be awarded.

NAME: Inorganic Chemistry 412/512 Final Exam. Please show all work, partial credit may be awarded. NAME: Inorganic Chemistry 412/512 inal Exam 110 minutes Please show all work, partial credit may be awarded. 1. Given the following ligand field splitting parameters (in cm 1 ): Δ (e 3+ ) = 14000 Δ T (e

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

CHEMICAL COMPOUNDS AND THEIR CHARACTERISTIC PROPERTIES

CHEMICAL COMPOUNDS AND THEIR CHARACTERISTIC PROPERTIES Seminar_2 1. Chemical compounds and their characteristic properties. 2. Types of chemical bonds (theses). 3. Basic types of complex compounds (theses). 4. Stability of complex compounds. TEST 2_ Chemical

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons Atomic Structure Neutrons: neutral Protons: positive charge (1.6x10 19 C, 1.67x10 27 kg) Electrons: negative charge (1.6x10 19 C, 9.11x10 31 kg) Atomic weight = m protons + m neutrons Atomic number (Z)

More information

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES DIFFERENT TYPES OF INTEMOLECULAR FORCES Do all the exercises in your studyguide COMPARISON OF THE THREE PHASES OF MATTER. Matter is anything that occupy space and has mass. There are three states of matter:

More information

DATE: NAME: CLASS: BLM 1-9 ASSESSMENT. 2. A material safety data sheet must show the date on which it was prepared.

DATE: NAME: CLASS: BLM 1-9 ASSESSMENT. 2. A material safety data sheet must show the date on which it was prepared. Chapter 1 Test Goal Demonstrate your understanding of the information presented in Chapter 1. What to Do Carefully read the instructions before answering each set of questions. True/False On the line provided,

More information

There are two types of bonding that exist between particles interparticle and intraparticle bonding.

There are two types of bonding that exist between particles interparticle and intraparticle bonding. There are two types of bonding that exist between particles interparticle and intraparticle bonding. Intraparticle bonding describes the forces that exist within a particle such as a molecule or ionic

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

7. Relax and do well.

7. Relax and do well. CHEM 1014 Exam III John III. Gelder November 18, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

- A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged.

- A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged. POLARITY and shape: - A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged. POLARITY influences several easily observable properties. -

More information

MA Selection Chemistry example test questions. Time: 180 minutes. This test consists of four main questions Main

MA Selection Chemistry example test questions. Time: 180 minutes. This test consists of four main questions Main MA Selection 2019-2020 Chemistry example test questions Time: 180 minutes This test consists of four main questions Main question Maximum Points 1 40 2 30 3 15 4 15 1 Twenty multiple choice questions (2

More information

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts What do I need to know about electrochemistry? Electrochemistry Learning Outcomes: Candidates should be able to: a) Describe

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #4 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Chemical Bonding I. MCQ - Choose Appropriate Alternative 1. The energy required to break a chemical bond to

More information

Chemical Bonding Basic Concepts

Chemical Bonding Basic Concepts Chemical Bonding Basic Concepts Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that particpate in chemical bonding. Group e - configuration # of valence

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

CHAPTER-9 NCERT SOLUTIONS

CHAPTER-9 NCERT SOLUTIONS CHAPTER-9 NCERT SOLUTIONS Question 9.1: Justify the position of hydrogen in the periodic table on the basis of its electronic configuration. Hydrogen is the first element of the periodic table. Its electronic

More information

Answers and Explanations

Answers and Explanations Answers and Explanations 1. The correct answer is (A). Sodium forms +1 ions in solution, for example NaCl and NaOH. 2. The correct answer is (C). Mercury is the only metal which exists as a liquid in its

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Review for Chapter 4: Structures and Properties of Substances

Review for Chapter 4: Structures and Properties of Substances Review for Chapter 4: Structures and Properties of Substances You are responsible for the following material: 1. Terms: You should be able to write definitions for the following terms. A complete definition

More information

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1 Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical species

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name Name Practice Exam: Paper 1 Topic 4: Bonding SL SL Score! /30 HL Score! /48 1. What is the correct Lewis structure for hypochlorous acid, a compound containing chlorine, hydrogen and oxygen? A. B. C. D.

More information

Chem 241. Lecture 21. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 21. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 21 UMass Amherst Biochemistry... Teaching Initiative Announcement March 26 Second Exam Recap Calculation of space filling Counting atoms Alloys Ionic Solids Rock Salt CsCl... 2 ZnS Sphalerite/

More information

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY !! www.clutchprep.com CONCEPT: HYBRID ORBITAL THEORY The Aufbau Principle states that electrons fill orbitals in order of increasing energy. If carbon has only two unfilled orbitals, why does it like to

More information

Defects. Defects. Kap. 3 States of aggregation. Perfect Crystal

Defects. Defects. Kap. 3 States of aggregation. Perfect Crystal Kap. 3 States of aggregation Defects Perfect Crystal A A perfect crystal with every atom in the correct position does not exist. Only a hypothetical situation at 0 K Crystals are like people: it is the

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

(b) electrovalent and covalent (c) electrovalent and co-ordinate (d) covalent and co-ordinate 10. Which pair is different from others (a) Li Mg (b)

(b) electrovalent and covalent (c) electrovalent and co-ordinate (d) covalent and co-ordinate 10. Which pair is different from others (a) Li Mg (b) 1. Following triads have approximately equal size (a) Na+, Mg 2+, Al 3+ (iso-electronic) (b) F, Ne, O 2 (iso-electronic) (c) Fe, Co, Ni (d) Mn+, Fe 2+, Cr (iso-electronic) 2. Which of the following halides

More information

3.012 Quiz Fall points total

3.012 Quiz Fall points total 3.012 Quiz 1 3.012 09.23.04 Fall 2004 100 points total Structure (50 points total): 1.. (16 points). Let s consider an ionic compound of composition A 2 B 3 in which the coordination number C NA of every

More information

Differentiaton: Redistribution of mass (elements) and energy by chemical & physical processes. Goal: Quantitative understanding of those processes.

Differentiaton: Redistribution of mass (elements) and energy by chemical & physical processes. Goal: Quantitative understanding of those processes. Differentiaton: Redistribution of mass (elements) and energy by chemical & physical processes. Goal: Quantitative understanding of those processes. 1 2 What controls the periodicity of behavior of the

More information

2. Bonding Ionic Bonding

2. Bonding Ionic Bonding 2. Bonding Ionic Bonding Metal atoms lose electrons to form +ve ions. on-metal atoms gain electrons to form -ve ions. Mg goes from 1s 2 2s 2 2p 6 3s 2 to Mg 2+ 1s 2 2s 2 2p 6 goes from 1s 2 2s 2 2p 4 to

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Downloaded from

Downloaded from Points to Remember Class: XI Chapter Name: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical

More information

Supporting information for

Supporting information for Supporting information for Metallic Few-layered VS 2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors Jun Feng, Xu Sun, Changzheng Wu*, Lele Peng, Chenwen Lin, Shuanglin

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Ch. 7- Periodic Properties of the Elements

Ch. 7- Periodic Properties of the Elements Ch. 7- Periodic Properties of the Elements 7.1 Introduction A. The periodic nature of the periodic table arises from repeating patterns in the electron configurations of the elements. B. Elements in the

More information

BASICS OUTLINE 8/23/17. Start reading White (CH 1) QoD Schedule

BASICS OUTLINE 8/23/17. Start reading White (CH 1) QoD Schedule BASICS Start reading White (CH 1) QoD Schedule OUTLINE Periodic table & electronic configurations. Periodic properties: ionic radius, electron negativity, 1st ionization potential Covalent & ionic bonding

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

Crystalline Solids. Amorphous Solids

Crystalline Solids. Amorphous Solids Crystal Structure Crystalline Solids Possess rigid and long-range order; atoms, molecules, or ions occupy specific positions the tendency is to maximize attractive forces Amorphous Solids lack long-range

More information

SHAPES OF EXPANDED VALENCE MOLECULES

SHAPES OF EXPANDED VALENCE MOLECULES 228 SHAPES OF EXPANDED VALENCE MOLECULES There are five atoms bonded to the central phosphorus atom, and they will attempt to get as far apart as possible from one another! The top and bottom atoms are

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Multiple Choice. Multiple Choice

Multiple Choice. Multiple Choice 1. At what temperature in degree Celcius is the value in degree Fahrenheit twice of that in degree Celcius? A) 160 o C B) -24.6 o C C) 6.4 o C D) 22.2 o C E) 32 o C 2. The correct name for NaOCl is, A)

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information