Biochemistry 3300 Problems (and Solutions) Metabolism I

Size: px
Start display at page:

Download "Biochemistry 3300 Problems (and Solutions) Metabolism I"

Transcription

1 (1) Provide a reasonable systematic name for an enzyme that catalyzes the following reaction: fructose + ATP > fructose-1 phosphate + ADP (2) The IUBMB has a developed a set of rules for classifying enzymes based upon the type of reaction they catalyze. The classification scheme assigns an Enzyme Commission (EC) number to each enzyme. Answer the following questions regarding EC numbers and the class of reaction catalyzed: (a) What name is associated with class 4 enzymes and what type of reaction do they catalyze? (b) Oxidoreductases catalyze redox reactions. What class of enzymes are oxidoreductases? (c) What types of reactions are catalyzed by ligases? (3) List four characteristics that define a metabolic pathway. (4) Identify two amino acids that commonly act as nucleophiles in enzyme catalyzed reactions. (5) What is the difference between an (1) isomerization reaction and (2) a rearrangement? (6) Enzyme catalyzed reactions that make or break C-C bonds typically involve carbanion intermediates. One means of stabilizing a carbanion intermediate involves the formation of a Schiff's base. Draw a strcuture of : (a) a Schiff's base carbanion (b) the resonance stabilized Schiff's base in the eneamine form (7) How can metabolic inhibitors be used to determine the sequence of reactions in a metabolic pathway? (8) Isotopes of C, N, S, P and H have been extensively used to investigate metabolic pathways. Why? (9) The standard transformed free energy change for the following bimolecular reaction: Glucose + ATP ----> Glucose-6-phosphate + ADP is kj/mol. Consequently, this reaction is spontaneous under standard conditions. Under what conditions would this reaction NOT be spontaneous at 298K? (10) If an enzyme catalyzed the direct transfer of a phosphate to glucose Glucose + P i ---> Glucose-6-phosphate the standard, transformed free energy change would be kj/mol. Under what conditions would this reaction be favourable at 298K?

2 (11) Place an 'x' on each of the high energy bonds shown in the structures below. (12) Consider the oxidation-reduction reaction between cytochrome b and ubiquinol. (a) What is the G'º for the reduction of cytochrome b by ubiquinol? (Note: you will need to use the tables of standard reduction potentials) (b) Under what conditions will the reduction of cytochrome b by ubiquinol be favourable at 298K? (13) Indicate whether the following statements are true or false. If false, change a single word or number to make the statement true. (a) (6-13 C)Glucose (ie. C6 label) is converted to (1-13 C)Glyceraldehyde-3-phosphate during the preparatory phase of glycolysis. (b) Phosphoglycerate kinase requires catalytic amounts of 2,3-bisphosphoglycerate for activity. (c) Glyceraldehyde-3-phosphate dehydrogenase couples the addition of phosphate to glyceraldehyde-3-phosphate and the reduction of NAD +. (14) Identify the glycolytic enzyme with the following properties: (a) Forms a Schiff's base intermediate during its catalytic cycle. (b) Synthesized in an inactive form. (c) Is inhibited by alkylating agents such as iodoacetate. (d) Is a lyase. (15) Answer the following questions regarding glycolysis: (a) What is the overall chemical reaction for the 'preparatory' phase of glycolysis? (b) What is substrate-level phosphorylation? (c) Under cellular conditions, which glycolytic enzymes are likely to be regulatory targets? (d) Which glycolytic intermediates are 'high-energy' compounds?

3

4 Answers 1- Fructose:ATP phosphotransferase or Fructose:ATP kinase 2- (a) Lyases catalyze group eliminations that form double bonds (b) Class 1 (c) Bond formation coupled to ATP hydrolysis. 3- Metabolic pathways are (1) irreversible, (2) have a committed step, (3) are regulated and (4) catabolic and anabolic pathways differ. 4- Serine, threonine and cysteine are nucleophilic in their ionized form, while histidine and lysine are nucleophiles in their neutral-charged form. 5- Isomerization reactions inevitably involve the movement of an H atom without changing the carbon backbone while rearrangements involve changes to the carbon backbone. 6-(a) Schiff's base carbanion (b) Schiff's base eneamine form 7- Metabolic inhibitors specifically block a metabolic pathway and result in the accumulation of metabolic pathway intermediates. By identifying the metabolic pathway intermediate(s) that accumulate, one can identify the step in a metabolic pathway that has been inhibited. The use of several metabolic inhibitors that act at different points in the pathway (together with 'chemical intuition') is sufficient to propose and verify the sequence of reactions associated with a metabolic pathway. 8- Greatest difficulty in metabolism research is identifying the intermediates of a metabolic pathway. The large number of related compounds in an organism make the identification of metabolic intermediates difficult. Further, many metabolic intermediate are only present at very low levels making them difficult to detect. The use of isotopes (especially radioisotopes) can overcome this problem as they can be readily detected at very low concentrations and serve to 'tag' or 'label' each of the metabolic intermediates of a pathway. 9 - Reactions are only spontaneous when the G' < 0. Given our equation for calculating G': G' = G' + RT ln ([Products]/[Reactants]) 0 > G' + RT ln ([Products]/[Reactants]) for a spontaneous reaction 0 > kj mol J mol -1 K K ln ([Products]/[Reactants]) 16.7 kj mol -1 / 2.48 kj mol -1 > ln ([Products]/[Reactants])

5 6.73 > ln ([Products]/[Reactants]) e 6.73 > ([Products]/[Reactants]) > ([Products]/[Reactants]) When the ratio of Products to Reactants is greater than or equal to 837.1, the reaction will no longer be spontaneous. (Note, at exactly fold excess of products to reactants the reaction will be at equilibrium) 10 - This reaction will only be favourable when G' is negative. G' = G' + RT ln ([Products]/[Reactants]) 0 > G' + RT ln ([Products]/[Reactants]) for a spontaneous reaction 0 > 13.8 kj mol J mol -1 K K ln ([Products]/[Reactants]) kj mol -1 / 2.48 kj mol -1 > ln ([Products]/[Reactants]) > ln ([Products]/[Reactants]) e > ([Products]/[Reactants]) > ([Products]/[Reactants]) or < ([Reactants]/[Products]) While the reactant concentration is fold higher (or more) than the product concentration, the reaction will be favourable Please note that in the case of PEP (left) and 1,3-bisphosphoglycerate (top-middle) you could have placed the 'x' on the adjacent anhydride-like bond. 12- (a) Cyto b (ox) + e - cyto b (red) 0.077V ubiquinol + H 2 ubiquinone + 2e - + 2H V 2 Cyto b (ox) + ubiquinol + H 2 2 cyto b (red) + 2H V G'º = -nf E'º = -2 (96.5 kj/v mol) (0.032 V mol) = -6.2 kj/mol (b) There are two ways to solve this problem; using standard reduction potentials or using free energy changes.

6 G' = G' + RT ln ([Products]/[Reactants]) 0 > G' + RT ln ([Products]/[Reactants]) for a spontaneous reaction 0 > -6.2 kj mol J mol -1 K K ln ([Products]/[Reactants]) -6.2 kj mol -1 /2.48 kj mol -1 > ln ([Products]/[Reactants]) > ([Products]/[Reactants]) or 12.1[Reactants] > [Products] The reaction will no longer be favourable when the products are 12.1 times more concentrated than reactants. OR E' = E ' - (RT/nF) ln ([Products]/[Reactants]) 0 < E ' - (RT/nF) ln ([Products]/[Reactants]) for a spontaneous reaction 0 < V - (8.31 J mol -1 K K / (2) 96,480 J V -1 mol -1 ) ln ([Products]/[Reactants]) 0 < V ( V) ln ([Products]/[Reactants]) V/ V > ln ([Products]/[Reactants]) 12.1 > ([Products]/[Reactants]) or 12.1[Reactants] > [Products] The reaction will no longer be favourable when the products are 12.1 times more concentrated than reactants. 13- (a) False. Change 1 to 3. (b) False. Change kinase to mutase. (c) True. 14- (a) Aldolase catalyzes the cleavage of a C-C bond via a Schiff's base. (b) Phosphoglycerate Mutase must be activated by 2,3-bisphosphoglycerate. (c) Glyceraldehyde-3-phosphate dehydrogenase has an active site thiol. (d) Enolase forms a double bond while eliminating a H 2 O molecule Aldolase forms a ketone while eliminating glyceraldehyde-3-phosphate. 15- (a) Glucose + 2ATP 2 Glyceraldehyde-3-phosphate + 2ADP (b) P i is a substrate in the formation of a 'high-energy' phosphodiester. In glycolysis, glyceraldehyde-3-phosphate, P i and NAD + are converted to 1,3-bisphosphoglycerate and NADH + H +. Phosphate addition to the aldehyde of glyceraldehyde-3-phosphate generates a 'high-energy' phosphodiester bond in 1,3-bisphosphoglycerate. (c) Regulatory targets are typically enzymes that catalyze reactions with large G'. In the particular case of glycolysis, only hexokinase, phosphofructokinase and pyruvate kinase have large G's and are regulatory targets. Aldolase (unfavourable under standard conditions) and phosphoglycerate kinase (Energy coupled with glyceraldehyde-3-phosphate Dehydrogenase) have much smaller G's under cellular conditions and are not regulatory targets. (d) 1,3-bisphosphoglycerate, phosphoenolpyruvate

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H +

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H + Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry ATP 4- + 2 ADP 3- + P i 2- + + Chapter 15 part 2 Dr. Ray 1 Energy flow in biological systems: Energy Transformations

More information

Energy in Chemical and Biochemical Reactions

Energy in Chemical and Biochemical Reactions Energy in Chemical and Biochemical Reactions Reaction Progress Diagram for Exothermic Reaction Reactants activated complex Products ENERGY A + B Reactants E a C + D Products Δ rxn Reaction coordinate The

More information

CHAPTER 15 Metabolism: Basic Concepts and Design

CHAPTER 15 Metabolism: Basic Concepts and Design CHAPTER 15 Metabolism: Basic Concepts and Design Chapter 15 An overview of Metabolism Metabolism is the sum of cellular reactions - Metabolism the entire network of chemical reactions carried out by living

More information

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course Basic Concepts of Metabolism Chapter 15, Stryer Short Course Digestion Formation of key intermediate small molecules Formation of ATP Stages of Catabolism Key intermediates 1 Fundamental Needs for Energy

More information

Giving you the energy you need!

Giving you the energy you need! Giving you the energy you need! Use your dominant hand Open and close the pin (with your thumb and forefinger) as many times as you can for 20 seconds while holding the other fingers straight out! Repeat

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

Enzymes I. Dr. Mamoun Ahram Summer semester,

Enzymes I. Dr. Mamoun Ahram Summer semester, Enzymes I Dr. Mamoun Ahram Summer semester, 2017-2018 Resources Mark's Basic Medical Biochemistry Other resources NCBI Bookshelf: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=books The Medical Biochemistry

More information

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6 Basic Concepts of Enzyme Action Stryer Short Course Chapter 6 Enzymes Biocatalysts Active site Substrate and product Catalyzed rate Uncatalyzed rate Rate Enhancement Which is a better catalyst, carbonic

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics Department of Chemistry and Biochemistry University of Lethbridge II. Bioenergetics Slide 1 Bioenergetics Bioenergetics is the quantitative study of energy relationships and energy conversion in biological

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

The products have more enthalpy and are more ordered than the reactants.

The products have more enthalpy and are more ordered than the reactants. hapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules.

Photosynthetic autotrophs use the energy of sunlight to convert low-g CO 2 and H 2 O into energy-rich complex sugar molecules. Chapters 7 & 10 Bioenergetics To live, organisms must obtain energy from their environment and use it to do the work of building and organizing cell components such as proteins, enzymes, nucleic acids,

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

Chapter 8 Notes. An Introduction to Metabolism

Chapter 8 Notes. An Introduction to Metabolism Chapter 8 Notes An Introduction to Metabolism Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme. Objectives Distinguish between the following pairs of terms: catabolic

More information

Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b.

Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b. Enzyme definition Enzymes are protein catalysts that increase the velocity of a chemical reaction and are not consumed during the reaction they catalyze. [Note: Some types of RNA can act like enzymes,

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature 1) (8 pts) General Properties of Enzymes. Give four properties of enzymaticallycatalyzed reactions. The answers should indicate how enzymatic reactions differ from non-enzymatic reactions. Write four only

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

Applications of Free Energy. NC State University

Applications of Free Energy. NC State University Chemistry 433 Lecture 15 Applications of Free Energy NC State University Thermodynamics of glycolysis Reaction kj/mol D-glucose + ATP D-glucose-6-phosphate + ADP ΔG o = -16.7 D-glucose-6-phosphate p D-fructose-6-phosphate

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

Oxidative Phosphorylation versus. Photophosphorylation

Oxidative Phosphorylation versus. Photophosphorylation Photosynthesis Oxidative Phosphorylation versus Photophosphorylation Oxidative Phosphorylation Electrons from the reduced cofactors NADH and FADH 2 are passed to proteins in the respiratory chain. In eukaryotes,

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 1 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Introduction to Metabolism (Or Energy Management) Chapter 8

Introduction to Metabolism (Or Energy Management) Chapter 8 Introduction to Metabolism (Or Energy Management) Chapter 8 Metabolism of the chemical reactions in the organism Building up molecules Breaking down molecules Managing energy and materials Route to end-product

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types

More information

Biochemical Pathways

Biochemical Pathways Biochemical Pathways Living organisms can be divided into two large groups according to the chemical form in which they obtain carbon from the environment. Autotrophs can use carbon dioxide from the atmosphere

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Chapter 8 Metabolism: Energy, Enzymes, and Regulation

Chapter 8 Metabolism: Energy, Enzymes, and Regulation Chapter 8 Metabolism: Energy, Enzymes, and Regulation Energy: Capacity to do work or cause a particular change. Thus, all physical and chemical processes are the result of the application or movement of

More information

2) This is a learning problem. You will learn something. You will appreciate this information. If not soon, than someday. Ready?

2) This is a learning problem. You will learn something. You will appreciate this information. If not soon, than someday. Ready? Problem Set 2 Hello Class. This is a Big Round problem set. Lots of word problems. I do this because science is a language. Much of it, and medicine too, is transacted as spoken word: seminars, grand rounds,

More information

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory Part II => PROTEINS and ENZYMES 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory Section 2.5a: Enzyme Nomenclature Synopsis 2.5a - Enzymes are biological catalysts they are almost

More information

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics Margaret A. Daugherty Fall 2003 ENZYMES: Why, what, when, where, how? All but the who! What: proteins that exert kinetic control over

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

Microbiology II Microbial physiology I Energetics

Microbiology II Microbial physiology I Energetics Microbiology II Microbial physiology I Energetics Catabolism Heat Efficiency ~ 60% Efficiency ~ 40% Anabolism Chemical energy (chemotrophic) Light energy (phototrophic) ATP +/ 50 kj/mol ADP + P i Biosyntheses

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics Margaret A. Daugherty Fall 2004 What is an enzyme? General Properties Mostly proteins, but some are actually RNAs Biological catalysts

More information

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism BBS2710 Microbial Physiology Module 5 - Energy and Metabolism Topics Energy production - an overview Fermentation Aerobic respiration Alternative approaches to respiration Photosynthesis Summary Introduction

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

Chapter 6 Active Reading Guide An Introduction to Metabolism

Chapter 6 Active Reading Guide An Introduction to Metabolism Name: AP Biology Mr. Croft Section 1 1. Define metabolism. Chapter 6 Active Reading Guide An Introduction to Metabolism 2. There are two types of reactions in metabolic pathways: anabolic and catabolic.

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types of reactions in metabolic pathways: anabolic

More information

Bioenergetics and high-energy compounds

Bioenergetics and high-energy compounds Bioenergetics and high-energy compounds Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Department of Medical Chemistry and Clinical Biochemistry 2nd Faculty of Medicine, Charles University in Prague and Motol

More information

Chapter 6. Ground Rules Of Metabolism

Chapter 6. Ground Rules Of Metabolism Chapter 6 Ground Rules Of Metabolism Alcohol Dehydrogenase An enzyme Breaks down ethanol and other toxic alcohols Allows humans to drink Metabolism Is the totality of an organism s chemical reactions Arises

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Activity: Identifying forms of energy

Activity: Identifying forms of energy Activity: Identifying forms of energy INTRODUCTION TO METABOLISM Metabolism Metabolism is the sum of all chemical reactions in an organism Metabolic pathway begins with a specific molecule and ends with

More information

2. In regards to the fluid mosaic model, which of the following is TRUE?

2. In regards to the fluid mosaic model, which of the following is TRUE? General Biology: Exam I Sample Questions 1. How many electrons are required to fill the valence shell of a neutral atom with an atomic number of 24? a. 0 the atom is inert b. 1 c. 2 d. 4 e. 6 2. In regards

More information

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Chapter 8 Introduction to Metabolism Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes Overview: The Energy of Life Figure 8.1 The living cell is a miniature

More information

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions!

Welcome to Class 8! Introductory Biochemistry! Announcements / Reminders! Midterm TA led Review Sessions! Announcements / Reminders Midterm TA led Review Sessions Welcome to Class 8 Sunday, February 23 from 8-10pm Location: Science Center Main Room (315) Office Hours Prof Salomon: SFH 270 on Thursday Feb 20,

More information

Unit 3: Cellular Energetics Guided Reading Questions (50 pts total)

Unit 3: Cellular Energetics Guided Reading Questions (50 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 8 An Introduction to Metabolism Unit 3: Cellular Energetics Guided

More information

Lecture #14. Chapter 17 Free Energy and Equilibrium Constants

Lecture #14. Chapter 17 Free Energy and Equilibrium Constants Lecture #14 Chapter 17 Free Energy and Equilibrium Constants Josiah W. Gibbs 1839-1903 Gibbs Free Energy (G) The maximum energy released by a system occurring at constant temperature and pressure that

More information

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells Transferases and hydrolases catalyze group transfer reactions Acyl transfer: Hexokinase catalyzes a phosphoryl transfer from ATP to

More information

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems Making energy! ATP The energy needs of life rganisms are endergonic systems What do we need energy for? synthesis building biomolecules reproduction movement active transport temperature regulation 2007-2008

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

CHAPTER 8. An Introduction to Metabolism

CHAPTER 8. An Introduction to Metabolism CHAPTER 8 An Introduction to Metabolism WHAT YOU NEED TO KNOW: Examples of endergonic and exergonic reactions. The key role of ATP in energy coupling. That enzymes work by lowering the energy of activation.

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

Glycolysis and Fermentation. Chapter 8

Glycolysis and Fermentation. Chapter 8 Glycolysis and Fermentation Chapter 8 Cellular Respiration and Photosynthesis 0 Things to know in these chapters 0 Names and order of the processes 0 Reactants and products of each process 0 How do they

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

Energetics of metabolism

Energetics of metabolism Energetics of metabolism Dr. Bódis Emőke October 7, 2015 JJ9 Why do we study difficult thermodynamics? The laws and principles of the thermodynamics describe the characteristics of matter- and energy flow

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy What Is Energy? Energy is the capacity to do work. Synthesizing molecules Moving objects Generating heat and light Types of Kinetic: of movement otential: stored First Law of Thermodynamics Energy cannot

More information

AP Biology Cellular Respiration

AP Biology Cellular Respiration AP Biology Cellular Respiration The bonds between H and C represents a shared pair of electrons These are high-energy electrons This represents chemical potential energy Hydro-carbons posses a lot of chemical

More information

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15)

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15) Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures 17-23 (Exam 3 topics: Chapters 8, 12, 14 & 15) Enzyme Kinetics, Inhibition, and Regulation Chapter 12 Enzyme Kinetics When the concentration

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 9 Biochemical Transformations I. Carbon-carbon bond forming and cleaving reactions in Biology (see the Lexicon). Enzymes catalyze a limited

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation Objectives INTRODUCTION TO METABOLISM. Chapter 8 Metabolism, Energy, and Life Explain the role of catabolic and anabolic pathways in cell metabolism Distinguish between kinetic and potential energy Distinguish

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Biochemistry and Physiology ID #:

Biochemistry and Physiology ID #: BCHM 463 Your Name: Biochemistry and Physiology ID #: Exam II, November 4, 2002 Prof. Jason Kahn You have 50 minutes for this exam. Exams written in pencil or erasable ink will not be re-graded under any

More information

Enzymes Enzyme Mechanism

Enzymes Enzyme Mechanism Mechanisms of Enzymes BCMB 3100 Chapters 6, 7, 8 Enzymes Enzyme Mechanism 1 Energy diagrams Binding modes of enzyme catalysis Chemical modes of enzyme catalysis Acid-Base catalysis Covalent catalysis Binding

More information

Mechanism of CO 2 Fixation: Rubisco Step 1

Mechanism of CO 2 Fixation: Rubisco Step 1 dark means light-indendent! The Dark Reaction: Carbon Fixation Requires Rubisco: Ribulose-1,5-bisphosphate carboxylase RuBPi + C 6 x 3PG MW = 550, 000 g/mol Subunits eight small (14,000 g/mol) eight large

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

Enzymes Enzyme Mechanism

Enzymes Enzyme Mechanism BCMB 3100 Chapters 6, 7, 8 Enzymes Enzyme Mechanism 1 Mechanisms of Enzymes Energy diagrams Binding modes of enzyme catalysis Chemical modes of enzyme catalysis Acid-Base catalysis Covalent catalysis Binding

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative.

Free Energy. because H is negative doesn't mean that G will be negative and just because S is positive doesn't mean that G will be negative. Biochemistry 462a Bioenergetics Reading - Lehninger Principles, Chapter 14, pp. 485-512 Practice problems - Chapter 14: 2-8, 10, 12, 13; Physical Chemistry extra problems, free energy problems Free Energy

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Energy of Life The

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline Chemistry 1506 Dr. Hunter s Class Section 10 Notes - Page 1/14 Chemistry 1506: Allied Health Chemistry 2 Section 10: Enzymes Biochemical Catalysts. Outline SECTION 10.1 INTRODUCTION...2 SECTION SECTION

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this Chapter 6 Carvings from ancient Egypt show barley being crushed and mixed with water (left) and then put into closed vessels (centre) where airless conditions are suitable for the production of alcohol

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S]

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S] Enzyme Kinetics: The study of reaction rates. For the one-way st -order reaction: S the rate of reaction (V) is: V P [ P] moles / L t sec For each very short segment dt of the reaction: d[ P] d[ S] V dt

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 8 1. An organism s metabolism transforms matter and energy, subject to the laws of

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Energy of Life The living

More information

Lecture 21 - Introduction to Metabolism: Bioenergetics

Lecture 21 - Introduction to Metabolism: Bioenergetics Lecture 21 - Introduction to Metabolism: Bioenergetics Key Concepts Energy conversion in biological systems Metabolic redox reactions Review of thermodynamic principles and coupled reactions The adenylate

More information

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways Course No: BNG2003 Credits: 3.00 General Biology 5. An Introduction into Cell Metabolism The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy

More information

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase AP biology Notes: Metabolism Metabolism = totality of an organism's chemical process concerned with managing cellular resources. Metabolic reactions are organized into pathways that are orderly series

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Outer Glycolysis mitochondrial membrane Glucose ATP

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Outer Glycolysis mitochondrial membrane Glucose ATP Fig. 7.5 uter Glycolysis mitochondrial membrane Glucose Intermembrane space xidation Mitochondrial matrix Acetyl-oA Krebs FAD e NAD + FAD Inner mitochondrial membrane e Electron e Transport hain hemiosmosis

More information