When more than one valid Lewis structure can be drawn for a particular molecule, formal charge is used to predict the most favorable structure.

Size: px
Start display at page:

Download "When more than one valid Lewis structure can be drawn for a particular molecule, formal charge is used to predict the most favorable structure."

Transcription

1 Homework 8 Chapter 8 Due: 11:59pm on Wednesday, November 9, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Formal Charges and Resonance Formal charge ( FC ) keeps track of which electrons an atom "owns" in a chemical bond with the equation =( ) ( ) FC valence e in valence e in free atom bonded atom When more than one valid Lewis structure can be drawn for a particular molecule, formal charge is used to predict the most favorable structure. A bonded atom is considered to "own" all its nonbonding electrons but only half of the bonding electrons because these are shared with another atom. Therefore, the formal charge formula can be rewritten as follows: FC=( valence e in) 1( bonding e ) ( nonbonding e ) free atom 2 shown shown Part A HOFO For a molecule of fluorous acid, the atoms are arranged as. (Note: In this oxyacid, the placement of fluorine is an exception to the rule of putting the more electronegative atom in a terminal position.) What is the formal charge on each of the atoms? Enter the formal charges in the same order as the atoms are listed. Express your answers as charges separated by comma. For example, a positive one charge would be written as +1. Hint 1. Complete the Lewis electron dot structure HFO 2 Complete the structure for. Join the given atoms with the relevant number of bonds they form, making sure that each atom has an octet or duplet of electrons. Include all lone pairs of electrons. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons. Hint 1. How to draw a Lewis electron dot structure 1. Determine the total number of valence electrons. 2. Bond all of the atoms with a single bond and distribute the remaining electrons as lone pairs. 3. If any atom other than He, Be, or B lacks an octet, use multiple bonds to complete the octet around each atom. Remember to remove one lone pair for each extra bond added to retain the same total number of electrons. 4. An atom may have more than an octet if it meets two criteria: (1) It is the central atom and (2) it is in the third period of the periodic table or beyond. In HFO 2, none of the atoms will fit these criteria, so all will have at most an octet of electrons. For example, in the structure of the molecule, the total number of valence electrons will be eight: H 2 O 6 electrons on one oxygen atom + (2 1 electron on two hydrogen atoms) = 8 electrons Here the central atom is oxygen. When you draw a single bond between the oxygen atom and each hydrogen atom you will account for four electrons in the single bond and are left with four electrons that must be placed into lone pairs. These electrons are added as lone pairs on the oxygen atom to complete its octet. The hydrogen atoms completed their duplet by forming a single bond with oxygen. The structure looks like this: 1/17

2 Hint 2. Determine the number of valence electrons How many valence electrons are in a molecule of? Express your answer as an integer. 20 HFO 2 Hint 2. Determine the formal charge on Use the equation displayed above Part A to calculate the formal charge on. Enter the formal charge numerically. For example, a positive one charge would be written as +1. formal charge on H = 0 H H 2/17

3 Hint 3. Determine the formal charge on Use the equation displayed above Part A to calculate the formal charge on. Enter the formal charge numerically. For example, a positive one charge would be written as +1. formal charge on F = +1 F F Hint 4. Compare the oxygen atoms FC=( valence e in) 1( bonding e ) ( nonbonding e ) Compare the two oxygen atoms. In the equation which of the terms will be the same for the two oxygen atoms in calculating their formal charge? valence e in free atom bonding shown nonbonding e e shown free atom 2 shown shown Formal Charge for H, O, F, O = 0,0,+1, 1 Part B Two possible electron dot structures are shown for the cyanate ion, the structures are? NCO. What can you conclude about how favorable Hint 1. How to approach the problem Formal charge can provide a means of evaluating which of the possible structures is more favorable. Some rules for evaluation include the following: 1. Structures in which all atoms have zero (0) for their formal charges are lower in energy and therefore more favorable than those with nonzero formal charges. 3/17

4 2. Structures in which atoms have formal charges with a smaller magnitude are preferred to those with atoms having larger formal charges. For example, +1 and 1 would be preferred over +2 and Structures that place negative formal charges on the more electronegative atom are preferred to those that place them on the less electronegative atom. 4. Structures that place positive formal charges on the less electronegative atom are preferred to those that place them on the more electronegative atom. Hint 2. Determine formal charges in structure A What are the formal charges on,, and in structure A, respectively? Express your answers as charges separated by comma. For example, a positive one charge would be written as +1. N C Formal charges for N, C, O in A = 0,0, 1 O Hint 3. Determine formal charges in structure B What are the formal charges on,, and in structure B, respectively? Express your answers as charges separated by comma. For example, a positive one charge would be written as +1. N C Formal charges for N, C, O in B = 2,0,+1 O Structure A is more favored. Structure B is more favored. The structures are equally favored. Lewis Structures and the Octet Rule A Lewis structure shows the arrangement of atoms and valence electrons in a molecule. Most often, each bonding pair of electrons is shown as a line whereas nonbonding electrons are shown as dots as seen here. Notice that each atom is surrounded by a total of eight electrons, an octet. 4/17

5 Octet rule For elements in neutral molecules, the number of bonds needed to achieve an octet follows a trend by group, as shown in the following table: Group 4A 5A 6A 7A Number of bonds Number of lone pairs Part A Draw the Lewis structure for. To add the element Si SiCl 2 Br 2, either double click on any atom and type the element symbol, or access a periodic table of elements from the More button. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons. You did not open hints for this part. 5/17

6 Exceptions to the octet rule Exceptions to the octet rule include hydrogen, which is stable with only two electrons (one bond), and boron, which is stable with only six electrons (three bonds). Additionally, elements in period 3 and beyond sometimes form more than the typical number of bonds, thus expanding their valence shells to more than eight electrons. Part B Consider the following four molecules. Which of these satisfy the octet rule and which do not? Drag the appropriate items to their respective bins. Hint 1. How to approach the problem To determine whether the octet rule is followed, the number of electrons around each atom in the formulas must be identified. This can best be done by drawing the Lewis structure for each atom. Here is a set of guidelines to follow in drawing electron dot structures. 1. Determine the total number of valence electrons using the number of valence electrons for each atom in the formula 2. If the species is a cation, subtract a number of electrons equal to the ionic charge. If the species is an anion, add a number of electrons equal to the ionic charge. 3. The central atom is usually the more electropositive element. This excludes H, which is never a central atom. 4. Bond all atoms in the appropriate skeletal arrangement so that all atoms (except H) have an octet (or their normal number of bonds). If there are not enough electrons to accomplish this, use double or triple bonds to achieve the octet. 5. If there are electrons left over, place the electrons as lone pairs on the central atom if the atom is in period 3 or higher. Hint 2. Determine the Lewis structure for PF 5 PF 5 Construct the Lewis structure for. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons. Hint 1. How to approach the problem 1. Determine the total number of valence electrons. 2. Identify the central atom (usually the least electronegative element, but never H). 3. Give all outer atoms their normal number of bonds and lone pairs. 4. If there are electrons left over, place them as lone pairs on the central atom. 6/17

7 Hint 3. Determine the Lewis structure for CS 2 CS 2 Construct the Lewis structure for. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons. Hint 1. How to approach the problem 1. Determine the total number of valence electrons. 2. Identify the central atom (usually the least electronegative element, but never H). 3. Give all outer atoms their normal number of bonds and lone pairs. 4. If there are electrons left over, place them as lone pairs on the central atom. 7/17

8 Hint 4. Determine the Lewis structure for BBr 3 BBr 3 Construct the Lewis structure for. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons. Hint 1. How to approach the problem 1. Determine the total number of valence electrons. 2. Identify the central atom (usually the least electronegative element, but never H). 3. Give all outer atoms their normal number of bonds and lone pairs. 4. If there are electrons left over, place them as lone pairs on the central atom. 8/17

9 Hint 5. Determine the Lewis structure for CO 3 2 Construct the Lewis structure for CO 2 3. You do not need to include brackets or charges. Draw the molecule by placing atoms on the grid and connecting them with bonds. Include all lone pairs of electrons but do not include charges. Hint 1. How to approach the problem Drawing the structure of a polyatomic ion can be tricky. Use these steps as a guide. 1. Determine the total number of valence electrons. Don't forget to include the charge (a 1 charge means there is one extra electron). 2. Identify the central atom (usually the least electronegative element, but never H). 3. Start by giving all the outer atoms single bonds and then add lone pairs to the outer atoms until they all have an octet. 4. If there electrons left over, place them as lone pairs on the central atom. 5. If the central atom lacks an octet, turn one of the single bonds into a double bond and remove one lone pair from that outer atom. 9/17

10 10/17

11 Sample Exercise 8.2 Practice Exercise 1 with feedback Part A Charges on Ions Which of these elements is most likely to form ions with a 2+ charge? Li Cl O P Ca Calcium is found in the second group of the periodic table and it is most likely to lose two electrons to form a 2+ charged cation, Ca 2+. Sample Exercise 8.3 Practice Exercise 1 with feedback 11/17

12 Part A Lewis Structure of a Compound Which of these molecules has the same number of shared and unshared electron pairs? CCl 2 F 2 HCl H 2 S Br 2 PF 3 H 2 S has two pairs of shared electrons and two pairs of unshared electrons. Sample Exercise 8.4 Practice Exercise 1 with feedback Part A Bond Polarity Which of the following bonds is the most polar? Ga Cl Se F N P H F H I H F is the most polar bond in the list because the difference between the electronegativity values for the fluorine atom and the hydrogen atom are the greatest, with the result that the electrons are shared unequally. The electronegativity difference for is 1.9. H F Sample Exercise 8.8 Practice Exercise 1 with feedback Part A Lewis Structure for a Polyatomic Ion How many nonbonding electron pairs are there in the Lewis structure of the peroxide ion, O 2 2? 12/17

13 The peroxide ion, O 2 2, contains 14 electrons in its Lewis structure of which there are 6 pairs on nonbonding electrons and 1 pair of bonding electrons. Sample Exercise 8.6 Practice Exercise 1 with feedback Part A Lewis Structure with a Multiple Bond Which of these molecules has a Lewis structure with a central atom having no nonbonding electron pairs? Check all that apply. SiF 4 S H 2 CO 2 PF 3 CO 2 SiF 4 Both and have central atoms with no nonbonding electrons. Sample Exercise 8.11 Practice Exercise 1 with feedback Part A Lewis Structure for an Ion with More than an Octet of Electrons In which of these molecules or ions is there only one lone pair of electrons on the central sulfur atom? SF 2 SOF 4 SO 4 2 SF 6 SF /17

14 The Lewis structure of atom. SF 4 has one lone pair of electrons and four bonding pairs of electrons on the central sulfur Sample Exercise 8.12 Practice Exercise 1 with feedback Part A Using Average Bond Enthalpies ΔH H 2 O(g) H (g) O 2 (g) Using the table below, estimate for the "water splitting reaction":. 417 kj 5 kj kj kj 242 kj 14/17

15 The enthalpy value can be calculated by subtracting the sum of the enthalpy associated with bonds forming from the sum of the enthalpy associated with bonds breaking: ΔH = = = [2D(O H)] [1D(H H)+ 1 2 D(O=O)] [2(463 kj)] [1(436 kj)+ 1 2 (495 kj)] 242 kj Problem 8.16 Part A Choose representation of the reaction that occurs between and atoms. Ca F Part B What is the chemical formula of the most likely product? Express your answer as a chemical formula. CaF 2 Part C 15/17

16 How many electrons are transferred? 2 electrons Part D Which atom loses electrons in the reaction? Express your answer as a chemical formula. Ca Problem 8.85 O P Te I Consider the collection of nonmetallic elements,,, and. B Part A Which two would form the most polar single bond? B O Te I I O P O Part B Which two would form the longest single bond? 16/17

17 P O Te I B O P I Part C Which two would be likely to form a compound of formula? XY 2 PI 2 BO 2 PO 2 TeI 2 Part D Which combinations of elements would likely yield a compound of empirical formula? X 2 Y 3 B 2 O 3 and P 2 O 3 B 2 I 3 and P 2 I 3 B 2 O 3 and P 2 I 3 B 2 I 3 and P 2 O 3 Score Summary: Your score on this assignment is 0%. You received 0 out of a possible total of 0 points. 17/17

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information

Chemical Bonding -- Lewis Theory (Chapter 9)

Chemical Bonding -- Lewis Theory (Chapter 9) Chemical Bonding -- Lewis Theory (Chapter 9) Ionic Bonding 1. Ionic Bond Electrostatic attraction of positive (cation) and negative (anion) ions Neutral Atoms e - transfer (IE and EA) cation + anion Ionic

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding Consider the reaction between sodium and chlorine: Na(s) + ½ Cl 2 (g) NaCl(s) H o f

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that participate in chemical bonding. Group e - configuration

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Lewis Structures & Resonance Structures Last chapter we studied ionic compounds. In ionic compounds electrons are gained or lost. In this chapter we are going to study covalent

More information

Life Science 1a Review Notes: Basic Topics in Chemistry

Life Science 1a Review Notes: Basic Topics in Chemistry Life Science 1a Review Notes: Basic Topics in Chemistry Atomic Structure and the Periodic Table The history of the discovery of the atom will be left for you to read in the textbook. What are atoms? What

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

Chapter 4: Covalent Bonding and Chemical Structure Representation

Chapter 4: Covalent Bonding and Chemical Structure Representation Chapter 4: Covalent Bonding and Chemical Structure Representation The Octet Rule -An atom with 8 electrons (an octet ) in its outer shell has the same number of valence electrons as the noble gas in the

More information

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds Chapter 8 Chemical Bonding: General Concepts 1 8.1 Electron transfer leads to the formation of ionic compounds Ionic compounds form when metals and nonmetals react The attraction between positive and negative

More information

Honors Chemistry Unit 6 ( )

Honors Chemistry Unit 6 ( ) Honors Chemistry Unit 6 (2017-2018) Lewis Dot Structures VSEPR Structures 1 We are learning to: 1. Represent compounds with Lewis structures. 2. Apply the VSEPR theory to determine the molecular geometry

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles CHEMICAL BONDS Chemical Bonds: Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles Lewis Theory of Bonding: Electrons play a fundamental role

More information

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8. Chemical Bonding I: Basic Concepts Chapter 8 Chemical Bonding I: Basic Concepts Topics Lewis Dot Symbols Ionic Bonding Covalent Bonding Electronegativity and Polarity Drawing Lewis Structures Lewis Structures and Formal Charge Resonance

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

Chemical Bonding Chapter 9

Chemical Bonding Chapter 9 Chemical Bonding Chapter 9 Covalent Bonds and Ionic Bonds: Octet Rule Explain each of the following observations in terms of the "octet rule": Na atoms and Cl atoms will combine to form NaCl. Why does

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

6.1 Intro to Chemical Bonding Name:

6.1 Intro to Chemical Bonding Name: 6.1 Intro to Chemical Bonding Name: A. Chemical bond Favored by nature because: 3 main types of bonds 1. 2. 3. B. Ionic Bonds C. Covalent Bonds D. Metallic Bond E. Bond Determination RECALL: Electronegativity

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Valence electrons octet rule. Lewis structure Lewis structures

Valence electrons octet rule. Lewis structure Lewis structures Lewis Dot Diagrams Valence electrons are the electrons in the outermost energy level of an atom. An element with a full octet of valence electrons has a stable configuration. The tendency of bonded atoms

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 12 CHEMICAL BONDING Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Chemistry 101 Chapter 9 CHEMICAL BONDING

Chemistry 101 Chapter 9 CHEMICAL BONDING CHEMICAL BONDING Chemical bonds are strong attractive force that exist between the atoms of a substance. Chemical bonds are commonly classified into 3 types: Ionic Bonding Ionic bonds form between metals

More information

Chapter Nine. Chemical Bonding I

Chapter Nine. Chemical Bonding I Chapter Nine Chemical Bonding I 1 The Ionic Bond and Lattice Energies 2 Lewis Dot Symbols Consists of atomic symbol surrounded by 1 dot for each valence electron in the atom Only used for main group elements

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15 Unit 7: Basic Concepts of Chemical Bonding Topics Covered Chemical bonds Ionic bonds Covalent bonds Bond polarity and electronegativity Lewis structures Exceptions to the octet rule Strength of covalent

More information

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 8 of Chemical John D. Bookstaver St. Charles Community College Cottleville, MO Chemical Bonds Chemical bonds are the forces that hold the atoms together in substances. Three

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

LA [: :]2- K. [Kt

LA [: :]2- K. [Kt EXPERIMENT17 LA-8 07 ~. t Lewis Structures and Molecular Models MATERIALS AND EQUIPMENT Special equipment: Bail-and-stick molecular model sets DISCUSSION Molecules are stable groups of covalently bonded

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6.1: Introduction to Chemical Bonding Things That You Should Know What is a chemical bond? Why do atoms form chemical bonds? What is the difference between ionic and

More information

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds.

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds. Unit 3 - Part 1: Bonding Objective - to be able to understand and name the forces that create chemical bonds. Bonding: Key Terms to Know 1. Chemical formula 2. Molecular formula 3. Bond Energy 4. Bond

More information

Name: Hr: 8 Basic Concepts of Chemical Bonding

Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1-8.2 8.3-8.5 8.5-8.7 8.8 Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule State the type of bond (ionic, covalent, or metallic) formed between any

More information

Chapter 8 Basic concepts of bonding

Chapter 8 Basic concepts of bonding Chapter 8 Basic concepts of bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule When atoms or ions are strongly attracted to one another, we say that there is a chemical bond between them. Types

More information

Chapter 8 The Concept of the Chemical Bond

Chapter 8 The Concept of the Chemical Bond Chapter 8 The Concept of the Chemical Bond Three basic types of bonds: Ionic - Electrostatic attraction between ions (NaCl) Metallic - Metal atoms bonded to each other Covalent - Sharing of electrons Ionic

More information

Chemical Bonding I: Basic Concepts

Chemical Bonding I: Basic Concepts Chemical Bonding I: Basic Concepts Chapter 9 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Valence electrons are the outer shell electrons of an atom. The valence

More information

Chapter 9 Bonding 2 Polar Covalent Bond, Electronegativity, Formal Charge, Resonance. Dr. Sapna Gupta

Chapter 9 Bonding 2 Polar Covalent Bond, Electronegativity, Formal Charge, Resonance. Dr. Sapna Gupta Chapter 9 Bonding 2 Polar Covalent Bond, Electronegativity, Formal Charge, Resonance Dr. Sapna Gupta Writing Lewis Structures 1. Draw the skeleton structure of the molecule or ion by placing the lowest

More information

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Test Bank for Introductory Chemistry Essentials 5th Edition by Tro Sample Introductory Chemistry, 5e (Tro) Chapter 10 Chemical Bonding 10.1 True/False Questions 1) Bonding theories are used to predict

More information

a) DIATOMIC ELEMENTS e.g. . MEMORIZE THEM!!

a) DIATOMIC ELEMENTS e.g. . MEMORIZE THEM!! CH 11 TOPIC 20 MOLECULAR COMPOUNDS COVALENT BONDS 1 You have mastered this topic when you can: 1) define or describe MOLECULAR ELEMENTS and DIATOMIC ELEMENTS. 2) define or describe MOLECULAR COMPOUND and

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

Covalent Molecules and Lewis Structures Time required: two 50-minute periods

Covalent Molecules and Lewis Structures Time required: two 50-minute periods Mega Molecules, LLC!!!!! Name: Hands-On Science with Molecular Models!! Date:!!!!!!!! Hour: Introduction Covalent Molecules and Lewis Structures Time required: two 50-minute periods To study covalent molecules,

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding Chapter 9 Ionic and Covalent Bonding Concept Check 9.1 The following are electron configurations of some ions. Which ones would you expect to see in chemical compounds? State the concept or rule you used

More information

CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING. Bond-an attractive interaction between two or more atoms.

CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING. Bond-an attractive interaction between two or more atoms. CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING Bond-an attractive interaction between two or more atoms. Bonding is the "glue" that holds molecules together. Two extreme types: Ionic (transfer) Covalent

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding Consider the reaction between sodium and chlorine: Na(s) + ½ Cl 2 (g) NaCl(s) H o f

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Lewis Dot Formulas and Molecular Shapes

Lewis Dot Formulas and Molecular Shapes Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence electrons

More information

Lewis Structures. Lewis Structures. Lewis Structures. Lewis Structures. What pattern do you see? What pattern do you see?

Lewis Structures. Lewis Structures. Lewis Structures. Lewis Structures. What pattern do you see? What pattern do you see? Look at the following chart: IA IIA IIIA IVA VA VIA VIIA VIIIA 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 The Roman Numerals are the Group numbers from the Periodic Table, Beneath them is the outer

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Often times we represent atoms and their electrons with Lewis Dot Structures.

Often times we represent atoms and their electrons with Lewis Dot Structures. They are trying to get their number of valence electrons to either 0 or 8. Group 1: 1 valence electron Group 2: 2 valence electrons Group 13: 3 valence electrons Group 14: 4 valence electrons Group 15:

More information

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) Se 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 December 10, 2014 Write the formulas for the following covalent compounds.

More information

Chapter 8. Covalent Bonding

Chapter 8. Covalent Bonding Chapter 8 Covalent Bonding Two Classes of Compounds Usually solids with high melting points Many are soluble in polar solvents such as water. Most are insoluble in nonpolar solvents such as hexane. Molten

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

Introduction to Chemical Bonding Chemical Bond

Introduction to Chemical Bonding Chemical Bond Introduction to Chemical Bonding Chemical Bond Mutual attraction between the and electrons of different atoms that binds the atoms together. Ionic Bond o that results from the attraction between large

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound.

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound. Unit 11 Bonding INTRODUCTION Within molecules, there are forces that hold atoms together These forces are called bonds There are different types of bonds, or more correctly, variations Identifying the

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed Ch. 8 Chemical Bonding: General Concepts Brady & Senese, 5th Ed Index 8.1. Electron transfer leads to the formation of ionic compounds 8.2. Lewis symbols help keep track of valence electrons 8.3. Covalent

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Lewis Structures (The Localized Electron Model)

Lewis Structures (The Localized Electron Model) Lewis Structures (The Localized Electron Model) G. N. Lewis 1875-1946 Using electron-dot symbols, G. N. Lewis developed the Localized Electron Model of chemical bonding (1916) in which valence electrons

More information

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together When atoms form chemical bonds their valence electrons move around. This makes atoms

More information

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed

Ch. 8 Chemical Bonding: General Concepts. Brady & Senese, 5th Ed Ch. 8 Chemical Bonding: General Concepts Brady & Senese, 5th Ed Index 8.1. Electron transfer leads to the formation of ionic compounds 8.2. Lewis symbols help keep track of valence electrons 8.3. Covalent

More information

Molecular Structure and Bonding. Assis.Prof.Dr.Mohammed Hassan Lecture 2

Molecular Structure and Bonding. Assis.Prof.Dr.Mohammed Hassan Lecture 2 Molecular Structure and Bonding Assis.Prof.Dr.Mohammed Hassan Lecture 2 Lewis structures: Lewis Theory The octet rule All elements except hydrogen ( hydrogen have a duet of electrons) have octet of electrons

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHE 1401 - Spring 2017 - Chapter 8 Homework 8 (Chapter 8: Basic concepts of chemical bonding) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

CHM Simple Lewis Structures (r14) Charles Taylor 1/5

CHM Simple Lewis Structures (r14) Charles Taylor 1/5 CHM 110 - Simple Lewis Structures (r14) - 2014 Charles Taylor 1/5 Introduction In the previous note pack, you learned some about Lewis dot structures, which represent chemical compounds by showing how

More information

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds: CHEMICAL BONDS Chemical Bonds: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds (EU 2.C). Reflect a balance in the attractive and repulsive forces

More information

Worksheet 5 - Chemical Bonding

Worksheet 5 - Chemical Bonding Worksheet 5 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Ionic Versus Covalent Bonding

Ionic Versus Covalent Bonding Ionic Versus Covalent Bonding Ionic compounds are formed when electrons are transferred from one atom to another The transfer of electrons forms ions Each ion is isoelectronic with a noble gas Electrostatic

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Practice Worksheet for Lewis Structures (Mahaffy Ch )

Practice Worksheet for Lewis Structures (Mahaffy Ch ) Practice Worksheet for Lewis Structures (Mahaffy Ch. 10.1 10.5 ) 1. Main concepts Lewis Structures a. Connectivity b. Bonds & Lone pairs c. Electron Geometry & Molecular Shape d. Resonance Structures Formal

More information

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11

Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11 Chemical Bonding Petrucci, Harwood and Herring: Chapters 10 and 11 Aims: To look at bonding and possible shapes of molecules We will mainly do this through Lewis structures To look at ionic and covalent

More information

Chemical Bonding. Chemical Bonding I: The Covalent Bond. Chemical Bonding. Bonding Generalities

Chemical Bonding. Chemical Bonding I: The Covalent Bond. Chemical Bonding. Bonding Generalities Chemical Bonding Chemical Bonding I: The Covalent Bond I. Types of bonds a) Ionic b) Covalent II. Lewis Dot Structures a) ctet Rule b) Multiple Bonds c) Resonance d) Polyatomic Ions e) ormal Charge on

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding hapter 8 Basic oncepts of hemical Bonding An Important Principle in hemistry The microscopic structure defines the properties of matter at our mesoscopic level. Ex. Graphite and Diamond (both are pure

More information

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction 1 Chemical Bonds: A Preview 2 Chemical Bonds Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic compounds. Chemical bonds are electrostatic forces; they

More information

Lewis Structures. X } Lone Pair (unshared pair) } Localized Electron Model. Valence Bond Theory. Bonding electron (unpaired electron)

Lewis Structures. X } Lone Pair (unshared pair) } Localized Electron Model. Valence Bond Theory. Bonding electron (unpaired electron) G. N. Lewis 1875-1946 Lewis Structures (The Localized Electron Model) Localized Electron Model Using electron-dot symbols, G. N. Lewis developed the Localized Electron Model of chemical bonding (1916)

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Gilbert Kirss Foster. Chapter 4. Chemical Bonding. Understanding Climate Change

Gilbert Kirss Foster. Chapter 4. Chemical Bonding. Understanding Climate Change Gilbert Kirss Foster Chapter 4 Chemical Bonding Understanding Climate Change Chapter Outline 4.1 Types of Chemical Bonds 4.2 Naming Compounds and Writing Formulas 4.3 Lewis Structures 4.4 Electronegativity,

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons

A DOT STRUCTURE FOR A LARGER MOLECULE ETHANOL! Count valence electrons 212 A DOT STRUCTURE FOR A LARGER MOLECULE Count valence electrons Pick central atom and draw skeletal structure - central atom is usually the one that needs to gain the most electrons! - skeletal structure

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

INTRODUCTION TO CHEMICAL BONDS

INTRODUCTION TO CHEMICAL BONDS INTRODUCTION TO CHEMICAL BONDS Chemical Bonds A general comparison of metals and nonmetals. Chemical Bonds Types of Chemical Bonding 1. Metal with nonmetal: electron transfer and ionic bonding 2. Nonmetal

More information

- Converting Moles (mol.) to grams (g):

- Converting Moles (mol.) to grams (g): Study Guide: Avogadro's # 1mol = 6.02x10^23 particles/atoms/ions/elephants use this as a conversion factor to calculate atoms in compound 1mol C / 6.02 x 10^23 atoms C Percent composition: [Mass of Element

More information

CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 8 of Chemical John D. Bookstaver St. Charles Community College Cottleville, MO Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions. Covalent

More information

Lewis Dot Structures and Molecular Geometry

Lewis Dot Structures and Molecular Geometry Experiment 11 Lewis Dot Structures and Molecular Geometry Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose

More information

Chapter 8 Concepts of Chemical. Bonding

Chapter 8 Concepts of Chemical. Bonding Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 8 Concepts of John D. Bookstaver St. Charles Community College Cottleville, MO Bonds Three

More information