Chem 115 POGIL Worksheet - Week 8 - Answers Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra. ΔH o = 285.

Size: px
Start display at page:

Download "Chem 115 POGIL Worksheet - Week 8 - Answers Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra. ΔH o = 285."

Transcription

1 Chem 115 POGIL Worksheet - Week 8 - Answers Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Key Questions & Exercises 1. Calculate ΔH o for the reaction, Given: C 2 H 2 (g) + H 2 (g) C 2 H 4 (g) (a) 2 C 2 H 2 (g) + 5 O 2 (g) 4 CO 2 (g) + 2 H 2 O(l) (b) C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g) + 2 H 2 O(l) (c) H 2 (g) + ½ O 2 (g) H 2 O(l) ΔH o = kj ΔH o = kj ΔH o = kj The (a) equation has C 2 H 2 (g) on the left, where we need it in the target equation, but its coefficient is 2. If we take one half of equation (a) we will have the correct coefficient. The ΔH o contribution will be (½)( kj) = kj. Equation (b) has C 2 H 2 (g) with the correct coefficient for our target equation, but we need it on the right, not the left as given. Therefore, we will reverse it, making its ΔH o contribution be kj. Finally, if we take equation (c) as given, it will introduce the H 2 (g) with the correct coefficient, and it will result in cancellations of the CO 2 (g), H 2 O(l), and O 2 (g) introduced by our manipulations of the first two equations, which are absent in the target equation. The following sum results: (½a) C 2 H 2 (g) + 5/2 O 2 (g) 2 CO 2 (g) + H 2 O(l) ΔH o = kj ( b) 2 CO 2 (g) + 2 H 2 O(l) C 2 H 4 (g) + 3 O 2 (g) ΔH o = kj (c) H 2 (g) + ½ O 2 (g) H 2 O(l) ΔH o = kj C 2 H 2 (g) + H 2 (g) C 2 H 4 (g) ΔH o = kj 2. Write the balanced thermochemical equations that pertain to the given compounds and their standard enthalpies of formation. Compound ΔH o f (kj/mol) Thermochemical Equation CCl 4 (g) C(s) + 2 Cl 2 (g) CCl 4 (l) Fe 2 O 3 (s) Fe(s) + 3/2 O 2 (g) Fe 2 O 3 (s) HNO 3 (g) /2 H 2 (g) + 1/2 N 2 (g) + 3/2 O 2 (g) HNO 3 (g) NaHCO 3 (s) Na(s) + 1/2 H 2 (g) + C(s) + 3/2 O 2 (g) NaHCO 3 (s)

2 3. i. Given: (a) N 2 O 4 (g) + 1/2 O 2 (g) N 2 O 5 (g) ΔH o = kj (b) HNO 3 (g) 1/2 N 2 O 5 (g) + 1/2 H 2 O(l) ΔH o = 2.96 kj Calculate ΔH o for the reaction N 2 O 4 (g) + H 2 O(l) + 1/2 O 2 (g) 2 HNO 3 (g) ΔH o =? The two given equations, manipulated as shown below, will add to give the target reaction and its enthalpy: (a) N 2 O 4 (g) + 1/2 O 2 (g) N 2 O 5 (g) ΔH o = kj ( 2b) N 2 O 5 (g) + H 2 O(l) 2 HNO 3 (g) ΔH o = kj N 2 O 4 (g) + H 2 O(l) + 1/2 O 2 (g) 2 HNO 3 (g) ΔH o = 7.59 kj ii. Given following standard enthalpy of formation data: Compound ΔH o f (kj/mol) Calculate ΔH o for the reaction N 2 O 4 (g) HNO 3 (g) H 2 O(l) N 2 O 4 (g) + H 2 O(l) + 1/2 O 2 (g) 2 HNO 3 (g) ΔH o =? Compare your answer to your answer in part i. The enthalpy for the reaction is the sum of the enthalpies of formation for products minus those for reactants, each multiplied by its stoichiometric coefficient in the balanced equation: ΔH o = 2ΔH o f (HNO 3 ) {ΔH o f (N 2 O 4 ) + ΔH o f (H 2 O) + ½ΔH o f (O 2 )} = (2)( kj) {+9.66 kj + ( kj) + 0 kj} = 7.55 kj Note that the value of ΔH o f(o 2 ) is taken as 0, because O 2 (g) is the standard state for elemental oxygen.

3 As expected by the Law of Hess, the answers are virtually the same. In many cases there is a slight difference, due to minor differences in the values from the experimental data. 4. Calculate the heat of combustion of methane, CH 4 (g), defined by the following thermochemical equation: CH 4 (g) + 2 O 2 (g) 6 CO 2 (g) + 2 H 2 O(l) ΔH o rxn =? Given the following standard enthalpies of formation: CH 4 (g) kj CO 2 (g) kj H 2 O(l) kj This can be calculated as follows: ΔH o rxn = {ΔH o f(co 2 ) + 2ΔH o f(h 2 O)} {ΔH o f(ch 4 ) + 2ΔH o f(o 2 )} = {( kj) + (2)( kj)} {( kj) + 0} = kj = kj Note that the value of ΔH o f(o 2 ) is taken as 0, because O 2 (g) is the standard state for elemental oxygen. 5. Calculate the enthalpy of formation, ΔH o f, for benzene, C 6 H 6 (l), given that the heats of formation of CO 2 (g) and H 2 O(l) are kj and kj, respectively, and that the heat of combustion of C 6 H 6 (l) is kj. To do this, carry out the following steps. i. Write the balanced thermochemical equation that defines the enthalpy of formation of benzene, C 6 H 6 (l). 6 C(graphite) + 3 H 2 (g) C 6 H 6 (l) ΔH o f(c 6 H 6 ) =? ii. Write the balanced thermochemical equation for the heat of combustion of benzene, C 6 H 6 (l). C 6 H 6 (l) + 15/2 O 2 (g) 6 CO 2 (g) + 3 H 2 O(l) ΔH o comb = kj iii. Based on your answer to question ii, write an expression for the heat of combustion of benzene, ΔH o comb, in terms of the enthalpies of formation of the reactants and products. Using the data given in the problem, solve this for the unknown value of ΔH o f(c 6 H 6 ), the enthalpy of formation of benzene. We can express the heat of combustion as ΔH o comb = 6ΔH o f(co 2 ) + 3ΔH o f(h 2 O) ΔH o f(c 6 H 6 ) We have values for everything in this equation except ΔH o f(c 6 H 6 ). Therefore, we can rearrange and solve for it:

4 ΔH o f(c 6 H 6 ) = 6ΔH o f(co 2 ) + 3ΔH o f(h 2 O) ΔH o comb = (6)( kj) + (3)( kj) ( kj) = kj 6. For each of the following, indicate which kind of radiation has higher energy. red light or blue light infrared radiation or radio waves x-rays or visible light 7. For each of the following, indicate which has higher frequency light with λ = 490 nm or light with λ = 520 nm (ν = c/λ) light with energy of 3.0 x J or light with energy of 4.5 x J (E = hν) 8. An argon laser emits green light with a wavelength of nm. Calculate the following for this light: (a) the wavelength in Å; (b) the frequency in Hz (s -1 ); (c) the energy in joules, J. (a) Note that to convert from nanometers to Ångstroms we need only move the decimal point to the right one place. (b) Use ν = c/λ. We need wavelength in meters, because the units on the speed of light are mas -1. We could convert nm to m first, but with a calculator it is simpler to enter nanometers as 10 9 m; i.e., 514.5E-9". (c) Given the preceding results, we can calculate energy by either E = hν or E = hc/λ. Using the first of these, E = hν = (6.626 x JAs)(5.827 x s 1 ) = x J 9. Is energy emitted or absorbed when the following transitions occur in hydrogen: (a) from n = 1 to n = 3 The transition is to a higher energy state, so energy corresponding to the difference between the states must be absorbed. (b) from n = 5 to n = 2 The transition is to a lower energy state, so energy corresponding to the difference between the states must be emitted. (c) an H + ion acquires an electron into the n = 2 state.

5 An H + ion is essentially a hydrogen atom with an electron an infinite distance away, the state for which n = 4. By adding an electron to the n = 2 state, it has lower energy (the electron is closer to the nucleus to which it is attracted), so energy will be emitted 10. The four visible lines of the Balmer series in the emission spectrum of hydrogen are violet (410 nm), blue (434 nm), blue-green (486 nm), and red (656 nm). Assign these as state-tostate transitions of the type n i n f, giving the n values involved for each line. All transitions in the Balmer series are to n f = 2 from n i > 2. The energy of light increases going from red to violet, so the red line is the smallest state-to-state separation, and the violet line is the largest. red (656 nm) 3 2 blue-green (486 nm) 4 2 blue (434 nm) 5 2 violet (410 nm) Calculate the energy of the first line in the Lyman series for the hydrogen atom, which arises from a transition from n i = 2 to n f = 1. What is the wavelength of the radiation emitted? In what region of the electromagnetic spectrum does it fall? E photon = J A wavelength of 121 nm falls well within the ultraviolet region.

Exam 2. Name: Class: Date:

Exam 2. Name: Class: Date: Class: Date: Exam 2 Multiple Choice Identify the choice that best completes the statement or answers the question. Record your name on the top of this exam and on the scantron form. Record the test ID

More information

Thermochemistry Chapter 4

Thermochemistry Chapter 4 Thermochemistry Chapter 4 Thermochemistry is the study of energy changes that occur during chemical reactions Focus is on heat and matter transfer between the system and the surroundings Energy The ability

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

Atomic Physics Worksheet. between 4000 and 5000 Angstroms ( nanometers): between 6500 and 7500 Angstroms ( nanometers):

Atomic Physics Worksheet. between 4000 and 5000 Angstroms ( nanometers): between 6500 and 7500 Angstroms ( nanometers): Atomic Physics Worksheet 1. Which of the gas samples shows an emission line with a wavelength between 4000 and 5000 Angstroms (400-500 nanometers): between 6500 and 7500 Angstroms (650-750 nanometers):

More information

Name Chem 161, Section: Group Number: ALE 27. Hess s Law. (Reference: Chapter 6 - Silberberg 5 th edition)

Name Chem 161, Section: Group Number: ALE 27. Hess s Law. (Reference: Chapter 6 - Silberberg 5 th edition) Name Chem 161, Section: Group Number: ALE 27. Hess s Law (Reference: Chapter 6 - Silberberg 5 th edition) Important!! For answers that involve a calculation you must show your work neatly using dimensional

More information

CHEM 200/202. Professor Jing Gu Office: GMCS-213F. All s are to be sent to:

CHEM 200/202. Professor Jing Gu Office: GMCS-213F. All  s are to be sent to: CHEM 200/202 Professor Jing Gu Office: GMCS-213F All emails are to be sent to: chem200@mail.sdsu.edu My office hours will be held in GMCS-212 on Wednesday from 3:00 pm to 5:00 pm or by appointment. LECTURE

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy.

More information

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6 Learning Objectives Energy: Light as energy Describe the wave nature of light, wavelength, and frequency using the equation c = λν What is meant by the particle nature of light? Calculate the energy of

More information

Chem 121 G. Thermochemistry

Chem 121 G. Thermochemistry Chem 121 G. Thermochemistry Energy 1 st law Enthalpy, enthalpy of combustion, fuels Calorimetry Enthalpy of reaction Hess's Law, calculations Energy Energy: capacity to do work or transfer heat Matter

More information

CP Chapter 17 Thermochemistry

CP Chapter 17 Thermochemistry CP Chapter 17 Thermochemistry Thermochemistry Thermochemistry is the study of energy that occur during chemical reactions and phase changes (changes of state) The Nature of Energy Energy is the ability

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry Learning Outcomes: Interconvert energy units Distinguish between the system and the surroundings in thermodynamics Calculate internal energy from heat and work and state sign

More information

University Chemistry

University Chemistry University Chemistry 1 Electromagnetic Radiation Electromagnetic radiation has some of the properties of both a particle and a wave. Particles: have a definite mass and they occupy space. Wave have no

More information

ALE 27. Hess s Law. (Reference: Chapter 6 - Silberberg 5 th edition)

ALE 27. Hess s Law. (Reference: Chapter 6 - Silberberg 5 th edition) Answer Key ALE 27. Hess s Law (Reference: Chapter 6 - Silberberg 5 th edition) Important!! For answers that involve a calculation you must show your work neatly using dimensional analysis with correct

More information

WEEK 1: 9 JAN THRU 15 JAN; LECTURES 1-4

WEEK 1: 9 JAN THRU 15 JAN; LECTURES 1-4 Learning objectives Basics: No recitation problems. Handled in ALEKs and week one homework problems but will be part of quiz. Measurement o Metric units, Unit Conversion within metric o Significant figures,

More information

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process.

33. a. Heat is absorbed from the water (it gets colder) as KBr dissolves, so this is an endothermic process. 31. This is an endothermic reaction so heat must be absorbed in order to convert reactants into products. The high temperature environment of internal combustion engines provides the heat. 33. a. Heat

More information

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change

Thermodynamics. Thermodynamics of Chemical Reactions. Enthalpy change Thermodynamics 1 st law (Cons of Energy) Deals with changes in energy Energy in chemical systems Total energy of an isolated system is constant Total energy = Potential energy + kinetic energy E p mgh

More information

CHEM 101 Fall 09 Final Exam (a)

CHEM 101 Fall 09 Final Exam (a) CHEM 101 Fall 09 Final Exam (a) On the answer sheet (scantron) write your name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it on

More information

Thermochemistry Notes

Thermochemistry Notes Name: Thermochemistry Notes I. Thermochemistry deals with the changes in energy that accompany a chemical reaction. Energy is measured in a quantity called enthalpy, represented as H. The change in energy

More information

Energy Relationships in Chemical Reactions

Energy Relationships in Chemical Reactions Energy Relationships in Chemical Reactions What is heat? What is a state function? What is enthalpy? Is enthalpy a state function? What does this mean? How can we calculate this? How are the methods the

More information

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat.

Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. CHEM134- F18 Dr. Al- Qaisi Chapter 06: Thermodynamics Thermochemistry is the study of the relationships between chemical reactions and energy changes involving heat. Energy is anything that has the capacity

More information

Chem 105 Final Exam. Here is the summary of the total 225 points plus 10 bonus points. Carefully read the questions. Good luck!

Chem 105 Final Exam. Here is the summary of the total 225 points plus 10 bonus points. Carefully read the questions. Good luck! May 3 rd, 2012 Name: CLID: Score: Chem 105 Final Exam There are 50 multiple choices that are worth 3 points each. There are 4 problems and 1 bonus problem. Try to answer the questions, which you know first,

More information

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy

Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (l) + energy Exothermic process is any process that gives off heat transfers thermal energy from the system to the surroundings. H 2 O (g) H 2 O (l) + energy Endothermic process is any process in which heat has to

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6 Thermochemistry Section 5.6 The Kinetic Molecular Theory of Gases http://www.scuc.txed.net/webpages/dmackey/files /chap06notes.pdf ..\..\..\..\..\..\Videos\AP Videos\Thermochemistry\AP

More information

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts

Section 3.0. The 1 st Law of Thermodynamics. (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities Definitions and Concepts Section 3.0. The 1 st Law of Thermodynamics (CHANG text Chapter 4) 3.1. Revisiting Heat Capacities 3.2. Definitions and Concepts 3.3. The First Law of THERMODYNAMICS 3.4. Enthalpy 3.5. Adiabatic Expansion

More information

1. Given the following data, calculate the standard enthalpy of formation of tungsten carbide, WC.

1. Given the following data, calculate the standard enthalpy of formation of tungsten carbide, WC. Name: Date: 1. Given the following data, calculate the standard enthalpy of formation of tungsten carbide, WC. 2W(s) + 3O 2 (g) 2WO 3 (s); ΔH rxn = - 1685.8 kj C(graphite) + O 2 (g) CO 2 (g); ΔH rxn =

More information

This is the energy released by the Sun at its surface. The amount of energy received by a planet which orbits at a distance d from the Sun is:

This is the energy released by the Sun at its surface. The amount of energy received by a planet which orbits at a distance d from the Sun is: CHEM1901/3 Worksheet 9: Enthalpy of Reaction (Δ rxn H) Model 1: Stars and the Stefan-Boltzmann Law Planets are in thermal equilibrium. The energy they absorb from the star they orbit is in equilibrium

More information

WORKSHEET #1. Dougherty Valley HS AP Chemistry Hess s Law Problems

WORKSHEET #1. Dougherty Valley HS AP Chemistry Hess s Law Problems Dougherty Valley HS AP Chemistry Hess s Law Problems WORKSHEET #1 1. Calculate the standard enthalpy change, ΔH o, for the formation of 1 mol of strontium carbonate (the material that gives the red color

More information

Chapter 5 - Thermochemistry

Chapter 5 - Thermochemistry Chapter 5 - Thermochemistry Study of energy changes that accompany chemical rx s. I) Nature of Energy Energy / Capacity to do work Mechanical Work w = F x d Heat energy - energy used to cause the temperature

More information

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36 CHEM 1411. Chapter 6. Basic Quantum Chemistry (Homework). WL36 1. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect. A) True B) False 2. A

More information

Do now: Write equations for the following expressions:

Do now: Write equations for the following expressions: Do now: Write equations for the following expressions: ½ N 2(g) + 1 ½ H 2(g) NH 3(g) Δ f H (NH 3(g) ) = -46 kj.mol -1 ½ H 2(g) + ½ Cl 2(g) HCl (g) Δ f H (HCl (g) ) = -92 kj.mol -1 ½ N 2(g) + 2 H 2(g) +

More information

Chapter 6 Part 1 Structure of the atom

Chapter 6 Part 1 Structure of the atom Chapter 6 Part 1 Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the

More information

3. The initial rate of a reaction A + B C was measured for several different starting concentrations of A and B, and the results are as follows:

3. The initial rate of a reaction A + B C was measured for several different starting concentrations of A and B, and the results are as follows: Kinetic Chemistry 1. a) How is the rate at which ozone disappears related to the rate at which oxygen appears in the reaction 2 O 3 (g) 3 O 2 (g)? b) If the rate at which O 2 appears, Δ[O 2 ]/Δt, is 6.0

More information

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat

The Nature of Energy. Chapter Six: Kinetic vs. Potential Energy. Energy and Work. Temperature vs. Heat The Nature of Energy Chapter Six: THERMOCHEMISTRY Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationship between chemical reactions and energy changes

More information

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to )

The Nature of Energy Energy is the ability to do work or produce Heat, q or Q, is ; flows due to temperature differences (always to ) CP Chapter 17 Thermochemistry 2014-2015 Thermochemistry Thermochemistry is the study of energy that occur during chemical and physical changes (changes of state) The Nature of Energy Energy is the ability

More information

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C?

Learning Check. How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? Learning Check q = c * m * ΔT How much heat, q, is required to raise the temperature of 1000 kg of iron and 1000 kg of water from 25 C to 75 C? (c water =4.184 J/ C g, c iron =0.450 J/ C g) q Fe = 0.450

More information

Enthalpies of Reaction

Enthalpies of Reaction Enthalpies of Reaction Enthalpy is an extensive property Magnitude of H is directly related to the amount of reactant used up in a process. CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) H = 890 kj 2CH 4 (g)

More information

THE ATOMIC SPECTRUM OF HYDROGEN

THE ATOMIC SPECTRUM OF HYDROGEN THE ATOMIC SPECTRUM OF HYDROGEN When atoms are excited, either in an electric discharge or with heat, they tend to give off light. The light is emitted only at certain wavelengths that are characteristic

More information

Chapter 6. Thermochemistry

Chapter 6. Thermochemistry Chapter 6. Thermochemistry 1 1. Terms to Know: thermodynamics thermochemistry energy kinetic energy potential energy heat heat vs. temperature work work of expanding gases work of expanding gases under

More information

Energy, Heat and Chemical Change

Energy, Heat and Chemical Change Energy, Heat and Chemical Change Chemistry 35 Fall 2000 Thermochemistry A part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? -will a reaction

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Thermochemistry-Part 1

Thermochemistry-Part 1 Brad Collins Thermochemistry-Part 1 Chapter 7 Thermochemistry Thermodynamics: The study of energy Thermochemistry: The study of energy in chemical reactions Energy: The capacity to do work Work = force

More information

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion

Chapter 3. Thermochemistry: Energy Flow and Chemical Change. 5.1 Forms of Energy and Their Interconversion Chapter 3 Thermochemistry: Energy Flow and Chemical Change 5.1 Forms of Energy and Their Interconversion 5.2 Enthalpy: Chemical Change at Constant Pressure 5.3 Calorimetry: Measuring the Heat of a Chemical

More information

CHEM 1105 S10 March 11 & 14, 2014

CHEM 1105 S10 March 11 & 14, 2014 CHEM 1105 S10 March 11 & 14, 2014 Today s topics: Thermochemistry (Chapter 6) Basic definitions Calorimetry Enthalpy Thermochemical equations Calculating heats of reaction Hess s Law Energy and Heat Some

More information

1. The Oxidation number of the N in ammonium, the N in nitrate and the C in methane change by how much, respectively, in the following reaction:

1. The Oxidation number of the N in ammonium, the N in nitrate and the C in methane change by how much, respectively, in the following reaction: Exam 2 CEM 151 October, 17, 2007 Name Section PID Multiple choice (3 points each). 1. The Oxidation number of the N in ammonium, the N in nitrate and the C in methane change by how much, respectively,

More information

ENTHALPY CHANGE CHAPTER 4

ENTHALPY CHANGE CHAPTER 4 ENTHALPY CHANGE CHAPTER 4 ENTHALPY Is the total energy of a system. E k = Kinetic energy. Vibrational Rotational Translational E due to motion H = E k + E p E P = Potential energy Attractive force b/w

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Thermochemistry Enthalpy & Hess Law. Packet #35

Thermochemistry Enthalpy & Hess Law. Packet #35 Thermochemistry Enthalpy & Hess Law Packet #35 Introduction I Thermochemistry, is the branch of chemistry that, investigates the amount of energy that is gained or lost during a chemical reaction. Introduction

More information

Choose the best answer from the choices (5 points each)

Choose the best answer from the choices (5 points each) Cem 151 Exam 2 October 16, 2014 Choose the best answer from the choices (5 points each) 1) The net ionic equation for formation of an aqueous solution of NiI 2 accompanied by evolution of CO 2 gas via

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Chemistry Slide 1 of 33

Chemistry Slide 1 of 33 Chemistry 17.2 1 of 33 17.2 Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

5/14/14. How can you measure the amount of heat released when a match burns?

5/14/14. How can you measure the amount of heat released when a match burns? CHEMISTRY & YOU Chapter 7 Thermochemistry How can you measure the amount of heat released when a match burns? 7. The Flow of Energy 7.3 Heat in Changes of State 7.4 Calculating Heats of Reaction Remember:

More information

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F " E.

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F  E. CHEMISTRY 110 EXAM 1 Sept. 24, 2012 FORM A 1. A microwave oven uses 2.45! 10 9 Hz electromagnetic waves to heat food. What is the wavelength of this radiation in mm? A. It is impossible to tell from the

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

CHE 105 Fall 2016 Exam 3

CHE 105 Fall 2016 Exam 3 CHE 105 Fall 2016 Exam 3 Your Name: Your ID: Question #: 1 Samples of CO2(g), C6H6(g), Cl2(g) and C3H8(g) are placed in separate glass vessels (only one gas to a vessel) at the same temperature and pressure.

More information

ATOMIC STRUCTURE ELECTRON CONFIGURATION 10/13/15 PROJECT DATE. Tuesday, October 13, 15

ATOMIC STRUCTURE ELECTRON CONFIGURATION 10/13/15 PROJECT DATE. Tuesday, October 13, 15 PROJECT DATE ATOMIC STRUCTURE ELECTRON CONFIGURATION 10/13/15 Agenda Begin Topic 2.2 Electron Configuration Homework: Energy of waves calculations Due tomorrow! Yes - tomorrow Atomic Structure The nuclear

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

Name Date Class THE FLOW OF ENERGY HEAT AND WORK 17.1 THE FLOW OF ENERGY HEAT AND WORK Section Review Objectives Explain the relationship between energy, heat, and work Distinguish between exothermic and endothermic processes Distinguish between heat

More information

Question: Can we use our simple shell model of the atom to make some predictions?

Question: Can we use our simple shell model of the atom to make some predictions? During Class Invention Question: Can we use our simple shell model of the atom to make some predictions? 1. Describe the nature of the interaction between protons and electrons in an atom? Consider using

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Test #3 Last Name First Name Zumdahl, Chapters 6 and 7 November 2, 2004

Test #3 Last Name First Name Zumdahl, Chapters 6 and 7 November 2, 2004 Form H Chemistry 1441-023 Name (please print) Test #3 Last Name First Name Zumdahl, Chapters 6 and 7 November 2, 2004 Instructions: 1. This exam consists of 25 questions. 2. No scratch paper is allowed.

More information

Light, Electrons, and Energy. Pre-AP

Light, Electrons, and Energy. Pre-AP Light, Electrons, and Energy Pre-AP Light Waves! Electromagnetic Frequency Light Phenomenon Light can act as a wave or as a particle, but most light-electron interactions use wave physics. = greek letter

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET 1.) Look at the EM spectrum below to answer this question. As you move across the visible light spectrum from red to violet (A) Does the wavelength

More information

Enthalpy and Internal Energy

Enthalpy and Internal Energy Enthalpy and Internal Energy H or ΔH is used to symbolize enthalpy. The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w, where ΔE is the change in internal energy, q is heat and

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Name Date IB Chemistry HL-II Summer Review Unit 1 Atomic Structure IB 2.1 The nuclear atom

Name Date IB Chemistry HL-II Summer Review Unit 1 Atomic Structure IB 2.1 The nuclear atom Name Date IB Chemistry HL-II Summer Review Unit 1 Atomic Structure IB.1 The nuclear atom 1. State the number of protons, neutrons, and electrons in each of the following: a. 65 Cu b. 15 N 3- c. 137 Ba

More information

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c

Slide 1 / Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy. a only b only c only a and c b and c Slide 1 / 84 1 Objects can possess energy as: (a) endothermic energy (b) potential energy (c) kinetic energy A B C D E a only b only c only a and c b and c Slide 2 / 84 2 The internal energy of a system

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

Background: The Electromagnetic Spectrum

Background: The Electromagnetic Spectrum Background: The Electromagnetic Spectrum Wavelength (λ) in meters wavelength decreasing 10 4 10 2 10 0 10-2 10-4 10-6 10-8 10-10 10-12 10-14 microwaves ultraviolet Gamma rays Radio waves AM 10 4 Shortwave

More information

Chapter 7. Quantum Theory and Atomic Structure

Chapter 7. Quantum Theory and Atomic Structure Chapter 7 Quantum Theory and Atomic Structure Outline 1. The Nature of Light 2. Atomic Spectra 3. The Wave-Particle Duality of Matter and Energy 4. The Quantum-Mechanical Model of the Atom 3 September

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell?

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? AP Chemistry Ms. Ye Name Date Block Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? 1 st shell 2 nd shell

More information

CHEMISTRY 102B Hour Exam II. Dr. D. DeCoste T.A.

CHEMISTRY 102B Hour Exam II. Dr. D. DeCoste T.A. CHEMISTRY 10B Hour Exam II March 19, 015 Dr. D. DeCoste Name Signature T.A. This exam contains questions on 9 numbered pages. Check now to make sure you have a complete exam. You have one hour and thirty

More information

Today is Thursday, March (!) 1 st, 2018

Today is Thursday, March (!) 1 st, 2018 In This Lesson: Atomic Emissions (Lesson 2 of 4) Stuff You Need: Calculator Today is Thursday, March (!) 1 st, 2018 Pre-Class: [choose one] What is white light? How are fireworks made to be different colors?

More information

Chemistry 1A Midterm Exam 1 February 12, Potentially Useful Information. Violet Blue Green Yellow Orange Red Wavelength (nm)

Chemistry 1A Midterm Exam 1 February 12, Potentially Useful Information. Violet Blue Green Yellow Orange Red Wavelength (nm) Chemistry 1A Midterm Exam 1 February 12, 2013 Professor Pines 5 pages total Student Name: Student ID#: Potentially Useful Information Violet Blue Green Yellow Orange Red 400 500 600 700 Wavelength (nm)

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 16.1 Energy In your textbook, read about the nature of energy. In the space at the left, write true if the statement is true; if the statement is false, change the italicized

More information

Review for Final Exam

Review for Final Exam Review for Final Exam Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Types of Changes A physical change does not alter the composition or identity

More information

Atomic Spectroscopy and Energy Levels

Atomic Spectroscopy and Energy Levels Activity 18 Atomic Spectroscopy and Energy Levels Why? The emission of light by the hydrogen atom and other atoms played a key role in helping scientists to understand the electronic structure of atoms.

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

CHEMISTRY 1031 EXAM III QUESTIONS FOR THE REVIEW WORKSHOP (You will need a periodic table. Useful information is on page 4. Answers are on page 5.

CHEMISTRY 1031 EXAM III QUESTIONS FOR THE REVIEW WORKSHOP (You will need a periodic table. Useful information is on page 4. Answers are on page 5. CHEMISTRY 1031 EXAM III QUESTIONS FOR THE REVIEW WORKSHOP (You will need a periodic table. Useful information is on page 4. Answers are on page 5.) 1 1. Calculate the minimum energy required to decompose

More information

Thermochemistry Ch. 8

Thermochemistry Ch. 8 Definitions I. Energy (E): capacity to do work. II. Heat (q): transfer of energy from a body at a high temp. to a body at a low temp. III. Reaction perspectives: A. System: the focus. B. Surroundings:

More information

An element Is a substance that cannot be split into simpler substance. It is composed of discrete particles called atoms.

An element Is a substance that cannot be split into simpler substance. It is composed of discrete particles called atoms. digitalteachers.co.ug Atomic structure Inorganic chemistry deals with the physical and chemical properties of the elements of the the periodic table. An element Is a substance that cannot be split into

More information

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin)

Chapter 5 Thermochemistry. 許富銀 ( Hsu Fu-Yin) Chapter 5 Thermochemistry 許富銀 ( Hsu Fu-Yin) 1 Thermodynamics The study of energy and its transformations is known as thermodynamics The relationships between chemical reactions and energy changes that

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Name. Student ID # CHEMISTRY 121 [Tyvoll] PRACTICE EXAM III. November 23, Possibly Useful Information:

Name. Student ID # CHEMISTRY 121 [Tyvoll] PRACTICE EXAM III. November 23, Possibly Useful Information: Name Student ID # CHEMISTRY 121 [Tyvoll] PRACTICE EXAM III November 23, 2004 1 2 3 4 5 Possibly Useful Information: 1) ( ) ( ) ( ) ( ) ( X ) 1 atm = 14.70 lb/in 2 = 101.325 kpa 2) ( ) ( ) ( X ) ( ) ( )

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra Higher -o-o-o- Past Paper questions 1991-2010 -o-o-o- 3.4 Spectra 1992 Q37 The diagram below shows the energy levels for the hydrogen atom. (a) Between which two energy levels would an electron transition

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Contents and Concepts Understanding Heats of Reaction The first part of the chapter lays the groundwork for understanding what we mean by heats of reaction. 1. Energy and Its

More information

QUIZ Prep Calorimetry, 6, & 7 a.k.a. Why Does Mr.C Do This to Us?

QUIZ Prep Calorimetry, 6, & 7 a.k.a. Why Does Mr.C Do This to Us? 1) Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 mph. (1 mile = 1.6093 km, 1lb = 453.59 g). 4 A) 1.2 5 B) 2.9 5 C) 5.9 6 D) 3.2 E) 3.2 6 2) Calculate the

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chapter 7. Part I Dr. Stone Stan State

Chapter 7. Part I Dr. Stone Stan State Chapter 7 Part I Dr. Stone Stan State 1 2 Electromagnetic Radiation Perpendicular oscillating fields: Electric: PET scan: gamma rays X-rays Visible light Infrared (heat) Microwaves Magnetic MRI = magnetic

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Enthalpy of Formation formation = f = enthalpy associated with the formation of a compound from its constituent elements Examples of formation equations:

More information

Chemistry. Friday, March 30 th Monday, April 9 th, 2018

Chemistry. Friday, March 30 th Monday, April 9 th, 2018 Chemistry Friday, March 30 th Monday, April 9 th, 2018 Do-Now: BrainPOP: Heat 1. Write down today s FLT 2. Distinguish between exothermic and endothermic processes. 3. What is the specific heat of water?

More information

Enthalpy Chapter 5.3-4,7

Enthalpy Chapter 5.3-4,7 Enthalpy Chapter 5.3-4,7 heat transfer in (endothermic), +q heat transfer out (exothermic), -q SYSTEM E = q + w w transfer in (+w) w transfer out (-w) Internal Energy at Constant Volume E = E K + E P ΔE

More information

Topic 3: Periodic Trends and Atomic Spectroscopy

Topic 3: Periodic Trends and Atomic Spectroscopy Topic 3: Periodic Trends and Atomic Spectroscopy Introduction Valence Electrons are those in the outer most shell of an element and are responsible for the bonding characteristics of that element. Core

More information

2 Examiner SECTION A. Answer all the questions in the spaces provided.

2 Examiner SECTION A. Answer all the questions in the spaces provided. 2 SECTION A Answer all the questions in the spaces provided. 1. An isotope of magnesium, 27 Mg, is used to detect leaks in water pipes. (a) It decays by β emission with a half life of 9 5 minutes. (i)

More information

Attempt all the questions and circle/write your answers. For Section 2 attempt all questions and show all your steps clearly

Attempt all the questions and circle/write your answers. For Section 2 attempt all questions and show all your steps clearly Chemistry 111 EXAM 2_Summer 2012 NAME: SECTION #: Attempt all the questions and circle/write your answers. For Section 2 attempt all questions and show all your steps clearly Constants and formulas: E=h,

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information