Chapter 6 # METABOLISM PowerPoint Image Slideshow

Size: px
Start display at page:

Download "Chapter 6 # METABOLISM PowerPoint Image Slideshow"

Transcription

1 COLLEGE BIOLOGY PHYSICS Chapter 6 # METABOLISM Chapter Title PowerPoint Image Slideshow

2 Figure 8.1 Metabolism

3 Figure 6.2 Energy from the sun. Plants photosynthesis Herbivores eat those plants Carnivores eat the herbivores Decomposers digest plant and animal matter Energy lost as heat

4 Figure 6.4 This tree shows the evolution of the various branches of life. The vertical dimension is time. Early life forms (blue) used anaerobic metabolism

5 Figure 8.UN01 Metabolism & metabolic pathways Anabolism Catabolism Enzyme 1 Enzyme 2 Enzyme 3 A B C D Reaction 1 Reaction 2 Reaction 3 Starting Product molecule

6 Catabolism Break down Complex simple Releases NRG

7 Anabolism Builds up Simple Complex Requires NRG

8 Bioenergetics Energy transformations in living organisms Energy = capacity to cause change

9 Energy Forms Potential Energy Stored energy Capacity to do work Due to: Location Bond arrangement

10 Energy Forms Kinetic Energy Energy of motion Work energy Releases heat

11 Figure 6.8 Examples of endergonic processes (ones that require energy) and exergonic processes (ones that release energy).

12 Figure 8.2 A diver has more potential energy on the platform than in the water. Diving converts potential energy to kinetic energy. Energy Transformations Potential Kinetic Climbing up converts the kinetic energy of muscle movement to potential energy. A diver has less potential energy in the water than on the platform.

13 Figure 8.3 Thermodynamics Energy transformations in matter Matter system Universe surroundings Heat Chemical energy (a) First law of thermodynamics (b) Second law of thermodynamics

14 Figure 8.3a (a) First law of thermodynamics Conservation of energy Chemical energy

15 Figure 8.3b (b) Second law of thermodynamics Transformation ineffincient Heat

16 Figure 6.11 Energy transferred from one system to another and transformed from one form to another.

17

18 Figure 6.12 Order & Disorder Entropy is a measure of randomness or disorder in a system. Gases have higher entropy than liquids, and liquids have higher entropy than solids.

19 Entropy Temperature & Entropy gas solid liquid Temperature melting boiling

20 Gibb s Free Energy G = H T S ( G) = change in free energy during a process ( H) = change in enthalpy, or change in total energy ( S) = change in entropy (T) = temperature in Kelvin Only processes with a negative G are spontaneous Spontaneous processes can be harnessed to perform work

21 Figure 8.5 Free energy = energy capable of work Measure instability More free energy (higher G) Less stable Greater work capacity In a spontaneous change The free energy of the system decreases ( G 0) The system becomes more stable The released free energy can be harnessed to do work Less free energy (lower G) More stable Less work capacity (a) Gravitational motion (b) Diffusion (c) Chemical reaction

22 Free energy Figure 8.6a Free Energy and Metabolism (a) Exergonic reaction: energy released, spontaneous Reactants Energy Products Amount of energy released ( G 0) Progress of the reaction

23 Free energy Figure 8.6b Free Energy and Metabolism (b) Endergonic reaction: energy required, nonspontaneous Products Reactants Energy Amount of energy required ( G 0) Progress of the reaction

24 Figure 8.7 Equilibrium and Metabolism G 0 G 0 (a) An isolated hydroelectric system (b) An open hydroelectric system G 0 G 0 G 0 G 0 (c) A multistep open hydroelectric system

25 Figure 8.8 ATP powers cellular work Adenine Phosphate groups Ribose 3 main kinds of cellular work: Chemical/Transport/Mechanical Lowers energy state (a) The structure of ATP Adenosine triphosphate (ATP) Energy Inorganic phosphate Adenosine diphosphate (ADP) (b) The hydrolysis of ATP

26 Figure 8.10 Phosphorylation Transport protein Solute ATP ADP P i P P i Solute transported (a) Transport work: ATP phosphorylates transport proteins. Vesicle Cytoskeletal track ATP ATP ADP P i Motor protein Protein and vesicle moved (b) Mechanical work: ATP binds noncovalently to motor proteins and then is hydrolyzed.

27 Figure 8.11 ATP cycle ATP H 2 O Energy from catabolism (exergonic, energy-releasing processes) ADP P i Energy for cellular work (endergonic, energy-consuming processes)

28 General Enzyme Characteristics Biological catalysts Increases chemical reactions How enzymes work? Lower activation energy Decrease amt of energy needed to get reaction going

29 Figure 8.12 Free energy Decreasing activation energy Progress of the reaction A B C D Transition state A B E A C D Reactants A B G O C D Products

30 Figure 6.15 Free energy Course of reaction without enzyme Reactants Course of reaction with enzyme E A without enzyme E A with enzyme is lower G is unaffected by enzyme Progress of the reaction Products

31 Figure 8.14 Substrate Active site (a) Enzyme (b) Enzyme-substrate complex Specificity resuable

32 Figure Substrates enter active site. 2 Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex Induced fit Active site Enzyme

33 Figure Substrates enter active site. 2 Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex 3 Active site can lower E A and speed up a reaction. Active site Enzyme 4 Substrates are converted to products.

34 Figure Substrates enter active site. 2 Substrates are held in active site by weak interactions. Substrates Enzyme-substrate complex 3 Active site can lower E A and speed up a reaction. 6 Active site is available for two new substrate molecules. Enzyme 5 Products are released. Products 4 Substrates are converted to products.

35 Figure 6.16 Enzyme + substrate ES complex NZ + product(s) Induced fit

36 Figure 8.16a Rate of reaction Factors Affect Enzyme Activity Environmental Conditions (Temperature) Optimal temperature for typical human enzyme (37 C) Optimal temperature for enzyme of thermophilic (heat-tolerant) bacteria (77 C) Temperature ( C) (a) Optimal temperature for two enzymes

37

38 Figure 8.16b Rate of reaction Factors Affect Enzyme Activity Environmental Conditions (ph) Optimal ph for pepsin (stomach enzyme) Optimal ph for trypsin (intestinal enzyme) ph (b) Optimal ph for two enzymes

39

40 Factors Affect Enzyme Activity Environmental Conditions (Ionic concentration)

41 How can you use this to preserve your food items from microorganism that could spoil your meal? Temperature Cooking? Refrigeration? ph Ionic concentration

42 Factors Affect Enzyme Activity Cofactors Inorganic Zn/Fe/Cu Coenzymes Organic Vitamins (B 12 /B 6 ) Binds to active site Stabilizes transition state

43 Figure 8.17 Factors Affect Enzyme Activity (a) Normal binding (b) Competitive inhibition (c) Noncompetitive inhibition Substrate Active site Competitive inhibitor Enzyme Ex. Aspirin, penicillin, nerve gases Sulfonamide para-aminobenzoic aicd (PABA) Nucleic acid synthesis Noncompetitive inhibitor Ex. ATP

44 Figure 8.17 Factors Affect Enzyme Activity (a) Normal binding (b) Competitive inhibition (c) Noncompetitive inhibition Substrate Active site Competitive inhibitor Enzyme Ex. Aspirin, penicillin, nerve gases Sulfonamide para-aminobenzoic aicd (PABA) Nucleic acid synthesis Noncompetitive inhibitor Ex. ATP

45 Figure Two 8.18changed amino acids were found near the active site. Evolution of Enzymes Active site Two changed amino acids were found in the active site. Two changed amino acids were found on the surface.

46 Figure 8.19a (a) Allosteric activators and inhibitors Allosteric enzyme with four subunits Active site (one of four) Regulatory site (one of four) Active form Activator Stabilized active form Ex. Anti-anxiety drugs (Valium, Xanax, Ativan) Oscillation Increase the activity of gamma aminobutyric acid (GABA) Ex. Na + activation of thrombin Ea. AMP Nonfunctional active site Inactive form Inhibitor Stabilized inactive form

47 Figure 8.19a (a) Allosteric activators and inhibitors Allosteric enzyme with four subunits Active site (one of four) Regulatory site (one of four) Active form Activator Stabilized active form Oscillation Ex. Strychnine glycine in CNS Nonfunctional active site Inactive form Inhibitor Stabilized inactive form

48 Figure 6.17 Competitive & noncompetitive Inhibition

49 Figure 6.18 Allosteric Inhibitors

50 Figure 6.18 Allosteric Inhibitors Competitive and noncompetitive inhibition affect the rate of reaction differently. Competitive inhibitors affect the initial rate but do not affect the maximal rate, whereas noncompetitive inhibitors affect the maximal rate.

51 Figure 8.19b (b) Cooperativity: another type of allosteric activation Substrate Inactive form Stabilized active form Hemoglobin

52 Figure 8.20 EXPERIMENT Caspase 1 Active site Substrate SH Known active form SH Active form can bind substrate SH Allosteric binding site Known inactive form Allosteric inhibitor Hypothesis: allosteric inhibitor locks enzyme in inactive form RESULTS Caspase 1 Active form Allosterically inhibited form Inhibitor Inactive form

53 Figure 8.20a EXPERIMENT Caspase 1 Active site Substrate SH Known active form SH Active form can bind substrate SH Allosteric binding site Allosteric Known inactive form inhibitor Hypothesis: allosteric inhibitor locks enzyme in inactive form

54 Figure 8.20b RESULTS Caspase 1 Active form Allosterically inhibited form Inhibitor Inactive form

55 Figure 6.21 Feedback Inhibition An important regulatory mechanism in cells.

56 Figure 8.21 Feedback Inhibition Active site available Initial substrate (threonine) Threonine in active site Isoleucine used up by cell Active site of Feedback enzyme 1 is inhibition no longer able to catalyze the conversion of threonine to intermediate A; pathway is switched off. Isoleucine binds to allosteric site. Intermediate A Intermediate B Intermediate C Intermediate D Enzyme 1 (threonine deaminase) Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 End product (isoleucine)

57 Figure 8.22 Mitochondria The matrix contains enzymes in solution that are involved in one stage of cellular respiration. Enzymes for another stage of cellular respiration are embedded in the inner membrane. 1 m

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 1 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Chapter 8 Introduction to Metabolism Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes Overview: The Energy of Life Figure 8.1 The living cell is a miniature

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Energy of Life The

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 8 1. An organism s metabolism transforms matter and energy, subject to the laws of

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Energy of Life The living

More information

An Introduction to Metabolism

An Introduction to Metabolism LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 8 An Introduction to Metabolism

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

An Introduction to Metabolism

An Introduction to Metabolism CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 6 An Introduction to Metabolism Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION The

More information

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life 8 An Introduction to Metabolism CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V. Enzymes

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways Course No: BNG2003 Credits: 3.00 General Biology 5. An Introduction into Cell Metabolism The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

CHAPTER 8. An Introduction to Metabolism

CHAPTER 8. An Introduction to Metabolism CHAPTER 8 An Introduction to Metabolism WHAT YOU NEED TO KNOW: Examples of endergonic and exergonic reactions. The key role of ATP in energy coupling. That enzymes work by lowering the energy of activation.

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism oweroint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Concept 8.1: An organism s metabolism transforms matter and energy, subject to the laws

More information

The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways.

The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways. Course No: BNG2003 Credits: 3.00 General Biology 5. An Introduction in to Cell Metabolism The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy

More information

Ch. 8 Metabolism and Energy BIOL 222

Ch. 8 Metabolism and Energy BIOL 222 Ch. 8 Metabolism and Energy BIOL 222 Metabolism Metabolism The totality of an organism s chemical reac:ons Sum of anabolism and catabolism emergent property of life that arises from interac:ons between

More information

Metabolism and Energy. Mrs. Stahl AP Biology

Metabolism and Energy. Mrs. Stahl AP Biology Metabolism and Energy Mrs. Stahl AP Biology The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy stored in sugars and other fuels

More information

Metabolism and Enzymes

Metabolism and Enzymes Energy Basics Metabolism and Enzymes Chapter 5 Pgs. 77 86 Chapter 8 Pgs. 142 162 Energy is the capacity to cause change, and is required to do work. Very difficult to define quantity. Two types of energy:

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Energy Transformation, Cellular Energy & Enzymes (Outline)

Energy Transformation, Cellular Energy & Enzymes (Outline) Energy Transformation, Cellular Energy & Enzymes (Outline) Energy conversions and recycling of matter in the ecosystem. Forms of energy: potential and kinetic energy The two laws of thermodynamic and definitions

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation Objectives INTRODUCTION TO METABOLISM. Chapter 8 Metabolism, Energy, and Life Explain the role of catabolic and anabolic pathways in cell metabolism Distinguish between kinetic and potential energy Distinguish

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions Energy, Enzymes, and Metabolism Lecture Series 6 Energy, Enzymes, and Metabolism B. ATP: Transferring Energy in Cells D. Molecular Structure Determines Enzyme Fxn Energy is the capacity to do work (cause

More information

Chapter 6. Ground Rules Of Metabolism

Chapter 6. Ground Rules Of Metabolism Chapter 6 Ground Rules Of Metabolism Alcohol Dehydrogenase An enzyme Breaks down ethanol and other toxic alcohols Allows humans to drink Metabolism Is the totality of an organism s chemical reactions Arises

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

Big Idea #2. Energy. Types of Potential Energy. Kinetic Energy. Chemical Potential Energy. Metabolism

Big Idea #2. Energy. Types of Potential Energy. Kinetic Energy. Chemical Potential Energy. Metabolism Big Idea #2 Biological Systems utilize free energy and molecular building blocks to grow, to reproduce and to maintain dynamic homeostasis Life runs on chemical reactions rearranging atoms transforming

More information

Chapter 8 Notes. An Introduction to Metabolism

Chapter 8 Notes. An Introduction to Metabolism Chapter 8 Notes An Introduction to Metabolism Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme. Objectives Distinguish between the following pairs of terms: catabolic

More information

Metabolism and enzymes

Metabolism and enzymes Metabolism and enzymes 4-11-16 What is a chemical reaction? A chemical reaction is a process that forms or breaks the chemical bonds that hold atoms together Chemical reactions convert one set of chemical

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Key Concepts 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 8.2 The free-energy change of a reaction tells us

More information

Introduction to Metabolism (Or Energy Management) Chapter 8

Introduction to Metabolism (Or Energy Management) Chapter 8 Introduction to Metabolism (Or Energy Management) Chapter 8 Metabolism of the chemical reactions in the organism Building up molecules Breaking down molecules Managing energy and materials Route to end-product

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism Chapter 8 Objectives Distinguish between the following pairs of terms: catabolic and anabolic pathways; kinetic and potential energy; open and closed systems; exergonic and

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism The living cell is a microscopic factory where life s giant processes can be performed: -sugars to amino acids to proteins and vise versa -reactions to dismantle polymers

More information

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems Making energy! ATP The energy needs of life rganisms are endergonic systems What do we need energy for? synthesis building biomolecules reproduction movement active transport temperature regulation 2007-2008

More information

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Metabolism CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 8 An Introduction to Metabolism Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 2014 Pearson Education, Inc.

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types

More information

Metabolism, Energy and Life

Metabolism, Energy and Life BSC 2010 - Exam I Lectures and Text ages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Chapter 6 Active Reading Guide An Introduction to Metabolism

Chapter 6 Active Reading Guide An Introduction to Metabolism Name: AP Biology Mr. Croft Section 1 1. Define metabolism. Chapter 6 Active Reading Guide An Introduction to Metabolism 2. There are two types of reactions in metabolic pathways: anabolic and catabolic.

More information

Chapter 8 Introduction to Metabolism. Metabolism. The sum total of the chemical reactions that occur in a living thing.

Chapter 8 Introduction to Metabolism. Metabolism. The sum total of the chemical reactions that occur in a living thing. Chapter 8 Introduction to Metabolism Metabolism The sum total of the chemical reactions that occur in a living thing. Think of metabolism as a road map of thousands of different chemical reactions Enzymes

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types of reactions in metabolic pathways: anabolic

More information

Ch. 3 Metabolism and Enzymes

Ch. 3 Metabolism and Enzymes Ch. 3 Metabolism and Enzymes Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Flow of energy through life Life is built on chemical reactions that enable energy to flow through

More information

Ground Rules of Metabolism CHAPTER 6

Ground Rules of Metabolism CHAPTER 6 Ground Rules of Metabolism CHAPTER 6 Antioxidants You ve heard the term. What s the big deal? Found naturally in many fruits and vegetables Added to many products What do they actually do? Antioxidants

More information

Chapter 5. Directions and Rates of Biochemical Processes

Chapter 5. Directions and Rates of Biochemical Processes Chapter 5 Directions and Rates of Biochemical Processes Key Questions What factors determine which way a reaction will go? What factors determine the rate of a chemical reaction? How do enzymes work? How

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Activity: Identifying forms of energy

Activity: Identifying forms of energy Activity: Identifying forms of energy INTRODUCTION TO METABOLISM Metabolism Metabolism is the sum of all chemical reactions in an organism Metabolic pathway begins with a specific molecule and ends with

More information

Biology Kevin Dees. Chapter 8 Introduction to Metabolism

Biology Kevin Dees. Chapter 8 Introduction to Metabolism Chapter 8 Introduction to Metabolism Defined as the sum total of the chemical reactions that occur in a living thing. Think of metabolism as a road map of thousands of different chemical reactions regulate

More information

Metabolism: Energy and Enzymes. February 24 th, 2012

Metabolism: Energy and Enzymes. February 24 th, 2012 Metabolism: Energy and Enzymes February 24 th, 2012 1 Outline Forms of Energy Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration

More information

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy;

(kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic energy 1. Potential energy is energy; I. Biological work requires energy A. Energy is the to do work B. Energy is expressed in units of work (kilo ) or heat energy (kilo ) C. Organisms carry out conversions between potential energy and kinetic

More information

Chapter 6 An Introduction to Metabolism

Chapter 6 An Introduction to Metabolism Chapter 6 An Introduction to Metabolism Ruey-Hua Lee ( 李瑞花 ) Institute of Tropical Plant Sciences E-mail: shanhua@mail.ncku.edu.tw Tel: 06-5050635 x 3030 Overview: The Energy of Life The living cell is

More information

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Chapter 6 Energy & Metabolism I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI. Metabolism I. Flow of Energy in Living

More information

Ch 4: Cellular Metabolism, Part 1

Ch 4: Cellular Metabolism, Part 1 Developed by John Gallagher, MS, DVM Ch 4: Cellular Metabolism, Part 1 Energy as it relates to Biology Energy for synthesis and movement Energy transformation Enzymes and how they speed reactions Metabolism

More information

1. Metabolism is the total of all the chemical processes that occur in an organism.

1. Metabolism is the total of all the chemical processes that occur in an organism. ENERGY AND METABOLISM A. ENERGY 1. Metabolism is the total of all the chemical processes that occur in an organism. a. Catabolism is the process of converting complex to simple or simpler molecules with

More information

Metabolism. AP Biology Chapter 8

Metabolism. AP Biology Chapter 8 Metabolism AP Biology Chapter 8 Energy Energy management Bioenergetics is the study of how organisms manage their energy resources. Energy is the capacity to do work. Energy exists in various forms Cells

More information

Chapter 6: Energy Flow in the Life of a Cell

Chapter 6: Energy Flow in the Life of a Cell Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The capacity to do work Types of Energy: 1) Potential Energy = Stored energy Positional (stored in location of object) Chemical (stored

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Lecture Outline Overview: The Energy of Life Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics The totality

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of Enzyme Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of the process are called substrates and the enzyme

More information

Chapter 5. Energy Flow in the Life of a Cell

Chapter 5. Energy Flow in the Life of a Cell Chapter 5 Energy Flow in the Life of a Cell Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. Review

More information

3.1 Metabolism and Energy

3.1 Metabolism and Energy 3.1 Metabolism and Energy Metabolism All of the chemical reactions in a cell To transform matter and energy Step-by-step sequences metabolic pathways Metabolic Pathways Anabolic reactions Build large molecules

More information

Chapter 6~ An Introduction to Metabolism

Chapter 6~ An Introduction to Metabolism Chapter 6~ An Introduction to Metabolism Metabolism/Bioenergetics Metabolism: The totality of an organism s chemical processes; managing the material and energy resources of the cell Catabolic pathways:

More information

Life Requires FREE ENERGY!

Life Requires FREE ENERGY! Life Requires FREE ENERGY! Ok, so Growth, reproduction and homeostasis of living systems requires free energy To be alive/stay living, you need to use energy. Duh But really, why is energy so important?

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Lecture Outline Overview: The Energy of Life Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics. The totality

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism PREFACE The living cell is a chemical factory with thousands of reactions taking place, many of them simultaneously This chapter is about matter and energy flow during life

More information

AN INTRODUCTION TO METABOLISM. Metabolism, Energy, and Life

AN INTRODUCTION TO METABOLISM. Metabolism, Energy, and Life AN INTRODUCTION TO METABOLISM Metabolism, Energy, and Life 1. The chemistry of life is organized into metabolic pathways 2. Organisms transform energy 3. The energy transformations of life are subject

More information

An introduction to metabolism

An introduction to metabolism An introduction to metabolism The living cell is (a miniature chemical factory) where thousands of reactions occur; which Make the cell extracts energy and applies energy to perform work. Some organisms

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, Chapter 6 6.1 Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, repair, reproduce, etc. 2. Kinetic energy is energy of motion;

More information

Chapter 8. An Introduction to Metabolism

Chapter 8. An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life Thousands of reactions occur within the microscopic space of a living cell. Small molecules are assembled into polymers, which are later

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism Why do organisms need energy? How do organisms manage their energy needs? Defining terms and issues: energy and thermodynamics metabolic reactions and energy transfers

More information

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy

What Is Energy? Energy is the capacity to do work. First Law of Thermodynamics. Types of energy What Is Energy? Energy is the capacity to do work. Synthesizing molecules Moving objects Generating heat and light Types of Kinetic: of movement otential: stored First Law of Thermodynamics Energy cannot

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase

*The entropy of a system may decrease, but the entropy of the system plus its surroundings must always increase AP biology Notes: Metabolism Metabolism = totality of an organism's chemical process concerned with managing cellular resources. Metabolic reactions are organized into pathways that are orderly series

More information

Energy & Metabolism. Two states of energy. Low and high potential energy 9/23/2016. Energy

Energy & Metabolism. Two states of energy. Low and high potential energy 9/23/2016. Energy Energy & Metabolism Energy Life requires a constant flow of energy. Energy: The capacity to do work. Energy can be transferred to other objects or converted into different forms, but cannot be created

More information

Lecture #8 9/21/01 Dr. Hirsh

Lecture #8 9/21/01 Dr. Hirsh Lecture #8 9/21/01 Dr. Hirsh Types of Energy Kinetic = energy of motion - force x distance Potential = stored energy In bonds, concentration gradients, electrical potential gradients, torsional tension

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Lecture Outline Overview: The Energy of Life Thousands of reactions occur within the microscopic space of a living cell. Small molecules are assembled into polymers,

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems. Cell Metabolism 1. Each of the significant properties of a cell, its growth, reproduction, and responsiveness to its environment requires. 2. The study of is the study of behavior (capture, storage, usage)

More information

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this Chapter 6 Carvings from ancient Egypt show barley being crushed and mixed with water (left) and then put into closed vessels (centre) where airless conditions are suitable for the production of alcohol

More information

Metabolism, Energy and Life - 1

Metabolism, Energy and Life - 1 Metabolism, Energy and Life - 1 Thousands of chemical reactions occur in our cells and tissues to keep us alive (and hopefully healthy). Monomers are assembled into the macromolecules we need for cell

More information

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment?

Activating Strategy. AP Lesson #10. EQ: What is metabolism and what role does energy play in metabolism? How does energy move through an environment? Activating Strategy Belief or Disbelief 1. 1 st Law of thermodynamics states that energy can be created and destroyed. 2. Anabolic reactions are reactions that break bonds between molecules. 3. Exergonic

More information

Making energy! ATP. The point is to make ATP!

Making energy! ATP. The point is to make ATP! Making energy! ATP The point is to make ATP! 2008-2009 The energy needs of life Organisms are endergonic systems What do we need energy for? synthesis building biomolecules reproduction movement active

More information

Without Energy, There Is No Life

Without Energy, There Is No Life Without Energy, There Is No Life 1. The chemistry of life is organized into metabolic pathways What is metabolism?? Metabolic pathways alter molecules in a series of steps, sometimes occurring in a cycle.

More information

Notice that this is an open system!

Notice that this is an open system! Thinking About Energy and Enzymes Case Study: Frank Frank s aldehyde dehydrogenase (ALDH) enzyme has a substitution at position 487. He has the amino acid lysine at this position instead of glutamic acid.

More information

AP Biology Thermodyamics

AP Biology Thermodyamics AP Biology Thermodyamics Introduction to Thermodynamics The living cell is a chemical industry in miniature The totality of an organism s chemical reaction is called metabolism Metabolism involves managing

More information

Chapter 5 Metabolism: Energy & Enzymes

Chapter 5 Metabolism: Energy & Enzymes Energy Energy is the capacity to do work Kinetic energy Energy of motion Potential energy Stored energy What do you use for energy? Where do you think the energy is stored these molecules? The BONDS! Every

More information

Do Now. What is happening in the pictures below? How do you know? What evidence do you have to support your answer?

Do Now. What is happening in the pictures below? How do you know? What evidence do you have to support your answer? Do Now What is happening in the pictures below? How do you know? What evidence do you have to support your answer? Energy and Enzymes 5.10-5.16 Chemical Reactions Lab Clean Up Procedure Sample Data Do

More information

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy. Problem Set 2-Answer Key BILD1 SP16 1) How does an enzyme catalyze a chemical reaction? Define the terms and substrate and active site. An enzyme lowers the energy of activation so the reaction proceeds

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life: Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

Biology Slide 1 of 20

Biology Slide 1 of 20 Biology 1 of 20 8-1 Energy and Life 2 of 20 8-1 Energy and Life Autotrophs and Heterotrophs Where do plants get the energy they need to produce food? Living things need energy to survive. This energy comes

More information