CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID

Size: px
Start display at page:

Download "CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID"

Transcription

1 113 CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID 7.1 INTRODUCTION Acylation of aromatic compounds are industrially prominent reaction as its products are intermediates in many organic synthesis especially in pharmaceuticals and fine chemicals. Lewis acids such as AlCl 3, BF 3, ZnCl 2, TiCl 4, FeCl 3 and Brönsted acids like polyphosphoric acid and hydrofluoric acid are the commercial catalysts employed in Friedel-Crafts acylation of aromatic compounds (Noller and Adams 1924 and Gardner 1954). Nevertheless, the use of these traditional catalysts produce problems such as environmental pollution arising from the disposal of hazardous by-products as waste, corrosion of reactor set-up, tendency to form complex with reactants or products due to use of more than stoichiometric amounts of the catalysts (Newman 1945 and Burton and Praill 1950). In view of the increasing stringent environmental legislation, application of heterogeneous catalysts has become attractive. Among the acylating reagents, acyl chlorides are more reactive but unfortunately they are also hazardous due to formation of corrosive hydrogen halides as by-products. Acid anhydrides and carboxylic acids are preferable acylating agents because of their less problematic by-products (organic acid and water). Efforts are now being made to overcome the above drawbacks by developing catalysts with high shape selectivity using ion-exchanged zeolites and zeo-type materials.

2 114 Botella et al (2000) reported toluene acylation over Hβ zeolite of different Si/Al ratios using acetic anhydride as acylating agent. They observed catalysts deactivation during long hours and hence the products were collected during the first hour of reaction period. Botella et al (2000) also observed hydroxylation of acetic anhydride to acetic acid. Though the reaction is highly selective to obtain p-methylacetophenone (p-map) the above said problems found to occur as drawback in this reaction. The catalytic activity of rare earth cations ion-exchanged zeolite β was studied for toluene acylation with acetic anhydride as an acylating agent (Sheemol et al 2004). La 3+ ion-exchanged catalyst was found to be more active than other catalysts with more than 95 % selectivity to p-isomer. Sheemol et al (2004) also compared the activity of rare earth cations ion-exchanged β zeolite catalysts with Naβ zeolite and reported the inactive nature of Naβ zeolite in toluene acylation. Kawamura et al (2006) reported Friedel-Crafts acylation of aromatic compounds using carboxylic acids as an acylating agent in the presence of Lewis and Brönsted metal triflates. They concluded that dehydrative Friedel-Crafts acylation of aromatic compounds with carboxylic acids was efficiently catalysed by Lewis acid catalysts. Brönsted acid catalysts were more efficient if the catalyst temperature is higher than the temperature required for Lewis acid catalysts. Vishnupriya et al (2008 and 2008a) and Mavrodinova et al (2004 and 2004a) proved the Lewis acidic nature of MO + (CeO + and InO + ) species for alkylation and disproportionation reactions. Hence the Lewis acidic nature of FeO +, LaO + and CeO + sites has been exploited for the acylation of toluene in the vapour phase using acetic acid as an acylating agent. 7.2 TOLUENE ACYLATION OVER MAPO-36 AND ION-EXCHANGED MAPO-36 Vapour phase acylation of toluene was carried out in a fixed-bed, vertical-flow type reactor as shown in Chapter 2. The reaction was carried out

3 115 over MAPO-36, Zn, Fe, La and CeMAPO-36. The effect of reaction temperature, catalysts, feed ratio, WHSV and time on stream was studied in order to get high toluene conversion and maximum p-methylacetophenone (p-map) selectivity Effect of Temperature on Toluene Acylation The vapour phase reaction of acetic acid and toluene was carried out over MAPO-36, Zn, Fe, La and CeMAPO-36. Figure 7.1 shows the results of toluene conversion and products selectivity over CeMAPO-36 with 1:1 feed ratio (acetic acid: toluene) in the temperature range o C Conversion and Selectivity (%) Toluene conversion Selectivity of p-map o-map Other products Figure Temperature ( o C) Effect of temperature on toluene conversion and products selectivity The reaction involved the production of one molecule of water for every molecule of acetic acid consumed. Among the products obtained, the major product was found to be p-map with % selectivity. Small

4 116 amount of o-map was also obtained in the product mixture. The toluene conversion increased from 200 to 300 o C and then decreased. The catalytic activity of all other catalysts was studied at 300 ºC. The decrease of toluene conversion above 300 o C could be literally attributed to coke formation on the surface of the catalyst. Formation of polyalkylated phenolics and polybutenes has been reported to be the main source of coke deposit (Mavrodinova et al 2001). It is suggested that coke deposits reduce the conversion by blocking the active sites of the catalysts by coke. Rare earth ion-exchanged MAPO-36 catalysts showed both Brönsted and Lewis acidity (Vishnupriya et al 2008 and 2008a) due to its high charge density. Acylation of toluene using acetic acid over ion-exchanged MAPO-36 proceeds through the mechanism that involves acylium ion intermediates, that are generated from the acylating agent by interaction with the catalyst as shown in Scheme 7.1. Friedel-Crafts acylation reaction mechanism as proposed by Olah (1973), involved acylation either by the catalyst adduct and the acylating agent or by free acylium ions depending upon the reaction conditions Effect of Catalysts The reaction was also carried out over calcined MAPO-36 and Zn, Fe and LaMAPO-36 under similar reaction conditions. The results shown in Table 7.1 reveal that MAPO-36 is the least active catalyst. This illustrates the fact that the reaction is largely controlled by Lewis acid sites. Among the ion-exchanged MAPO-36, CeMAPO-36 catalyst is found to be more active. Among the MO + ions formed CeO + is more active than other MO + ions, supporting the adsorption of toluene on catalyst surface in a better way. All the catalysts showed regular selectivity trend towards p-map. ZnMAPO-36 showed reduced p-map selectivity than other ion-exchanged catalysts. This is due to the presence of both strong and weak acid sites in ZnMAPO-36. Ce, La and FeMAPO-36 with more number of weak acid sites could be considered as better catalysts than ZnMAPO-36.

5 MO H + + C Mg 2+ O P 5+ CH3 COOH Mg 2+ O O O + OH OH P 5+ + CO H 2 O 2+ O Mg O P 5+ Others + CO + o- MAP CO p- MAP Scheme 7.1 Acylation of toluene over CeMAPO

6 118 Table 7.1 Effect of catalysts on toluene conversion and products selectivity Catalyst Toluene conversion Selectivity (%) (%) p-map o-map Others MAPO ZnMAPO FeMAPO LaMAPO CeMAPO Reaction conditions: temperature: 300 ºC; feed ratio: 1:1; WHSV: 2.74 h Effect of Feed Ratio The effect of different feed ratios viz., 1:1, 1:2 and 1:3 over CeMAPO-36 was also performed and the results are presented in Table 7.2. The conversion increased with increase of feed ratio from 1:1 to 1:2 and then decreased for 1:3. This may be due to preferential adsorption of the excess acid on the catalyst surface rather than toluene. The conversion was found to be high with 1:2 feed ratio than others. The decrease in conversion at 1:3 feed ratio is due to the presence of excess acetic acid which dilutes the concentration of toluene. In addition, selectivity was also decreased, suggesting that polyalkylated products could be avoided with feed containing less amount of acetic acid.

7 119 Table 7.2 Effect of feed ratio on toluene conversion and products selectivity Toluene Selectivity (%) Toluene : Acetic acid conversion (%) p-map o-map Others 1: : : Reaction conditions: catalyst: CeMAPO-36; temperature: 300 ºC Effect of WHSV Different flow rates (WHSV) were studied over CeMAPO-36 with a feed ratio 1:2. From the results shown in Table 7.3 it is clear that conversion decreased with increase in WHSV which may be due to rapid diffusion of reactants. The selectivity to o-map decreased while that of p-map slightly increased with increase in WHSV. This supports the fact that selective formation of p-map required reaction between free toluene and acyl cation over the catalysts surface. Table 7.3 Effect of WHSV on toluene conversion and products selectivity WHSV (h -1 ) Toluene conversion ( %) Selectivity (%) p-map o-map Others Reaction conditions: catalyst: CeMAPO-36; temperature:300 ºC; feed ratio: 1:2

8 Effect of Time on Stream The time on stream study was carried out for 6 h over CeMAPO-36 at 300 o C with 1:2 feed ratio and WHSV of 2.90 h -1 and the results are shown in Figure 7.2. The conversion decreased gradually due to coke formation. About 20% conversion was observed even at the end of 6 h time on stream. The selectivity increased up to 3 h and decreased from then on. The decrease in the selectivity after 3 h may be due to blocking of active sites by coke. It is quite interesting to note that the selectivity of o-isomer increased with increase in time on stream. 100 Conversion and Selectivity (%) Toluene conversion Selectivity of p-map o-map Other products Time (h) Figure 7.2 Effect of time on stream on toluene conversion and products selectivity

9 CONCLUSION The study revealed that Fe, La and CeMAPO-36 catalysts are active for vapour phase acylation of toluene with 84% selectivity to p-isomer. It was further observed that toluene conversion is catalyzed by Lewis acid sites rather than Brönsted acid sites. Acetic acid is an environmentally benign acylating agent because it produces water alone as side product irrespective of the percentage conversion of toluene. Hence it is concluded that Lewis acid ion-exchanged MAPO-36 could find significant use as catalyst in the selective acylation of toluene with acetic acid.

CHAPTER 7. ACYLATION OF ANISOLE WITH ACETIC ANHYDRIDE OVER MnAPO-5 AND LEWIS ACID METAL ION-EXCHANGED MnAPO-5

CHAPTER 7. ACYLATION OF ANISOLE WITH ACETIC ANHYDRIDE OVER MnAPO-5 AND LEWIS ACID METAL ION-EXCHANGED MnAPO-5 103 CHAPTER 7 ACYLATIN F ANISLE WITH ACETIC ANHYDRIDE VER MnAP-5 AND LEWIS ACID METAL IN-EXCHANGED MnAP-5 7.1 INTRDUCTIN Friedel-Crafts acylation is one of the most important methods for the synthesis

More information

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE 104 CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE 7.1 INTRODUCTION Aromatic ketones such as acetophenone are important intermediates for the synthesis of drugs and pharmaceuticals (Choudhary et al 2004).

More information

CHAPTER 6 SELECTIVE OXIDATION OF DIPHEYLMETHANE TO BENZOPHENONE

CHAPTER 6 SELECTIVE OXIDATION OF DIPHEYLMETHANE TO BENZOPHENONE 110 CHAPTER 6 SELECTIVE OXIDATION OF DIPHEYLMETHANE TO BENZOPHENONE 6.1 INTRODUCTION Oxidation of diphenylmethane (DPM) to benzophenone is an industrially important reaction as the product benzophenone

More information

CHAPTER 4 ISOPROPYLATION OF TOLUENE

CHAPTER 4 ISOPROPYLATION OF TOLUENE 9 CHAPTER ISOPROPYLATION OF TOLUENE. INTRODUCTION Zeolites are largely exploited catalysts in industries. They catalyzed both the acid and base catalyzed reactions (Aiello et al 999, Costa et al 009, and

More information

CHAPTER 5 SYNTHESIS OF 7-HYDROXY-4-METHYLCOUMARIN OVER ZAPO-5 AND LEWIS ACID METAL ION-EXCHANGED ZAPO-5 MOLECULAR SIEVES

CHAPTER 5 SYNTHESIS OF 7-HYDROXY-4-METHYLCOUMARIN OVER ZAPO-5 AND LEWIS ACID METAL ION-EXCHANGED ZAPO-5 MOLECULAR SIEVES 79 CHAPTER 5 SYNTHESIS F 7-HYDRXY-4-METHYLCUMARIN VER ZAP-5 AND LEWIS ACID METAL IN-EXCHANGED ZAP-5 MLECULAR SIEVES 5.1 INTRDUCTIN Coumarins are an important group of naturally occurring compounds widely

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol. CH. 23 Chapter 23 Phenols Nomenclature The OH group takes precedence as the parent phenol. Carboxyl and acyl groups take precedence over the OH group. The OH group is a strong electron-donating group through

More information

CHAPTER 5 ACYLATION OF PHENOL AND SALICYLALDEHYDE WITH ACETIC ANHYDRIDE

CHAPTER 5 ACYLATION OF PHENOL AND SALICYLALDEHYDE WITH ACETIC ANHYDRIDE 128 CHAPTER 5 ACYLATION OF PHENOL AND SALICYLALDEHYDE WITH ACETIC ANHYDRIDE 5.1 ACYLATION OF PHENOL In recent years there has been a tremendous upsurge of interest in various chemical transformations performed

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers CHEM 303 rganic Chemistry II Problem Set III Chapter 14 Answers 1) Give the major products of each of the following reactions. If a mixture is expected, identify the major product. + H 3 CHC CHCH 3 H 2

More information

CHAPTER 4: CATALYTIC PROPERTIES OF ZSM-5 ZEOLITES AND CUBIC MESOPOROUS MATERIALS

CHAPTER 4: CATALYTIC PROPERTIES OF ZSM-5 ZEOLITES AND CUBIC MESOPOROUS MATERIALS 102 CHAPTER 4: CATALYTIC PROPERTIES OF ZSM-5 ZEOLITES AND CUBIC MESOPOROUS MATERIALS Chapter summary The role of heterogeneous catalysts in organic reactions is included in this chapter. Two organic reactions,

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds 9.5 Polycyclic Aromatic Compounds The general concept of aromaticity can be extended to include polycyclic aromatic compounds Benzo[a]pyrene is one of the cancer-causing substances found in tobacco smoke

More information

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C 6 H 5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Answer Key Question 1.

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs)

Catalyzed N-acylation of carbamates and oxazolidinones by Heteropolyacids (HPAs) Catalyzed -acylation of carbamates and oxazolidinones by eteropolyacids (PAs) Ali Gharib 1,2 *, Manouchehr Jahangir 1, Mina Roshani 1 1 Department of Chemistry, Islamic Azad University, Mashhad, IRA 2

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

Friedel-Crafts Acylation of Anisole with Phthalic Anhydride Catalyzed by Solid Superacid of Sulfated Zirconia

Friedel-Crafts Acylation of Anisole with Phthalic Anhydride Catalyzed by Solid Superacid of Sulfated Zirconia 276 Journal of the Japan Petroleum Institute, 53, (5), 276-282 (2010) [Regular Paper] Friedel-Crafts Acylation of Anisole with Phthalic Anhydride Catalyzed by Solid Superacid of Sulfated Zirconia Hideo

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

Friedel Crafts Acylation of Anisole With Modified Zeolites

Friedel Crafts Acylation of Anisole With Modified Zeolites Friedel Crafts Acylation of Anisole With Modified Zeolites Sreedhar Inkollu *1, Mohammed Shoebuddin Habeeb 1 and Sreenivasulu Bolisetty 1 1 Department of Chemical Engineering, BITS-Pilani, Hyderabad Campus,

More information

CARBOXYLIC ACIDS and their Derivatives Nucleophilic Acyl substitution - Review the nomenclature for these compounds in your textbook

CARBOXYLIC ACIDS and their Derivatives Nucleophilic Acyl substitution - Review the nomenclature for these compounds in your textbook CARBXYLIC ACIDS and their Derivatives Nucleophilic Acyl substitution - Review the nomenclature for these compounds in your textbook R Z R Z R Z - the basicity of Z determines the relative stability of

More information

Friedel-Crafts Alkylation

Friedel-Crafts Alkylation Friedel-Crafts Alkylation Summary: The Friedel-Crafts alkylation reaction proceeds similarly to the acylation reaction, but uses an alkyl halide to attach an alkyl group to an aromatic ring. Anhydrous

More information

Catalytic activity of the beta zeolite with enhanced textural properties in the Friedel-Crafts acylation of aromatic compounds

Catalytic activity of the beta zeolite with enhanced textural properties in the Friedel-Crafts acylation of aromatic compounds Zeolites and Related Materials: Trends, Targets and Challenges Proceedings of 4 th International FEZA Conference A. Gedeon, P. Massiani and F. Babboneau (Editors) 28 Elsevier B.V. All rights reserved.

More information

Reactions of Benzene Reactions of Benzene 1

Reactions of Benzene Reactions of Benzene 1 Reactions of Benzene Reactions of Benzene 1 2 Halogenation of Benzene v Benzene does not react with Br 2 or Cl 2 unless a Lewis acid is present (a catalytic amount is usually enough) 3 v Mechanism v Mechanism

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols Nomenclature of Alcohols In the IUPAC system, the hydroxyl group in alcohols is indicated by the ending ol. In common names, the separate word alcohol is placed

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Heterocyclic Chemistry N S. Chapter 8: Furans

Heterocyclic Chemistry N S. Chapter 8: Furans eterocyclic Chemistry N S Chapter 8: Furans FURAN The least aromatic 5-membered ring Reaction with electrophiles - Protonation Ring opening Major protonated form Much less basic than ordinary ethers 2

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION 1. Consider carefully the mechanism of the following electrophilic aromatic substitution reaction and indicate which of

More information

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 ct. 8, 2013 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes, such as cyclohexane

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

CHAPTER 4. LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5

CHAPTER 4. LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5 106 CHAPTER 4 LIQUID PHASE AEROBIC OXIDATION OF ETHYLBENZENE OVER PrAlPO-5 4.1 INTRODUCTION Selective catalytic oxidation of alkyl aromatics is a viable technology to functionalize saturated and unsaturated

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Practice Edition Carbonyl Compounds and Amines. Wednesday, November 16, 2011, 10 10:50 am Name: Question

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Lecture 12 Electrophilic Aromatic Substitution E E February 22, 2018 Electrophilic Aromatic Substitution Electrophilic aromatic substitution: a reaction in which a hydrogen atom on an aromatic ring is

More information

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

The following method was used to determine the percentage by mass of vanadium in a sample of ammonium vanadate(v).

The following method was used to determine the percentage by mass of vanadium in a sample of ammonium vanadate(v). Q1. (a) Vanadium(V) oxide is used as a heterogeneous catalyst in the Contact Process. Explain what is meant by the terms heterogeneous and catalyst and state, in general terms, how a catalyst works. State

More information

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages.

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Chemistry 52 Exam #1 Name: 22 January 2003 This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Please check before beginning to make sure no questions are missing. 65 minutes

More information

Unit - 11 ALCOHOLS, PHENOLS AND ETHERS 1. Write IUPAC names of the following compounds : (ix) C 6 H 5 OC 3 H 7 (x) O Cl 2. Write the structures of the compounds whose names are given below : (i) 3, 5-dimethoxyhexane-1,

More information

Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO 2 /Al 2 O 3 ratios

Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO 2 /Al 2 O 3 ratios Indian Journal of Chemical Technology Vol. 11, May 2004, pp 337-345 Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO 2 /Al 2 O 3 ratios Jun-Jun Yuan & Börje S Gevert* Department

More information

Chemistry 283g Experiment 4

Chemistry 283g Experiment 4 Chemistry 283g xperiment 4 XPRIMNT 4: lectrophilic Aromatic Substitution: A Friedel-Craft Acylation Reaction Relevant sections in the text: Fox & Whitesell, 3 rd d. Chapter 11, especially pg. 524-526,

More information

Mechanisms. . CCl2 F + Cl.

Mechanisms. . CCl2 F + Cl. Mechanisms 1) Free radical substitution Alkane à halogenoalkane Initiation: Propagation: Termination: Overall: 2) Ozone depletion UV light breaks the C Cl bond releasing chlorine radical CFCl 3 F à. CCl2

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION Catalysis is an important process to improve the production of chemicals. This phenomenon can be employed in a chemical reaction that is favored thermodynamically but is very slow

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

Learning Guide for Chapter 18 - Aromatic Compounds II

Learning Guide for Chapter 18 - Aromatic Compounds II Learning Guide for Chapter 18 Aromatic Compounds. lectrophilic aromatic substitution ntroduction Mechanism Reagents and Products lectrophiles ffects of stituents FriedelCrafts alkylation and acylation

More information

Friedel-Crafts Reaction

Friedel-Crafts Reaction OpenStax-CNX module: m15260 1 Friedel-Crafts Reaction Mary McHale This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Lab 4: Friedel-Crafts Reaction:

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Make-Up Carbonyl Compounds and Amines. Wednesday, November 30, 2011, 10 10:50 am Name: Answer Key Question

More information

Class XII: Chemistry Chapter 13: Amines Top concepts

Class XII: Chemistry Chapter 13: Amines Top concepts Class XII: Chemistry Chapter 13: Amines Top concepts 1. Amines are regarded as derivatives of ammonia in which one, two or all three hydrogen atoms are replaced by alkyl or aryl group 2. Classification

More information

H 2 SO 4 Ar-NO 2 + H2O

H 2 SO 4 Ar-NO 2 + H2O Phenyl group: Shorthand for phenyl: Ph, C 6 5,. An aryl group is an aromatic group: phenyl, substituted phenyl, or other aromatic group. Shorthand: Ar Generalized electrophilic aromatic substitution: E

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

Friedel-Crafts alkylation of 2- naphthol using Ionic Liquid as Catalyst

Friedel-Crafts alkylation of 2- naphthol using Ionic Liquid as Catalyst Chapter 4 Friedel-Crafts alkylation of 2- naphthol using Ionic Liquid as Catalyst 4.1 Introduction 2- - naphthol is a colourless crystalline solid with the formula C 10 H 7 OH. It is an isomer of 1-naphthol

More information

Option G: Further organic chemistry (15/22 hours)

Option G: Further organic chemistry (15/22 hours) Option G: Further organic chemistry (15/) TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See 16... Core material: G1 G8 are core material

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY APTER PRACTICE PRBLEMS EMISTRY Electrophilic Aromatic Substitution Name : Batch : Date : rientation influence of groups 1. Predict the characteristics of -NH + as a substituent. activating, o/p directing

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids.

21.1 Introduction Carboxylic Acids Nomenclature of Carboxylic Acids. Acids Structure and Properties of Carboxylic Acids. 21.1 Introduction Carboxylic Acids Carboxylic acids are abundant in nature and in pharmaceuticals. 21.1 Introduction Carboxylic Acids The US produces over 2.5 million tons of acetic acid per year, which

More information

Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel Crafts type benzylation reactions

Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel Crafts type benzylation reactions J. Chem. Sci., Vol. 117, No. 6, November 2005, pp. 635 639. Indian Academy of Sciences. Highly active and reusable catalyst from Fe-Mg-hydrotalcite anionic clay for Friedel Crafts type benzylation reactions

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 Sept 29, 2016 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable (36 kcal/mole more) and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes,

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

CHAPTER 5. ESTERIFICATION OF PHTHALIC ANHYDRIDE WITH n-butanol

CHAPTER 5. ESTERIFICATION OF PHTHALIC ANHYDRIDE WITH n-butanol 92 CHAPTER 5 ESTERIFICATION OF PHTHALIC ANHYDRIDE WITH n-butanol Esterification is a largely exploited reaction in pharmaceutical, perfumery and polymer industries. Despite several synthetic routes, the

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone. Aldehydes, Ketones and Carboxylic Acids Nomenclature of aldehydes and ketones Aldehydes: Often called by their common names instead of IUPAC names. Ketones: Derived by naming two alkyl or aryl groups bonded

More information

1. CONCEPTS IN ORGANIC CHEMISTRY 2. SYNTHETIC ORGANIC CHEMISTRY 3. ISOMERISM II 4. HYDROCARBONS II 5. HALOALKANES. Vikasana - CET 2012

1. CONCEPTS IN ORGANIC CHEMISTRY 2. SYNTHETIC ORGANIC CHEMISTRY 3. ISOMERISM II 4. HYDROCARBONS II 5. HALOALKANES. Vikasana - CET 2012 CET OBJECTIVE QUESTION ON 1. CONCEPTS IN ORGANIC CHEMISTRY 2. SYNTHETIC ORGANIC CHEMISTRY 3. ISOMERISM II 4. HYDROCARBONS II 5. HALOALKANES 1.The inductive effect a. Implies the atoms ability to cause

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Module: 7. Lecture: 36

Module: 7. Lecture: 36 Module: 7 Lecture: 36 DIMETHYL FORMAMIDE INTRODUCTION Dimethylformamide is an organic compound and denotes as DMF. The name is derived from the fact that it is a derivative of formamide, the amide of formic

More information

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013 Environmental Efficiency of Chemical Processes Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013 Prelude WHAT IS GREEN CHEMISTRY? Green Chemistry is essentially a way of

More information

Name: Date: M O L A R M A S S & P E R C E N T C O M P O S I T I O N

Name: Date: M O L A R M A S S & P E R C E N T C O M P O S I T I O N Name: Date: M O L A R M A S S & P E R C E N T C O M P O S I T I O N I. Molar Masses Given a periodic table, you should be able to calculate the molecular mass (in amu s) or the molar mass (in grams) for

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives Arenium ion from addition of tert-butyl cation to benzene (blue is δ+and red δ-) Note: Problems with italicized numbers

More information

CHEMISTRY Statistics: 74 pts (74%) 94 pts (94%) 34 pts (34%) 26 (55%) 5 (11%)

CHEMISTRY Statistics: 74 pts (74%) 94 pts (94%) 34 pts (34%) 26 (55%) 5 (11%) CEMISTRY 314-01 MITERM # 1 answer key bruary 06, 2007 Statistics: Average: 74 pts (74%) ighest: 94 pts (94%) Lowest: 34 pts (34%) Number of students performing at or above average: 26 (55%) Number of students

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Catalysis of environmental reactions Dr. Zifei Liu Catalysis and catalysts Catalysis is the increase in the rate of a chemical reaction due to the participation

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor Catalysis Today 63 (2000) 471 478 Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor Moses O. Adebajo, Russell F. Howe, Mervyn A. Long School of Chemistry, University

More information

2. In each of the following pairs of reactions, which would have the faster reaction rate?

2. In each of the following pairs of reactions, which would have the faster reaction rate? CHEMISTRY 12 REACTION RATES WORKSHEET 1. The following data were collected for the reaction: Zn (s) + 2HCl (aq) H 2(g) + ZnCl 2(aq) in which zinc metal was reacted with 0.200 M HCl (aq) : Time (seconds)

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

( ) Natural Sciences Department. Chemical Reactions

( ) Natural Sciences Department. Chemical Reactions Chemical Reactions Why do atoms cluster? The attraction which keeps atoms united one to each other to form a molecule is called chemical bond. The atoms place themselves in the molecule so that the energy

More information

ALKYLATION OF BENZENE TO CUMENE OVER MOR ZEOLITE CATALYSTS

ALKYLATION OF BENZENE TO CUMENE OVER MOR ZEOLITE CATALYSTS ACADEMIA ROMÂNĂ Revue Roumaine de Chimie http://web.icf.ro/rrch/ Rev. Roum. Chim., 2012, 57(2), 107-113 ALKYLATION OF BENZENE TO CUMENE OVER MOR ZEOLITE CATALYSTS Yogesh K. VYAWAHARE, a Vilas R. CHUMBHALE

More information

Chapter 9 Aldehydes and Ketones

Chapter 9 Aldehydes and Ketones Chapter 9 Aldehydes and Ketones 9.1 Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al The aldehyde functional group is always carbon

More information