Physics of DNA. R. Podgornik. Laboratory of Physical and Structural Biology. National Institute of Child Health and Human Development

Size: px
Start display at page:

Download "Physics of DNA. R. Podgornik. Laboratory of Physical and Structural Biology. National Institute of Child Health and Human Development"

Transcription

1 Physics of DNA R. Podgornik Laboratory of Physical and Structural Biology National Institute of Child Health and Human Development National Institutes of Health Bethesda, MD

2 - DNA as a polyelectrolyte - electrostatic interactions - correlation effect - equation of state - fluctuation effect - DNA mesophases - orientational interactions - interactions and order - DNA elasticity - anomalous elastic moduli -DNA collapse

3 DNA helix Structure (B-form) R. Franklin, photo 51. Charge: 2 e 0 / 3.4 Å ~ e 0 / nm 2 grooves discrete charges Polipeptides: 0.6 e o / nm Membranes: e 0 / nm 2 a ~ 1 nm h(dna) = 1.7 Å DNA length from 50 nm to ~ µm DNA is not the proverbial spherical cow, or in this case a cylindrical one. it is a RH double helix it has lots of discrete structural (phosphate) charges (ph > 1) it has lots of room to accommodate small counterions

4 The great electrostatic divide Bjerrum length Coulomb s law and kt Gouy - Chapman length Ratio between the Bjerrum and the Gouy - Chapman lengths. Bulk versus surface interactions. Coupling parameter Weak coupling limit (Poisson - Boltzmann) Ξ 0 Strong coupling limit (Netz - Moreira) Ξ Collective description ( N description) vs. Single particle description ( 1 description) Z

5 The weak coupling limit (collective description) + electrostatic energy ideal gas entropy minimize to get equilibrium Non-equilibrium free energy = (electrostatic energy) - k (ideal gas entropy) Minimization yields the Poisson - Boltzmann equation. Screening. Debye length ~ 3.05 Å / M

6 The strong coupling limit (one particle description) Z + Z + Z + Z Electrostatic energy without mobile counterions Electrostatic energy of a single counterion Electrostatic energy of two counterions Oosawa derives attractive interactions between DNAs (late 60 s) Simulation of DLVO interactions (early 80 s - el. bilayer Torrie and Valleau (1980)) Fundamental paper by Gulbrand, Jonsson, Wennerstrom and Linse (1984) 90 realisation of the correlation effect in DNA quantitative theories of the correlation effect Collective description vs. one particle description. repulsion + 2 X attraction = attraction

7 Simulations A pair of DNAs with poly-counterions: (Gronbech-Jensen et al. 1997) Hexagonal array of DNA poly-counterions: (Lyubartsev and Nordenskiold, 1995)

8 Experiments Osmotic pressure Osmotic stress method (Parsegian & Rand) The Boyle experiment

9 Osmotic stress method Π dv µdn Setting the osmotic pressure and measuring the density of DNA

10

11 Experiment vs. theory monovalent counterions DNA in monovalent (NaCl) salt solution. Osmotic pressure for a 2D hexagonal array. PB does not seem to be working! Osmotically stressed subphase.

12 Polyvalent counterions Co(NH 3 ) mM 8mM Mn 2+ 5 o 20mM 12mM 50 o 35 o Polyvalent counterions + NaCl at 0.25 M: Co(NH 3 ) 6 Cl 3 counterion Co(NH 3 ) 6 3+ (Z = 3) MnCl 2 counterion Mn 2+ (Z = 2) Attraction is obviously there. Quantitative comparison still difficult. Monovalent salt + polyvalent counterions Osmotically stressed subphase. Or condensed.

13 Bjerrum defects screen polarization. (Onsager - Dupuis theory) rescaled charge density Last few Angstroms... HPC schizophyllan Na-DNA Na-Xanthan TMA-DNA (raw) TMA-DNA (rescaled) DDP bilayers log Π [dynes/cm 2 ] Log[Π] [dynes/cm 2 ] Surface separation, [Å] C DNA [M] Commonality of forces among charged, neutral, cylindrical and 2 planar molecules in salt solution and distilled water. Charges: DNA 1e/1.75 Å, xanthan 4 e/ 15 Å, DDP 1e/55 Å (Leikin et al. 1993) Marcelja and Radic, Perturbation of water order parameter. Similar foces in ice.

14 Conformational fluctuations Surprisingly the PB limit for finite salt does not work. What are we missing in this picture? Orientational order L p ~ 50 nm K C = k B T L p DNA is a flexible molecule. E ~ 300 MPa (plexiglass) At room temperature big conformational fluctuations.

15 Conformational fluctuations Elastic energy of the DNA Consequences: bumping into the hard wall of its nearest neighbors. This is the Odijk interaction (1986). Similar to Helfrich interaction between surfaces. Long range interaction (short range thermal undulations long range) Now assume a soft Debye - Hueckel potential: Fluctuation renormalization of interactions! (Podgornik et al. 1989)

16 Conformational fluctuations Electrostatics can only be seen indirectly, as modified by the presence of conformational fluctuations. Renormalized value of λ: λ (r) = 4 λ D. Factor 4 due to elasticity (fourth derivative) as well as the 1D nature of DNA (linear polymer). Liquid disorder! DNA in monovalent (NaCl) salt solution. Paradigmatic behavior for all monovalent salts.

17 DNA Elasticity and mesophases Persistence length of a semiflexible polymer µ tubules 0.1 M NaCl 10 7 TMV 0.1 M NaCl 10 6 F actin 0.1 M NaCl Schizophyllan water 200 Xanthan 0.1 M NaCl 120 ds-dna 0.2 M NaCl 50 Spectrin 0.1 M NaCl 15 ss-dna 0.2 M NaCl 3 Hyaluronic acid 0.2 M NaCl 1 Long Alkanes 0.5 E~300 Mpa (plexiglass) Onsager s argument valid also for polymers. cholesteric Liquid crystalline mesophases. Livolant et al. (97) line hexatic

18 DNA phase diagram A B A B x-ray beam L L L P L c β β β α (Livolant, Leforestier, Rill, Robinson, Strzelecka, Podgornik, Strey )

19 Durand, Doucet, Livolant (1992) J. Physique 2, Pelta, Durand, Doucet, Livolant (1996) Biophys. J., 71,

20 The line hexatic phase (Predicted by Toner, 1983) Long range BO order ~ 0.6 mm Long range nematic order Liquid like positional order, λ PO An anomalous 3D hexatic phase! (Podgornik et al. 1999)

21 Why is this relevant? (D. Nelson. (1995)) E.Coli 630 m long 1 mm thick 25 cm T2 P~100 atm ρ~100 mg/ml (R. Cavenoff (1995)) (Kleinschmidt et al. (1962)) Vortex lines in II sc Tension Non-chiral Magnetic field Temperature London repulsion Bending Chiral density Ionic strength Debye-Huckel repulsion

22 Why orthorhombic phase at high density? Realistic geometric models of DNA.. Kornyshev - Leikin, 1998, 2000, Allahyarov et al., R A R A R Schematics of the orientational effect. Strand opposition. from R= 24 Å out φ 0 = 18 0 and 0 0. explicit DNA structure explicit counterions explicit salt ions different salt concentrations

23 Lattice frustrations due to orientational interactions In a lattice the configurations are frustrated Hexagonal lattice nearest neighbors in optimal config. not all are happy (Lorman, Podgornik, Zeks 2001) Lattice distortions alleviate frustrations: distorted hexatic phase A 1D crystallization (1) 2D crystallization (2a, 2b, 2c) For the non-parallel orientation state a hexatic (hexagonal) phase becomes a distorted (orthorhombic or monoclinic) crystal! (Rosalind Franklin, 1952).

24 Single molecule physics Many chains Single chain

25 Measuring DNA elasticity (Baumann, Smith, Bloomfield, Bustamante 1997) Force curve fit to model (a 4 par fit) elastic constants

26 Bending and stretching bending external force stretching Small force Entropic elasticity Hookeian elasticity Large force Entropic plus enthalpic Hookeian elasticity The experiment gives us both moduli Kc as well as λ (0). ds-dna is not very stretchable, but it is not rigid either.

27 DNA - an Euler-Kirchhoffian filament or not? In classical elasticity (cylindrical Euler - Kirchhoff filament) K C = 1 4 λ R 2 Bending is just local stretching. Landau and Lifshitz, Since variations in ionic strength are involved, we assume that the foul play is due to electrostatics. Lowering the ionic strength increases the measured persistence length, but seems to reduce DNA s elastic stretch modulus, contradicting the elastic rod model. Bustamante et al. (2000).

28 Interactions and elasticity L A constrained fit : L 0, K c, λ(k c ) L Bending rigidity Podgornik et al Rouzina (2002) a a = 6.7 ± 0.7 Å (Manning a = 7.2 Å) L P ~ 48 nm l ~ 1200 pn a Stretching modulus Wenner, Williams, Rouzina and Bloomfield (2002). For ionic strengths: 1000, 500, 250, 100, 53.3, 25, 10, 2.6 mm.

29 Repulsions vs. attractions A reminder of the DNA - DNA interactions. Attraction energies: ~ 0.1 kt/ base pair. Correlation attractions. Hydration attractions. Podgornik et al Monovalent counterions Rau et al., Polyvalent counterions

30 DNA condensation Hud & Downing (2001) Chattoraj et al. (1978). T4 DNA R ~ 1000 nm to 50 nm nm nm 2.4 nm

31 Euler buckling Euler buckling instability: Press on an elastic filament hard enough and it buckles. Kirchhoff kinematic analogy. The role of compressional force is played by diminished (on addition of polyvalent counterions) electrostatic interactions. No correlation effect at that time! (Manning, 1985.)

32 racquet-like Manning buckling with correlation attractions Shape equation of the elastic filament (DNA): V(r-r ) toroidal Euler (elastic) intermediates are clearly seen also in simulations of Schnurr et al. (2002). We understand well only one side of the transition. The destabilization of the persistence length leading to a 1st order transition.

33 DNA condensation simulations Elastic, Euler-like, states are important for DNA collapse. Stiff polymers have a different Collapse pathway (originates in the buckling transition) then flexible polymers. There might be a whole slew of Euler-like intermediate states that lead to DNA collapse. Much more ordered collapsed state than for flexible polymers. Stevens BJ (2001). This collapse is very different from a flexible chain.

34 Organization of ds-dna inside the viral capsid shows nematic or hexatic- like order with ~25 Å separation, similar to toroidal aggregates. Cerritelli et al. (1997). T7 DNA. Osmotic pressure inside the capsid ~ 100 atm (Champagne bottle ~ 5 atm).

35 Harnessing the DNA spring. Evilevitch et al DNA equation of state. PEG equation of state. DNA osmotic pressure insside balanced by PEG osmotic pressure outside. Bacteriophage λ with external PEG8000 solution. External osmotic pressure opposes ejection of viral DNA. Ejection regulation.

36 FINIS

Molecular attractions:

Molecular attractions: Molecular attractions: a.) van der Waals interactions b.) electrostatic correlation interactions c.) polyelectrolyte bridging interactions Rudi Podgornik Laboratory of Physical and Structural Biology National

More information

Electrostatic Effects in Soft Matter and Biophysics

Electrostatic Effects in Soft Matter and Biophysics Electrostatic Effects in Soft Matter and Biophysics R.Podgornik Department of Physics University of Ljubljana, Slovenia and Laboratory of physical and structural biology NIH, Bethesda, MD SOFT CONDENSED

More information

8.592J HST.452J: Statistical Physics in Biology

8.592J HST.452J: Statistical Physics in Biology Assignment # 4 8.592J HST.452J: Statistical Physics in Biology Coulomb Interactions 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions scales as Q 2 E c.

More information

V = 2ze 2 n. . a. i=1

V = 2ze 2 n. . a. i=1 IITS: Statistical Physics in Biology Assignment # 3 KU Leuven 5/29/2013 Coulomb Interactions & Polymers 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions

More information

Electrostatic Interactions in Mixtures of Cationic and Anionic Biomolecules: Bulk Structures and Induced Surface Pattern Formation

Electrostatic Interactions in Mixtures of Cationic and Anionic Biomolecules: Bulk Structures and Induced Surface Pattern Formation Electrostatic Interactions in Mixtures of Cationic and Anionic Biomolecules: Bulk Structures and Induced Surface Pattern Formation Monica Olvera de la Cruz F. J. Solis, P. Gonzalez- Mozuleos (theory) E.

More information

Equation of state for polymer liquid crystals: Theory and experiment

Equation of state for polymer liquid crystals: Theory and experiment PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999 Equation of state for polymer liquid crystals: Theory and experiment H. H. Strey, * V. A. Parsegian, and R. Podgornik National Institutes of Health, National

More information

Molecular attractions:

Molecular attractions: Molecular attractions: a.) van der Waals interactions b.) electrostatic correlation interactions c.) polyelectrolyte bridging interactions Rudi Podgornik Laboratory of Physical and Structural Biology National

More information

INTERMOLECULAR AND SURFACE FORCES

INTERMOLECULAR AND SURFACE FORCES INTERMOLECULAR AND SURFACE FORCES SECOND EDITION JACOB N. ISRAELACHVILI Department of Chemical & Nuclear Engineering and Materials Department University of California, Santa Barbara California, USA ACADEMIC

More information

Molecular attractions:

Molecular attractions: Molecular attractions: a.) van der Waals interactions b.) electrostatic correlation interactions c.) polyelectrolyte bridging interactions Rudi Podgornik Laboratory of Physical and Structural Biology National

More information

Bond Orientational Order, Molecular Motion arxiv:chem-ph/ v1 25 Aug and Free Energy of High Density DNA Mesophases

Bond Orientational Order, Molecular Motion arxiv:chem-ph/ v1 25 Aug and Free Energy of High Density DNA Mesophases Bond Orientational Order, Molecular Motion arxiv:chem-ph/9508004v1 25 Aug 1995 and Free Energy of High Density DNA Mesophases R. Podgornik, H.H. Strey, K. Gawrisch, D.C. Rau, A. Rupprecht and V.A. Parsegian

More information

Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size

Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size Grand-canonical simulation of DNA condensation with two salts, effect of divalent counterion size Toan T. Nguyen 1,2 1 Faculty of Physics, Hanoi University of Science, Vietnam National University, 334

More information

DNA Condensation. Matej Marin Advisor: prof. Rudi Podgornik. 4th April 2002

DNA Condensation. Matej Marin Advisor: prof. Rudi Podgornik. 4th April 2002 DNA Condensation Matej Marin Advisor: prof. Rudi Podgornik 4th April 2002 Abstract Recent studies of DNA condensation are reviewed. First, dierent intrachain interactions (based on DNA - DNA interactions

More information

Interactions in Macromolecular Complexes Used as Nonviral Vectors for Gene Delivery

Interactions in Macromolecular Complexes Used as Nonviral Vectors for Gene Delivery 21 Interactions in Macromolecular Complexes Used as Nonviral Vectors for Gene Delivery Rudolf Podgornik, D. Harries, J. DeRouchey, H. H. Strey, and V. A. Parsegian CONTENTS 21.1 Introduction...444 21.2

More information

dration properties of the molecular surface and consequently change the strength of the hydration force. To the extent that

dration properties of the molecular surface and consequently change the strength of the hydration force. To the extent that 962 Biophysical Journal olume 66 April 1994 962-971 Parametrization of Direct and Soft Steric-Undulatory Forces Between DNA Double Helical Polyelectrolytes in Solutions of Several Different Anions and

More information

Simple Simulations of DNA Condensation

Simple Simulations of DNA Condensation 130 Biophysical Journal Volume 80 January 2001 130 139 Simple Simulations of DNA Condensation Mark J. Stevens Sandia National Laboratory, P.O. Box 5800, MS 1111, Albuquerque, New Mexico 87185 USA ABSTRACT

More information

arxiv: v1 [cond-mat.soft] 11 Oct 2012

arxiv: v1 [cond-mat.soft] 11 Oct 2012 Europhysics Letters PREPRINT arxiv:1210.3228v1 [cond-mat.soft] 11 Oct 2012 Confined chiral polymer nematics: ordering and spontaneous condensation Daniel Svenšek 1 and Rudolf Podgornik 1,2,3 1 Dept. of

More information

Charge inversion accompanies DNA condensation. by multivalent ions. Construction, mechanics, and electronics. 11 May 2008.

Charge inversion accompanies DNA condensation. by multivalent ions. Construction, mechanics, and electronics. 11 May 2008. Charge inversion accompanies DNA condensation by multivalent ions DNA-based nanotechnology: Construction, mechanics, and electronics 11 May 2008 Serge Lemay Kavli Institute of Nanoscience Delft University

More information

Exchange of Counterions in DNA Condensation. Abstract

Exchange of Counterions in DNA Condensation. Abstract Exchange of Counterions in DNA Condensation Yoshihiro Murayama and Masaki Sano Department of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract We measured the fluorescence intensity of DNA-bound

More information

Generalizations for the Potential of Mean Force between Two Isolated Colloidal Particles from Monte Carlo Simulations

Generalizations for the Potential of Mean Force between Two Isolated Colloidal Particles from Monte Carlo Simulations Journal of Colloid and Interface Science 252, 326 330 (2002) doi:10.1006/jcis.2002.8497 Generalizations for the Potential of Mean Force between Two Isolated Colloidal Particles from Monte Carlo Simulations

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards

Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards Soft Matter - Theoretical and Industrial Challenges Celebrating the Pioneering Work of Sir Sam Edwards One Hundred Years of Electrified Interfaces: The Poisson-Boltzmann theory and some recent developments

More information

2 Structure. 2.1 Coulomb interactions

2 Structure. 2.1 Coulomb interactions 2 Structure 2.1 Coulomb interactions While the information needed for reproduction of living systems is chiefly maintained in the sequence of macromolecules, any practical use of this information must

More information

and Matej Praprotnik SI-1001 Ljubljana, Slovenia Jadranska 19, SI-1000 Ljubljana, Slovenia Slovenia

and Matej Praprotnik SI-1001 Ljubljana, Slovenia Jadranska 19, SI-1000 Ljubljana, Slovenia Slovenia Supplementary Information: Order and interactions in DNA arrays: Multiscale molecular dynamics simulation Julija Zavadlav, 1, 2, a) Rudolf Podgornik, 2, 3, b) 1, 2, c) and Matej Praprotnik 1) Department

More information

Multimedia : Fibronectin and Titin unfolding simulation movies.

Multimedia : Fibronectin and Titin unfolding simulation movies. I LECTURE 21: SINGLE CHAIN ELASTICITY OF BIOMACROMOLECULES: THE GIANT PROTEIN TITIN AND DNA Outline : REVIEW LECTURE #2 : EXTENSIBLE FJC AND WLC... 2 STRUCTURE OF MUSCLE AND TITIN... 3 SINGLE MOLECULE

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

Elasticity of the human red blood cell skeleton

Elasticity of the human red blood cell skeleton Biorheology 40 (2003) 247 251 247 IOS Press Elasticity of the human red blood cell skeleton G. Lenormand, S. Hénon, A. Richert, J. Siméon and F. Gallet Laboratoire de Biorhéologie et d Hydrodynamique Physico-Chimique,

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte

Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte THE JOURNAL OF CHEMICAL PHYSICS 122, 044903 2005 Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte Zhi-Jie Tan and Shi-Jie Chen a) Department of Physics and

More information

Bchem 675 Lecture 9 Electrostatics-Lecture 2 Debye-Hückel: Continued Counter ion condensation

Bchem 675 Lecture 9 Electrostatics-Lecture 2 Debye-Hückel: Continued Counter ion condensation Bchem 675 Lecture 9 Electrostatics-Lecture 2 Debye-Hückel: Continued Counter ion condensation Ion:ion interactions What is the free energy of ion:ion interactions ΔG i-i? Consider an ion in a solution

More information

Electrostatics of membrane adhesion

Electrostatics of membrane adhesion Electrostatics of membrane adhesion S. Marcelja Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 6, Australia ABSTRACT

More information

Helix-Specific Interactions Induce Condensation of Guanosine Four-Stranded Helices in Concentrated Salt Solutions

Helix-Specific Interactions Induce Condensation of Guanosine Four-Stranded Helices in Concentrated Salt Solutions 430 Biophysical Journal Volume 74 January 1998 430 435 Helix-Specific Interactions Induce Condensation of Guanosine Four-Stranded Helices in Concentrated Salt Solutions Paolo Mariani, Federica Ciuchi,

More information

Electrostatic interaction between long, rigid helical macromolecules at all interaxial angles

Electrostatic interaction between long, rigid helical macromolecules at all interaxial angles PHYSICAL REVIEW E VOLUME 6, NUMBER AUGUST Electrostatic interaction between long, rigid helical macromolecules at all interaxial angles A. A. Kornyshev* Institute for Theoretical Physics, University of

More information

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES

Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 21 PART I - RODS AND ROPES Sec. 2.1 Filaments in the cell 22 CHAPTER 2 - POLYMERS The structural elements of the cell can be broadly classified as filaments or sheets, where

More information

3 Biopolymers Uncorrelated chains - Freely jointed chain model

3 Biopolymers Uncorrelated chains - Freely jointed chain model 3.4 Entropy When we talk about biopolymers, it is important to realize that the free energy of a biopolymer in thermal equilibrium is not constant. Unlike solids, biopolymers are characterized through

More information

Brownian Dynamics Simulation of DNA Condensation

Brownian Dynamics Simulation of DNA Condensation 1858 Biophysical Journal Volume 77 October 1999 1858 1870 Brownian Dynamics Simulation of DNA Condensation Pierre-Edouard Sottas, Eric Larquet, Andrzej Stasiak, and Jacques Dubochet Laboratoire d Analyse

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

Flexible Polymer-Induced Condensation and Bundle Formation of DNA and F-Actin Filaments

Flexible Polymer-Induced Condensation and Bundle Formation of DNA and F-Actin Filaments 1186 Biophysical Journal Volume 80 March 2001 1186 1194 Flexible Polymer-Induced Condensation and Bundle Formation of DNA and F-Actin Filaments Renko de Vries Laboratory of Physical Chemistry and Colloid

More information

A FIELD THEORETIC APPROACH TO THE ELECTRIC INTERFACIAL LAYER. MIXTURE OF TRIVALENT ROD-LIKE AND MONOVALENT POINT-LIKE IONS BETWEEN CHARGED WALLS.

A FIELD THEORETIC APPROACH TO THE ELECTRIC INTERFACIAL LAYER. MIXTURE OF TRIVALENT ROD-LIKE AND MONOVALENT POINT-LIKE IONS BETWEEN CHARGED WALLS. Modern Physics Letters B c World Scientific Publishing Company A FIELD THEORETIC APPROACH TO THE ELECTRIC INTERFACIAL LAYER. MIXTURE OF TRIVALENT ROD-LIKE AND MONOVALENT POINT-LIKE IONS BETWEEN CHARGED

More information

arxiv: v1 [q-bio.bm] 6 Apr 2016

arxiv: v1 [q-bio.bm] 6 Apr 2016 Multi-shell model of ion-induced nucleic acid condensation Igor S. Tolokh Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA Aleksander Drozdetski Department of Physics, Virginia

More information

Nanomechanical Forces Generated by Surface Grafted DNA

Nanomechanical Forces Generated by Surface Grafted DNA J. Phys. Chem. B 2002, 106, 10163-10173 10163 Nanomechanical Forces Generated by Surface Grafted DNA Michael F. Hagan,, Arun Majumdar,, and Arup K. Chakraborty*,,,, Department of Chemical Engineering,

More information

Correlated and decorrelated positional and orientational order in the nucleosomal core particle mesophases

Correlated and decorrelated positional and orientational order in the nucleosomal core particle mesophases EUROPHYSICS LETTERS 5 March 2005 Europhys. Lett., 69 (6), pp. 07 023 (2005) DOI: 0.209/epl/i2004-0437-5 Correlated and decorrelated positional and orientational order in the nucleosomal core particle mesophases

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity

Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity http://www.aimspress.com/ AIMS Biophysics, 2(4): 666-694. DOI: 10.3934/biophy.2015.4.666 Received date 28 August 2015, Accepted date 29 October 2015, Published date 06 November 2015 Research article Chiral

More information

Ion Competition in Condensed DNA Arrays in the Attractive Regime

Ion Competition in Condensed DNA Arrays in the Attractive Regime 984 Biophysical Journal Volume 105 August 2013 984 992 Ion Competition in Condensed DNA Arrays in the Attractive Regime Xiangyun Qiu, * John Giannini, Steven C. Howell, Qi Xia, Fuyou Ke, and Kurt Andresen

More information

Soft Matter and Biological Physics

Soft Matter and Biological Physics Dr. Ulrich F. Keyser - ufk20 (at) cam.ac.uk Soft Matter and Biological Physics Question Sheet Michaelmas 2011 Version: November 2, 2011 Question 0: Sedimentation Initially consider identical small particles

More information

Force-Induced Melting of the DNA Double Helix. 2. Effect of Solution Conditions*

Force-Induced Melting of the DNA Double Helix. 2. Effect of Solution Conditions* 894 Biophysical Journal Volume 80 February 2001 894 900 Force-Induced Melting of the DNA Double Helix. 2. Effect of Solution Conditions* Ioulia Rouzina and Victor A. Bloomfield Department of Biochemistry,

More information

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion.

*blood and bones contain colloids. *milk is a good example of a colloidal dispersion. Chap. 3. Colloids 3.1. Introduction - Simple definition of a colloid: a macroscopically heterogeneous system where one component has dimensions in between molecules and macroscopic particles like sand

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

CHARGED POLYMERS THE STORY SO FAR

CHARGED POLYMERS THE STORY SO FAR CHARGED POLYMERS THE STORY SO FAR Andrey V Dobrynin Institute of Materials Science &Department of Physics University of Connecticut What are polyelectrolytes? Poly(styrene sulfonate) CH-CH 2 SO Na Poly(methacrylic

More information

Swelling and Collapse of Single Polymer Molecules and Gels.

Swelling and Collapse of Single Polymer Molecules and Gels. Swelling and Collapse of Single Polymer Molecules and Gels. Coil-Globule Transition in Single Polymer Molecules. the coil-globule transition If polymer chains are not ideal, interactions of non-neighboring

More information

Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany

Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany 282 2 Electrochemical Double Layers 2.7 Polyelectrolytes in Solution and at Surfaces Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany David Andelman School of Physics and

More information

Effective interaction between helical bio-molecules

Effective interaction between helical bio-molecules Effective interaction between helical bio-molecules E.Allahyarov 1,2, H.Löwen 1 1 Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, D-4225 Düsseldorf, Germany 2 Institute for

More information

Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes

Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes Macromolecules 006, 39, 9519-957 9519 Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes Andrey V. Dobrynin Polymer Program, Institute of Materials Science and Department of

More information

Interactions and conformational fluctuations in DNA arrays

Interactions and conformational fluctuations in DNA arrays 1 Interactions and conformational fluctuations in DNA arrays Rudolf Podgornik Laboratory of Physical and Structural Biology National Institute of Child Health and Human Development National Institutes

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

The existence of distinct states of DNA compaction is vital to

The existence of distinct states of DNA compaction is vital to DNA condensation in two dimensions Ilya Koltover, Kathrin Wagner, and Cyrus R. Safinya Materials Department, Physics Department, and Biochemistry and Molecular Biology Program, University of California,

More information

Effects of Solvent Mediated Interactions on Electrolytes and Related Electrostatic Systems

Effects of Solvent Mediated Interactions on Electrolytes and Related Electrostatic Systems Effects of Solvent Mediated Interactions on Electrolytes and Related Electrostatic Systems Thesis submitted towards the degree Doctor of Philosophy by Yoram Burak Submitted to the Senate of Tel Aviv University

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

Electrostatics of rigid polyelectrolytes

Electrostatics of rigid polyelectrolytes Current Opinion in Colloid & Interface Science 11 (2006) 310 315 www.elsevier.com/locate/cocis Electrostatics of rigid polyelectrolytes Gerard C.L. Wong Materials Science and Engineering Dept., Physics

More information

Magnetic tweezers and its application to DNA mechanics

Magnetic tweezers and its application to DNA mechanics Biotechnological Center Research group DNA motors (Seidel group) Handout for Practical Course Magnetic tweezers and its application to DNA mechanics When: 9.00 am Where: Biotec, 3 rd Level, Room 317 Tutors:

More information

1924 Biophysical Journal Volume 107 October

1924 Biophysical Journal Volume 107 October 194 Biophysical Journal Volume 107 October 014 194 199 Article Ejecting Phage DNA against Cellular Turgor Pressure Sanjin Marion 1, * and Antonio Siber 1 1 Institute of Physics, Zagreb, Croatia ABSTRACT

More information

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Journal of Colloid and Interface Science 263 (2003) 156 161 www.elsevier.com/locate/jcis The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Haohao

More information

REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

REVIEW : INTRODUCTION TO THE MOLECULAR ORIGINS OF MECHANICAL PROPERTIES QUANTITATIVE TREATMENT OF INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL LECTURE #19 : 3.11 MECANICS OF MATERIALS F3 INSTRUCTOR : Professor Christine Ortiz OFFICE : 13-422 PONE : 452-384 WWW : http://web.mit.edu/cortiz/www REVIEW : INTRODUCTION TO TE MOLECULAR ORIGINS OF MECANICAL

More information

Electrostatic contribution to DNA condensation application of energy minimization in a simple model in strong Coulomb coupling regime.

Electrostatic contribution to DNA condensation application of energy minimization in a simple model in strong Coulomb coupling regime. lectrostatic contribution to DNA condensation application of energy minimization in a simple model in strong Coulomb coupling regime. Arup K. Mukherjee Department of Physics, Chancellor College, Box 80,

More information

An Introduction to namic Light Scattering by Macromole cules

An Introduction to namic Light Scattering by Macromole cules An Introduction to namic Light Scattering by Macromole cules Kenneth S. Schmitz Department of Chemistry University of Missouri-Kansas Kansas City, Missouri City ACADEMIC PRESS, INC. Harcourt Brace Jovanovich,

More information

Self-Assembly. Self-Assembly of Colloids.

Self-Assembly. Self-Assembly of Colloids. Self-Assembly Lecture 5-6 Self-Assembly of Colloids. Liquid crystallinity Colloidal Stability and Phases The range of forces attractive and repelling forces exists between the colloidal particles van der

More information

Polyelectrolyte and polyampholyte. effects in synthetic and biological

Polyelectrolyte and polyampholyte. effects in synthetic and biological arxiv:1103.1908v1 [cond-mat.soft] 9 Mar 2011 Chapter 4 Polyelectrolyte and polyampholyte effects in synthetic and biological macromolecules Ngo Minh Toan, Bae-Yeun Ha and D. Thirumalai 1 2 CHAPTER 4. PE

More information

Charge fluctuations and counterion condensation

Charge fluctuations and counterion condensation PHYSICAL REVIEW E, VOLUME 65, 0550 Charge fluctuations and counterion condensation A. W. C. Lau, D. B. Lukatsky, P. Pincus, 3 and S. A. Safran Department of Physics and Astronomy, University of Pennsylvania,

More information

Current Opinion in Colloid & Interface Science

Current Opinion in Colloid & Interface Science Current Opinion in Colloid & Interface Science 13 (2008) 376 388 Contents lists available at ScienceDirect Current Opinion in Colloid & Interface Science journal homepage: www.elsevier.com/locate/cocis

More information

Configurations of confined nematic polymers

Configurations of confined nematic polymers SEMINAR 1 1 st YEAR, SECOND CYCLE DEGREE Configurations of confined nematic polymers Author: Danijel Vidaković Mentor: Daniel Svenšek Ljubljana, March 2018 Abstract In this seminar, I present the construction

More information

Free Energy and Thermal Fluctuations of Neutral Lipid Bilayers

Free Energy and Thermal Fluctuations of Neutral Lipid Bilayers Langmuir 001, 17, 455-463 455 Free Energy and Thermal Fluctuations of Neutral Lipid Bilayers Marian Manciu and Eli Ruckenstein* Department of Chemical Engineering, State University of New York at Buffalo,

More information

Investigation of dsdna Stretching Meso-Mechanics Using LS-DYNA

Investigation of dsdna Stretching Meso-Mechanics Using LS-DYNA 8 th International LS-DYNA Users Conference Simulation echnology (3) Investigation of dsdna Stretching Meso-Mechanics Using LS-DYNA C. A. Yuan and K. N. Chiang Department of Power Mechanical Engineering,

More information

Long-range many-body polyelectrolyte bridging interactions

Long-range many-body polyelectrolyte bridging interactions THE JOURNAL OF CHEMICAL PHYSICS 122, 204902 2005 Long-range many-body polyelectrolyte bridging interactions Rudi Podgornik a Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana,

More information

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications

CH676 Physical Chemistry: Principles and Applications. CH676 Physical Chemistry: Principles and Applications CH676 Physical Chemistry: Principles and Applications History of Nanotechnology: Time Line Democritus in ancient Greece: concept of atom 1900 : Rutherford : discovery of atomic nucleus The first TEM was

More information

Surfactant/Polymer Assemblies. 2. Polyelectrolyte Properties

Surfactant/Polymer Assemblies. 2. Polyelectrolyte Properties 2966 Macromolecules 1998, 31, 2966-2971 Surfactant/Polymer Assemblies. 2. Polyelectrolyte Properties Edson Minatti, David P. Norwood, and Wayne F. Reed* Department of Physics, Tulane University, New Orleans,

More information

Lipid Demixing and Protein-Protein Interactions in the Adsorption of Charged Proteins on Mixed Membranes

Lipid Demixing and Protein-Protein Interactions in the Adsorption of Charged Proteins on Mixed Membranes Biophysical Journal Volume 79 October 2000 1747 1760 1747 Lipid Demixing and Protein-Protein Interactions in the Adsorption of Charged Proteins on Mixed Membranes Sylvio May,* Daniel Harries, and Avinoam

More information

Metal Ion-Induced Lateral Aggregation of Filamentous Viruses fd and M13

Metal Ion-Induced Lateral Aggregation of Filamentous Viruses fd and M13 University of Pennsylvania ScholarlyCommons Institute for Medicine and Engineering Papers Institute for Medicine and Engineering July 2002 Metal Ion-Induced Lateral Aggregation of Filamentous Viruses fd

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

Introduction to polymer physics Lecture 1

Introduction to polymer physics Lecture 1 Introduction to polymer physics Lecture 1 Boulder Summer School July August 3, 2012 A.Grosberg New York University Lecture 1: Ideal chains Course outline: Ideal chains (Grosberg) Real chains (Rubinstein)

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 6 Aug 2002

arxiv:cond-mat/ v2 [cond-mat.soft] 6 Aug 2002 Radial Distribution Function of Rod-like Polyelelctrolytes Roya Zandi Department of Chemistry and Biochemistry, UCLA, Box 95569, Los Angeles, California, 995-569 arxiv:cond-mat/7v [cond-mat.soft] 6 Aug

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids

CHEM Principles of Chemistry II Chapter 10 - Liquids and Solids CHEM 1212 - Principles of Chemistry II Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces recall intramolecular (within the molecule) bonding whereby atoms can form stable units called molecules

More information

Intermolecular and Surface Forces

Intermolecular and Surface Forces Intermolecular and Surface Forces ThirH FHitinn '' I I 111 \J& LM* КтЛ I Km I W I 1 Jacob N. Israelachvili UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA, USA AMSTERDAM BOSTON HEIDELBERG LONDON NEW

More information

Cytoskeleton dynamics simulation of the red blood cell

Cytoskeleton dynamics simulation of the red blood cell 1 Cytoskeleton dynamics simulation of the red blood cell Ju Li Collaborators: Subra Suresh, Ming Dao, George Lykotrafitis, Chwee-Teck Lim Optical tweezers stretching of healthy human red blood cell 2 Malaria

More information

Solving the Poisson Boltzmann equation to obtain interaction energies between confined, like-charged cylinders

Solving the Poisson Boltzmann equation to obtain interaction energies between confined, like-charged cylinders JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 20 22 NOVEMBER 1998 Solving the Poisson Boltzmann equation to obtain interaction energies between confined, like-charged cylinders Mark Ospeck a) and Seth

More information

Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions

Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions Yng-Gwei Chen and John D. Weeks Departments of Physics and Chemistry and

More information

Tunable Nanoparticle Arrays at Charged Interfaces

Tunable Nanoparticle Arrays at Charged Interfaces Tunable Nanoparticle Arrays at Charged Interfaces Supporting Material Sunita Srivastava 1, Dmytro Nykypanchuk 1, Masafumi Fukuto 2 and Oleg Gang 1* 1 Center for Functional Nanomaterials, Brookhaven National

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

REVIEW : INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL & RUBBER ELASTICITY I DERIVATION OF STRESS VERSUS STRAIN LAWS FOR RUBBER ELASTICITY

REVIEW : INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL & RUBBER ELASTICITY I DERIVATION OF STRESS VERSUS STRAIN LAWS FOR RUBBER ELASTICITY LECTURE #3 : 3.11 MECHANICS O MATERIALS 03 INSTRUCTOR : Professor Christine Ortiz OICE : 13-40 PHONE : 45-3084 WWW : http://web.mit.edu/cortiz/www REVIEW : INTERATOMIC BONDING : THE LENNARD-JONES POTENTIAL

More information

Torsional Deformation of Double Helix in Interaction and Aggregation of DNA

Torsional Deformation of Double Helix in Interaction and Aggregation of DNA 6508 J. Phys. Chem. B 2004, 108, 6508-6518 Torsional Deformation of Double Helix in Interaction and Aggregation of DNA A. G. Cherstvy,, A. A. Kornyshev, and S. eikin*, Institut für Festkörperforschung

More information

Biological Polyelectrolytes and Biological Complexes

Biological Polyelectrolytes and Biological Complexes Biological Polyelectrolytes and Biological Complexes Monica Olvera de la Cruz Francisco Solis Pedro Gonzalez-Mozuelos Eric Raspaud Jean Louis Sikorav Michel Delsanti Luc Belloni Alexander Ermoshkin Alexander

More information

Nonlinear elasticity of single collapsed polyelectrolytes

Nonlinear elasticity of single collapsed polyelectrolytes Nonlinear elasticity of single collapsed polyelectrolytes Hirofumi Wada,* Yoshihiro Murayama, and Masaki Sano Department of Physics, University of Tokyo, Hongo, Tokyo, 113-0033, Japan Received 6 January

More information

Origin of the Electrophoretic Force on DNA in Nanopores. Biological and Soft Systems - Cavendish Laboratory

Origin of the Electrophoretic Force on DNA in Nanopores. Biological and Soft Systems - Cavendish Laboratory Origin of the Electrophoretic Force on DNA in Nanopores Ulrich F. Keyser Biological and Soft Systems - Cavendish Laboratory Acknowledgements Delft Cees Dekker, Nynke H. Dekker, Serge G. Lemay R. Smeets,

More information

Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes. G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich

Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes. G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich Motivation: Endo- and Exocytosis Membrane transport of

More information

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods

One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods Microrheology of Biopolymers (ITP Complex Fluids Program 3/05/02) One- and two-particle microrheology in solutions of actin, fd-virus and inorganic rods Christoph Schmidt Vrije Universiteit Amsterdam Collaborators:

More information

5. STRUCTURES AND DEFECTS IN AMORPHOUS SOLIDS

5. STRUCTURES AND DEFECTS IN AMORPHOUS SOLIDS 62 5. STRUCTURES AND DEFECTS IN AMORPHOUS SOLIDS 5.1 Review/Background: In Chapter 4, we discussed the origin of crystal structures and Bravais lattices based on Euler relationship. In this chapter, we

More information

Molecular Dynamics Simulation of High Density DNA Arrays

Molecular Dynamics Simulation of High Density DNA Arrays Review Molecular Dynamics Simulation of High Density DNA Arrays Rudolf Podgornik 1,2 ID, Julija Zavadlav 3 and Matej Praprotnik 4, * ID 1 Department of Physics, Faculty of Mathematics and Physics, University

More information