CHARGED POLYMERS THE STORY SO FAR

Size: px
Start display at page:

Download "CHARGED POLYMERS THE STORY SO FAR"

Transcription

1 CHARGED POLYMERS THE STORY SO FAR Andrey V Dobrynin Institute of Materials Science &Department of Physics University of Connecticut What are polyelectrolytes? Poly(styrene sulfonate) CH-CH 2 SO Na Poly(methacrylic acid) CH CH 2 -C COOH DNA Dr. Andrei Dobrynin, University Connecticut 1

2 Half a Century of Polyelectrolytes s Fuoss, Katchalsky, Morawetz, Flory s Oosawa, degennes, Odijk, Manning, Fixman '80-'85 '86-'90 '91-'95 '96-'00 '01-'05 Number of publications in scientific journals on topic POLYELECTROLYTES Physical model of polyelectrolyte chain Bead-spring model ε f=n charg /N fraction of the charged monomers Dr. Andrei Dobrynin, University Connecticut 2

3 Pearl-Necklace Story of Hydrophobic Polyelectrolytes Dilute solutions Necklace globule Counterion condensation Semidilute solutions Dr. Andrei Dobrynin, University Connecticut

4 Polymers in poor solvent Uncharged globule R Globule is densely packed by attraction between monomers The average monomer density inside globule is ρ ~ a - Globule size R ~ a N 1/ Instability of a charged liquid droplet Lord Rayleigh 82 + Q < Q crit Q > Q crit For the surface charge larger than the critical value charged liquid droplet splits into two smaller droplets. γ R 2 2 Q ε R crit Dr. Andrei Dobrynin, University Connecticut 4

5 Charged globule R Rayleigh s stability condition: electrostatic repulsion is balanced by surface energy ( efn) εr 2 γr 2 Critical fraction of charged monomers f crit ~ N -1/2 Chain size vs charge Normalized size R 2 /N 2/ Normalized charge Q/Q crit u=2, ε LJ =1.5 Dr. Andrei Dobrynin, University Connecticut 5

6 Cascade of transitions Dobrynin,Rubinstein, Obukhov 96 f=0 f=0.1 Charge on the chain increases f=0.2 Necklace globule l str m b D b L nec The length of a string is determined by the balance of the electrostatic repulsion between neighboring beads and the surface tension of string ( efm ) εl b str 2 γl a str Number of monomers in a bead m b ~ f -2 String length l str ~ a fm b ~am b 1/2 Necklace length L nec ~ l str N/m b ~ a fn How can one measure a chain size? Dr. Andrei Dobrynin, University Connecticut 6

7 ph dependence of the reduced viscosity for poly(methyacrylic acid) Katchalsky& Eisenberg 51 η R L nec Dilute solutions Necklace globule Counterion condensation Semidilute solutions Dr. Andrei Dobrynin, University Connecticut 7

8 Concentration induced cascade of transitions Number of beads on the chain varies with polymer concentration Polymer concentration increases Chains in dilute solution N=187, f=1/, ε LJ =1.5, u=2, ca = Dr. Andrei Dobrynin, University Connecticut 8

9 Chains in dilute solution N=187, f=1/, ε LJ =1.5, u=2, ca = Two-zone model Oosawa 68 Zone I Beads with condensed Counterions D b Zone II Volume free of the polymer V ch =N/c Dr. Andrei Dobrynin, University Connecticut 9

10 Counterion condensation D b m b monomers per bead fm b original charge xfm b effective charge of a bead 1-x fraction of condensed counterions V ch =N/c Bead size D a( uf x ) b 2 2 1/ Rayleigh stability condition l B ( fxm ) D b b ( ) m uf x b 2 Db 2 a 1 Total free energy of the necklace F kt xfna x fna 2/ 1 Nf εc x + x ln + ( 1 x) ln ( ) Db Vch Db N / mb Electrostatic energy ( ) ε c u / f 1/ Counterion entropy -attraction of counterion to a fully charged bead Effective charge of PSS Williams et al 01 Osmotic pressure measurements in dilute solution π ktc f Best fit with the parameters ε c =4. and ca =10 - Osmotic coefficient for two-zone model π 2εc = fx + f ( 1 x) exp / ktc x 1 Dr. Andrei Dobrynin, University Connecticut 10

11 Dilute solutions Necklace globule Counterion condensation Semidilute solutions Overlap concentration L nec N C * N L nec 2 For c < c* - dilute solution of necklaces For c > c* - sedilute solution of necklaces Dr. Andrei Dobrynin, University Connecticut 11

12 Dependence of overlap concentration on degree of polymerization -2 Semidilute string regime ξ c Correlation length * < c < c str Chain is strongly stretched on the length scales smaller than correlation length de Gennes et al 76 / ξ ~ c 1 2 Chain size: R ~ N c 1/ 2 1/ 4 Dr. Andrei Dobrynin, University Connecticut 12

13 Concentration dependence of the correlation length -1/2 Semidilute Bead Controlled Regime ξ Dobrynin& Rubinstein 99 D b <ξ c str < c < c b Colloidal fluid of beads Beads on neighboring chains screen electrostatic repulsion of beads on the same chain reducing the length of strings to the distance between beads ξ. Correlation length m cξ ξ m c b 1/ 1/ b ξ ~ c -1/ f -2/ Chain size: R ξ N / m N c b 1/ 2 1/ Dr. Andrei Dobrynin, University Connecticut 1

14 Correlation Length NaPSS, M W (PS)= Single Chain Form Factor (NaPSS, M W (PS H )=68 000, M W (PS D )=7 000 ) Bead size vs fraction of charged monomers Theory: D b ~ f -2/ Experiment: D b ~ f -0.7 Dr. Andrei Dobrynin, University Connecticut 14

15 Effect of Added Salt Spitery & Boue 97 For charge fraction f=0.64 at polymer concentration C = 0.4 M R ( c = 0M) = 97 ± 5A g s R ( c = 0. 4 M) = 7 ± 8A g s R ( c = 0. 68M ) = 66 ± 5A g s Correlation length ξ -1/2 l str -1/ D b c str c b c String Controlled Bead Controlled Concentrated Dr. Andrei Dobrynin, University Connecticut 15

16 Nonmonotonic Dependence of the Chain Size on Polymer Concentration Polymer concentration increases Dependence of the Chain Size on Polymer Concentration R b N 1-1/4 f 1/ -1/ c str c b c Dr. Andrei Dobrynin, University Connecticut 16

17 Dependence of the Chain Size on Polymer Concentration 100 R e 10 1E-7 1E-6 1E-5 1E-4 1E cσ Chains in concentrated solution N=187, f=1/, ε LJ =1.5, u=2, ca = 10-1 Dr. Andrei Dobrynin, University Connecticut 17

18 Dynamics of Hydrophobic Polyelectrolytes String Bead Concentrated τ -1/2-1 c * c str c b c τ η ξ ξ τ s τ ξ kt N g ξ 2 Relaxation time of correlation blob N m 2 c c 1/ 2 1 bead,, string bead Transition at the bead overlap concentration c b with a dramatic increase of chain relaxation time and solution viscosity resembles gelation transition. 1/ 2 Dynamics of Hydrophobic Polyelectrolytes L R -1/4-1/ ξ -1/2-1/ D e string bead concentrated c * c str c b c η τ -1/2 string bead -1 concentrated c * c str c b c string bead concentrated 1/2 c * c str c b c Hydrophobic polyelectrolytes in a string- regime are similar to hydrophilic ones. Strong decrease of polymer size in a bead- regime leads to a rapid decrease of relaxation time and to a concentrationindependent viscosity of unentangled solutions. Counterion condensation on beads enhances this phenomenon. Dr. Andrei Dobrynin, University Connecticut 18

19 Gelation Transition of Hydrophobic Polyelectrolytes Below the bead overlap concentration c b necklace size is much smaller than the ideal chain size. Above the bead overlap concentration c b chains are ideal with much higher relaxation time and solution viscosity. Transition at the bead overlap concentration c b with a dramatic increase of solution viscosity resembles gelation transition. Size increase at bead overlap transition can be accompanied by chain entanglements. η above / η below = (Z N/N e ) 2 Z = m bead /m string The relaxation time vs concentration Boris& Colby 98-1/2-1 Concentrated String Bead Poly(styrene sulfonate), M w =1200K, f=0.85 Dr. Andrei Dobrynin, University Connecticut 19

20 Diagram of regimes for solutions of hydrophobic polyelectrolytes Dilute Semidilute string Semidilute bead Concentrated solution ξ C* C str C b Polymer concentration increases Conclusions Polyelectrolyte chain with short-range attraction and long-range repulsion forms a necklace globule. With changing charge on the chain or polymer concentration there exists cascade of transitions between necklaces with different number of beads. Conformational transition in solutions of hydrophobic polyelectrolytes leads to a sharp increase of viscosity - an apparent gelation. The predictions of the model are confirmed by recent experiments. Dr. Andrei Dobrynin, University Connecticut 20

21 Acknowledgments Collaborations Michael Rubinstein Qi Liao (University of North Carolina) Sergei Obukhov (University of Florida) Financial Support National Science Foundation Petroleum Research Fund Eastman Kodak Company Dr. Andrei Dobrynin, University Connecticut 21

Polyelectrolyte Solution Rheology. Institute of Solid State Physics SOFT Workshop August 9, 2010

Polyelectrolyte Solution Rheology. Institute of Solid State Physics SOFT Workshop August 9, 2010 Polyelectrolyte Solution Rheology Institute of Solid State Physics SOFT Workshop August 9, 2010 1976 de Gennes model for semidilute polyelectrolytes r > ξ: SCREENED ELECTROSTATICS A random walk of correlation

More information

Counterion Condensation and Phase Separation in Solutions of Hydrophobic Polyelectrolytes

Counterion Condensation and Phase Separation in Solutions of Hydrophobic Polyelectrolytes 1964 Macromolecules 001, 4, 1964-197 Counterion Condensation and Phase Separation in Solutions of Hydrophobic Polyelectrolytes Andrey V. Dobrynin and Michael Rubinstein* Department of Chemistry, University

More information

Current Opinion in Colloid & Interface Science

Current Opinion in Colloid & Interface Science Current Opinion in Colloid & Interface Science 13 (2008) 376 388 Contents lists available at ScienceDirect Current Opinion in Colloid & Interface Science journal homepage: www.elsevier.com/locate/cocis

More information

Adsorption of Hydrophobic Polyelectrolytes at Oppositely Charged Surfaces

Adsorption of Hydrophobic Polyelectrolytes at Oppositely Charged Surfaces 754 Macromolecules 00, 35, 754-768 Adsorption of Hydrophobic Polyelectrolytes at Oppositely Charged Surfaces Andrey V. obrynin*, and Michael Rubinstein epartment of Chemistry, University of North Carolina,

More information

Simulation of Annealed Polyelectrolytes in Poor Solvents

Simulation of Annealed Polyelectrolytes in Poor Solvents Max-Planck-Institut für Kolloid- und Grenzflächenforschung Abteilung Theorie Simulation of Annealed Polyelectrolytes in Poor Solvents Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium

More information

Hydrophobically Modified Polyelectrolytes in Dilute Salt-Free Solutions

Hydrophobically Modified Polyelectrolytes in Dilute Salt-Free Solutions Macromolecules 2000, 33, 8097-8105 8097 Hydrophobically Modified Polyelectrolytes in Dilute Salt-Free Solutions ndrey V. Dobrynin and Michael Rubinstein* Department of Chemistry, University of North Carolina,Chapel

More information

Detailed Molecular Dynamics Simulations of a Model NaPSS in Water

Detailed Molecular Dynamics Simulations of a Model NaPSS in Water J. Phys. Chem. B 2010, 114, 9391 9399 9391 Detailed Molecular Dynamics Simulations of a Model NaPSS in Water Jan-Michael Y. Carrillo and Andrey V. Dobrynin* Polymer Program, Institute of Materials Science

More information

Molecular Dynamics Simulations of Polyelectrolyte-Polyampholyte Complexes. Effect of Solvent Quality and Salt Concentration

Molecular Dynamics Simulations of Polyelectrolyte-Polyampholyte Complexes. Effect of Solvent Quality and Salt Concentration 24652 J. Phys. Chem. B 2006, 110, 24652-24665 Molecular Dynamics Simulations of Polyelectrolyte-Polyampholyte Complexes. Effect of Solvent Quality and Salt Concentration Junhwan Jeon and Andrey V. Dobrynin*,,

More information

Weak Temperature Dependence of Structure in Hydrophobic Polyelectrolyte Aqueous Solution (PSSNa): Correlation between Scattering and Viscosity

Weak Temperature Dependence of Structure in Hydrophobic Polyelectrolyte Aqueous Solution (PSSNa): Correlation between Scattering and Viscosity pubs.acs.org/jpcb Weak Temperature Dependence of Structure in Hydrophobic Polyelectrolyte Aqueous Solution (PSSNa): Correlation between Scattering and Viscosity Wafa Essafi,*, Nouha Haboubi,, Claudine

More information

Swelling and Collapse of Single Polymer Molecules and Gels.

Swelling and Collapse of Single Polymer Molecules and Gels. Swelling and Collapse of Single Polymer Molecules and Gels. Coil-Globule Transition in Single Polymer Molecules. the coil-globule transition If polymer chains are not ideal, interactions of non-neighboring

More information

arxiv: v1 [cond-mat.soft] 17 Sep 2016

arxiv: v1 [cond-mat.soft] 17 Sep 2016 Polyelectrolyte Polypeptide Scaling Laws Via Mechanical and Dielectric Relaxation Measurements Jorge Monreal University of South Florida arxiv:1609.05358v1 [cond-mat.soft] 17 Sep 2016 Dated: March 1, 2018

More information

Molecular Dynamics Simulations of Polyelectrolyte Brushes: From Single Chains to Bundles of Chains

Molecular Dynamics Simulations of Polyelectrolyte Brushes: From Single Chains to Bundles of Chains Molecular Dynamics Simulations of Polyelectrolyte Brushes: From Single Chains to Bundles of Chains Daniel J. Sandberg, Jan-Michael Y. Carrillo, and Andrey V. Dobrynin* Polymer Program, Institute of Materials

More information

Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions

Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions Rheol Acta (2010) 49:425 442 DOI 10.1007/s00397-009-0413-5 REVIEW Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions Ralph H.

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

HYDROPHOBIC POLYELECTROLYTES IN BETTER POLAR SOLVENT. STRUCTURE AND CHAIN CONFORMATION AS SEEN BY SAXS AND SANS

HYDROPHOBIC POLYELECTROLYTES IN BETTER POLAR SOLVENT. STRUCTURE AND CHAIN CONFORMATION AS SEEN BY SAXS AND SANS HYDROPHOBIC POLYELECTROLYTES IN BETTER POLAR SOLVENT. STRUCTURE AND CHAIN CONFORMATION AS SEEN BY SAXS AND SANS Wafa ESSAFI 1,*, Marie-Noelle SPITERI 2, Claudine WILLIAMS 3 and François BOUE 2 1 Institut

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators . Polymers.1. Traditional and modern applications.. From chemistry to statistical description.3. Polymer solutions and polymer blends.4. Amorphous polymers.5. The glass transition.6. Crystalline polymers.7.

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Perfect mixing of immiscible macromolecules at fluid interfaces

Perfect mixing of immiscible macromolecules at fluid interfaces Perfect mixing of immiscible macromolecules at fluid interfaces Sergei S. Sheiko, 1* Jing Zhou, 1 Jamie Boyce, 1 Dorota Neugebauer, 2+ Krzysztof Matyjaszewski, 2 Constantinos Tsitsilianis, 4 Vladimir V.

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Molecular Dynamics Simulations of Polyampholyte-Polyelectrolyte Complexes in Solutions

Molecular Dynamics Simulations of Polyampholyte-Polyelectrolyte Complexes in Solutions 5300 Macromolecules 2005, 38, 5300-5312 Molecular Dynamics Simulations of Polyampholyte-Polyelectrolyte Complexes in Solutions Junhwan Jeon and Andrey V. Dobrynin* Polymer Program, Institute of Materials

More information

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1 D E P A R T M E N T O F M A T E R I A L S S C I E N C E A N D E N G I N E E R I N G M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 3.014 Materials Laboratory Fall 2008 Amorphous Polymers:

More information

Charge Density Effects in Salt-Free Polyelectrolyte Solution Rheology

Charge Density Effects in Salt-Free Polyelectrolyte Solution Rheology Charge Density Effects in Salt-Free Polyelectrolyte Solution Rheology SHICHEN DOU, RALPH H. COLBY Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania

More information

Lecture 8. Polymers and Gels

Lecture 8. Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Many of physical properties of polymers have universal characteristic related to

More information

Hydrogels in Poor Solvents: A Molecular Dynamics Study

Hydrogels in Poor Solvents: A Molecular Dynamics Study Full Paper Hydrogels in Poor Solvents: A Molecular Dynamics Study Bernward A. F. Mann, a Kurt Kremer, Olaf Lenz, Christian Holm* The equilibrium swelling behavior of a crosslinked polyelectrolyte gel under

More information

Confinement of polymer chains and gels

Confinement of polymer chains and gels Confinement of polymer chains and gels Nefeli Georgoulia - Student number: 70732831 1 Introduction Confinement of polymer chains is significant in industrial as well as biological applications. For this

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

arxiv: v1 [cond-mat.soft] 31 Jan 2008

arxiv: v1 [cond-mat.soft] 31 Jan 2008 epl draft Short-fragment Na- dilute aqueous solutions: fundamental length scales and screening arxiv:0801.4885v1 [cond-mat.soft] 31 Jan 2008 S. Tomić 1 (a), S. Dolanski Babić 1 (b), T. Ivek 1, T. Vuletić

More information

Short-fragment Na-DNA dilute aqueous solutions: Fundamental length scales and screening

Short-fragment Na-DNA dilute aqueous solutions: Fundamental length scales and screening OFFPRINT Short-fragment Na-DNA dilute aqueous solutions: Fundamental length scales and screening S. Tomić, S. Dolanski Babić, T. Ivek, T. Vuletić, S. Krča, F. Livolant and R. Podgornik EPL, 81 (2008) 68003

More information

EFFECTS OF ADDED ELECTROLYTES ON THE STRUCTURE OF CHARGED POLYMERIC MICELLES

EFFECTS OF ADDED ELECTROLYTES ON THE STRUCTURE OF CHARGED POLYMERIC MICELLES Soft Materials, 3(2&3): 89 120, (2006) Copyright # Taylor & Francis Group, LLC ISSN 1539-445X print/1539-4468 online DOI: 10.1080/15394450600801228 EFFECTS OF DDED ELECTROLYTES ON THE STRUCTURE OF CHRGED

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Lecture 8 Polymers and Gels

Lecture 8 Polymers and Gels Lecture 8 Polymers and Gels Variety of polymeric materials Polymer molecule made by repeating of covalently joint units. Living polymers (not considered in this lecture) long-chain objects connected by

More information

Jean-François Dufrêche

Jean-François Dufrêche Jean-François Dufrêche! Entropy and Temperature A fifth force in the nature? E TS Rudolf Clausius (Koszalin, 1822 - Bonn, 1888) Entropy = η τροπη = the transformation Thermodynamics In mechanics Equilibrium

More information

II. Charged Polymer Systems Electrostatic and Conformational Descriptions ξ = l b b = e 2

II. Charged Polymer Systems Electrostatic and Conformational Descriptions ξ = l b b = e 2 II. Charged Polymer Systems Electrostatic and Conformational Descriptions Polyelectrolytes Electrostatic Description + + b + + + + + The simplest description of a polyelectrolyte imagines, as sketched

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

Simulation of Coarse-Grained Equilibrium Polymers

Simulation of Coarse-Grained Equilibrium Polymers Simulation of Coarse-Grained Equilibrium Polymers J. P. Wittmer, Institut Charles Sadron, CNRS, Strasbourg, France Collaboration with: M.E. Cates (Edinburgh), P. van der Schoot (Eindhoven) A. Milchev (Sofia),

More information

8.592J HST.452J: Statistical Physics in Biology

8.592J HST.452J: Statistical Physics in Biology Assignment # 4 8.592J HST.452J: Statistical Physics in Biology Coulomb Interactions 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions scales as Q 2 E c.

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I

Lecture 3. Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Lecture 3 Phenomena at Liquid-gas and Liquid-Liquid interfaces. I Adsorption at Gas-Liquid interface Measurements of equilibrium adsorption surface tension measurements (Wilhelmy plate) surface analysis

More information

Coil to Globule Transition: This follows Giant Molecules by Alexander Yu. Grosberg and Alexei R. Khokhlov (1997).

Coil to Globule Transition: This follows Giant Molecules by Alexander Yu. Grosberg and Alexei R. Khokhlov (1997). Coil to Globule Transition: This follows Giant Molecules by Alexander Yu. Grosberg and Alexei R. Khokhlov (1997). The Flory Krigbaum expression for the free energy of a self-avoiding chain is given by,

More information

Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes

Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes Macromolecules 006, 39, 9519-957 9519 Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes Andrey V. Dobrynin Polymer Program, Institute of Materials Science and Department of

More information

Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany

Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany 282 2 Electrochemical Double Layers 2.7 Polyelectrolytes in Solution and at Surfaces Roland R. Netz Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany David Andelman School of Physics and

More information

arxiv: v1 [physics.chem-ph] 11 Feb 2014

arxiv: v1 [physics.chem-ph] 11 Feb 2014 Scaling properties in the adsorption of ionic polymeric surfactants on generic nanoparticles of metallic oxides by mesoscopic simulation arxiv:1402.2661v1 [physics.chem-ph] 11 Feb 2014 E. Mayoral and E.

More information

Polymer Physics MSE 458 / CHEM 482 Spring 2018

Polymer Physics MSE 458 / CHEM 482 Spring 2018 Polymer Physics MSE 458 / CHEM 482 Spring 2018 Instructor: Prof. A.L. Ferguson 204 MSEB (217) 300-2354 alf@illinois.edu Grader: Class: Location: 4101 MSEB Time: 2:00 3:20 pm Days: T, Th Sections: A3 (CRN-38260)

More information

Structure and dynamics of hyaluronic acid semidilute solutions: A dielectric spectroscopy study

Structure and dynamics of hyaluronic acid semidilute solutions: A dielectric spectroscopy study PHYSICAL REVIEW E 82, 0922 20 Structure and dynamics of hyaluronic acid semidilute solutions: A dielectric spectroscopy study T. Vuletić,* S. Dolanski Babić, T. Ivek, D. Grgičin, and S. Tomić Institut

More information

Viscosity properties of gelatin in solutions of monovalent and divalent Salts

Viscosity properties of gelatin in solutions of monovalent and divalent Salts Korea-Australia Rheology Journal, Vol.25, No.4, pp.227-231 (November 2013) DOI: 10.1007/s13367-013-0023-8 www.springer.com/13367 Viscosity properties of gelatin in solutions of monovalent and divalent

More information

Chapter 2 Polymer Physics Concentrated Solutions and Melts

Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 2 Polymer Physics Concentrated Solutions and Melts Chapter 1 discussed the statistical thermodynamics of an isolated polymer chain in a solvent. The conformation of an isolated polymer coil in

More information

Polymer solutions and melts

Polymer solutions and melts Course M6 Lecture 9//004 (JAE) Course M6 Lecture 9//004 Polymer solutions and melts Scattering methods Effects of excluded volume and solvents Dr James Elliott Online teaching material reminder Overheads

More information

The viscosity-radius relationship from scaling arguments

The viscosity-radius relationship from scaling arguments The viscosity-radius relationship from scaling arguments D. E. Dunstan Department of Chemical and Biomolecular Engineering, University of Melbourne, VIC 3010, Australia. davided@unimelb.edu.au Abstract

More information

Surface Forces & Liquid Films (Answers to Exercise Problems)

Surface Forces & Liquid Films (Answers to Exercise Problems) //5 Surface Forces & Liquid Films (nswers to Exercise Problems) Wuge H. Briscoe wuge.briscoe@bris.ac.uk URL: wugebrisco7.wix.com/briscoegroup Exercise : van der Waals forces & liquid films When octane

More information

Material Chemistry KJM 3100/4100. Synthetic Polymers (e.g., Polystyrene, Poly(vinyl chloride), Poly(ethylene oxide))

Material Chemistry KJM 3100/4100. Synthetic Polymers (e.g., Polystyrene, Poly(vinyl chloride), Poly(ethylene oxide)) Material Chemistry KJM 3100/4100 Lecture 1. Soft Materials: Synthetic Polymers (e.g., Polystyrene, Poly(vinyl chloride), Poly(ethylene oxide)) Biopolymers (e.g., Cellulose derivatives, Polysaccharides,

More information

Tools to Characterize and Study Polymers.

Tools to Characterize and Study Polymers. Tools to Characterize and Study Polymers. Overview. 1. Osmometry.. Viscosity Measurements. 3. Elastic and Inelastic Light Scattering. 4. Gel-Permeation Chromatography. 5. Atomic Force Microscopy. 6. Computer

More information

Depletion forces induced by spherical depletion agents

Depletion forces induced by spherical depletion agents Depletion forces induced by spherical depletion agents Laurent Helden Jules Mikhael. Physikalisches Institut Universität Stuttgart Model system for hard core interactions accessible fortirm-measurements.

More information

Polyelectrolyte and polyampholyte. effects in synthetic and biological

Polyelectrolyte and polyampholyte. effects in synthetic and biological arxiv:1103.1908v1 [cond-mat.soft] 9 Mar 2011 Chapter 4 Polyelectrolyte and polyampholyte effects in synthetic and biological macromolecules Ngo Minh Toan, Bae-Yeun Ha and D. Thirumalai 1 2 CHAPTER 4. PE

More information

Electrostatic Interactions in Mixtures of Cationic and Anionic Biomolecules: Bulk Structures and Induced Surface Pattern Formation

Electrostatic Interactions in Mixtures of Cationic and Anionic Biomolecules: Bulk Structures and Induced Surface Pattern Formation Electrostatic Interactions in Mixtures of Cationic and Anionic Biomolecules: Bulk Structures and Induced Surface Pattern Formation Monica Olvera de la Cruz F. J. Solis, P. Gonzalez- Mozuleos (theory) E.

More information

Morphologies of Planar Polyelectrolyte Brushes in a Poor Solvent: Molecular Dynamics Simulations and Scaling Analysis

Morphologies of Planar Polyelectrolyte Brushes in a Poor Solvent: Molecular Dynamics Simulations and Scaling Analysis pubs.acs.org/langmuir 2009 American Chemical Society Morphologies of Planar Polyelectrolyte Brushes in a Poor Solvent: Molecular Dynamics Simulations and Scaling Analysis Jan-Michael Y. Carrillo and Andrey

More information

Lateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions

Lateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions pubs.acs.org/macromolecules Lateral Structure ormation in Polyelectrolyte Brushes Induced by Multivalent Ions Blair Brettmann, Philip Pincus, and Matthew Tirrell*,, The Institute for Molecular Engineering,

More information

Lecture 1: Macromolecular Engineering: Networks and Gels Introduction

Lecture 1: Macromolecular Engineering: Networks and Gels Introduction Prof. Tibbitt Lecture 1 etworks & Gels Lecture 1: Macromolecular Engineering: etworks and Gels Introduction 1 Suggested reading Prof. Mark W. Tibbitt ETH Zürich 20 Februar 2018 Polymer Physics Rubinstein

More information

Polymers Dynamics by Dielectric Spectroscopy

Polymers Dynamics by Dielectric Spectroscopy Polymers Dynamics by Dielectric Spectroscopy What s a polymer bulk? A condensed matter system where the structural units are macromolecules Polymers Shape of a Macromolecule in the Bulk Flory's prediction

More information

III. Polyelectrolyte Phenomena

III. Polyelectrolyte Phenomena III. Polyelectrolyte Phenomena (Dautzenberg et al., Polyelectrolytes: Formation, Characterization, and Application, Hanser, 1994; Radeva (ed.), Physical Chemistry of Polyelectrolytes, Surfactant Science

More information

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain Question 1 i To start, we recognize the following relationships on the stress and strain γ = γ k + γ 2 1 τ = G k γ k + μ k γ k = μ 2 γ 2 Therefore, the following relationships are also true γ = γ k + γ

More information

50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions M. Muthukumar*

50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions M. Muthukumar* This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Cite This: Macromolecules

More information

The Pennsylvania State University. The Graduate School SYNTHESIS AND CHARACTERIZATION OF ION CONTAINING POLYMERS. A Thesis in

The Pennsylvania State University. The Graduate School SYNTHESIS AND CHARACTERIZATION OF ION CONTAINING POLYMERS. A Thesis in The Pennsylvania State University The Graduate School Department of Materials Science and Engineering SYNTHESIS AND CHARACTERIZATION OF ION CONTAINING POLYMERS A Thesis in Materials Science and Engineering

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 3.0 The size of chains in good and poor solvent conditions

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 3.0 The size of chains in good and poor solvent conditions Chemistry C3102-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 3.0 The size of chains in good and poor solvent conditions Obviously, the ideal chain is a simple, first approximate

More information

A structural model for equilibrium swollen networks

A structural model for equilibrium swollen networks EUROPHYSICS LETTERS 1 September 2002 Europhys. Lett., 59 (5), pp. 714 720 (2002) A structural model for equilibrium swollen networks S. K. Sukumaran and G. Beaucage Department of Materials Science and

More information

Chapter 6: The Rouse Model. The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model:

Chapter 6: The Rouse Model. The Bead (friction factor) and Spring (Gaussian entropy) Molecular Model: G. R. Strobl, Chapter 6 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). R. B. Bird, R. C. Armstrong, O. Hassager, "Dynamics of Polymeric Liquids", Vol. 2, John Wiley and Sons (1977). M. Doi,

More information

Chapter 7. Entanglements

Chapter 7. Entanglements Chapter 7. Entanglements The upturn in zero shear rate viscosity versus molecular weight that is prominent on a log-log plot is attributed to the onset of entanglements between chains since it usually

More information

Interfacial forces and friction on the nanometer scale: A tutorial

Interfacial forces and friction on the nanometer scale: A tutorial Interfacial forces and friction on the nanometer scale: A tutorial M. Ruths Department of Chemistry University of Massachusetts Lowell Presented at the Nanotribology Tutorial/Panel Session, STLE/ASME International

More information

File ISM02. Dynamics of Soft Matter

File ISM02. Dynamics of Soft Matter File ISM02 Dynamics of Soft Matter 1 Modes of dynamics Quantum Dynamics t: fs-ps, x: 0.1 nm (seldom of importance for soft matter) Molecular Dynamics t: ps µs, x: 1 10 nm Brownian Dynamics t: ns>ps, x:

More information

Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolyte

Finite size and inner structure controlled by electrostatic screening in globular complexes of proteins and polyelectrolyte ARTICLE TYPE CREATED USING THE RSC ARTICLE TEMPLATE (VER. 3.0) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS www.rsc.org/xxxxxx XXXXXXXX 5 Finite size and inner structure controlled by electrostatic screening

More information

Polyampholyte solutions between charged surfaces: Debye Huckel theory

Polyampholyte solutions between charged surfaces: Debye Huckel theory JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 20 22 NOVEMBER 1998 Polyampholyte solutions between charged surfaces: Debye Huckel theory Andrey V. Dobrynin a) and Michael Rubinstein Department of Chemistry,

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Polymer Simulations with Pruned-Enriched Rosenbluth Method I

Polymer Simulations with Pruned-Enriched Rosenbluth Method I Polymer Simulations with Pruned-Enriched Rosenbluth Method I Hsiao-Ping Hsu Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany Polymer simulations with PERM I p. 1 Introduction Polymer:

More information

Research Article On the Importance of Purification of Sodium Polystyrene Sulfonate

Research Article On the Importance of Purification of Sodium Polystyrene Sulfonate International Scholarly Research Network ISRN Analytical Chemistry Volume 22, Article ID 5459, 5 pages doi:.542/22/5459 Research Article On the Importance of Purification of Sodium Polystyrene Sulfonate

More information

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci 3.014 Materials Laboratory Dec. 9 th Dec.14 th, 2004 Lab Week 4 Module α 3 Polymer Conformation Lab. Instructor : Francesco Stellacci OBJECTIVES 9 Review random walk model for polymer chains 9 Introduce

More information

Session : Cone-jet Electrosprays, or Colloid Thrusters

Session : Cone-jet Electrosprays, or Colloid Thrusters Session : Cone-jet Electrosprays, or Colloid Thrusters Once the electric traction overcomes surface tension, a Taylor Cone-like liquid structure could appear. It is clear that a Taylor Cone is a highly

More information

Dynamics and Structure of Biopolyelectrolytes Characterized by Dielectric Spectroscopy

Dynamics and Structure of Biopolyelectrolytes Characterized by Dielectric Spectroscopy Macromol. Symp. 2011, 305, 43 54 DOI:.02/masy.2000121 43 Dynamics and Structure of Biopolyelectrolytes Characterized by Dielectric Spectroscopy Silvia Tomić,* 1 Danijel Grgicčin, 1 Tomislav Ivek, 1 Sanja

More information

V = 2ze 2 n. . a. i=1

V = 2ze 2 n. . a. i=1 IITS: Statistical Physics in Biology Assignment # 3 KU Leuven 5/29/2013 Coulomb Interactions & Polymers 1. Flory Theory: The Coulomb energy of a ball of charge Q and dimension R in d spacial dimensions

More information

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 4.0 Polymers at interfaces

Chemistry C : Polymers Section. Dr. Edie Sevick, Research School of Chemistry, ANU. 4.0 Polymers at interfaces Chemistry C302-2006: Polymers Section Dr. Edie Sevick, Research School of Chemistry, ANU 4.0 Polymers at interfaces In this section, we begin to investigate the conformation at interfaces, including multiplechains

More information

Polyampholytes: From Single Chains to Solutions

Polyampholytes: From Single Chains to Solutions 8478 Macromolecules 1997, 30, 8478-8498 Polyampholytes: From Single Chains to Solutions R. Everaers,* A. Johner, and J.-F. Joanny Institut Charles Sadron (CNRS UPR022, 6 rue Boussingault, F-67083 Strasbourg

More information

Macromolecular Symposia. Dynamics and Structure of Biopolyelectrolytes characterized by Dielectric Spectroscopy

Macromolecular Symposia. Dynamics and Structure of Biopolyelectrolytes characterized by Dielectric Spectroscopy Macromolecular Symposia Dynamics and Structure of Biopolyelectrolytes characterized by Dielectric Spectroscopy Journal: Macromolecular Symposia Manuscript ID: masy.00.r Wiley - Manuscript type: Full Paper

More information

Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars

Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 4 JUNE 00 Counterion-induced entropic interactions in solutions of strongly stretched, osmotic polyelectrolyte stars A. Jusufi, C. N. Likos, a) and H. Löwen

More information

General Chemistry A

General Chemistry A General Chemistry 1140 - A May 5, 2005 (6 Pages, 48 Questions) ame 1. Which of the following properties is a general characteristic of solids? (A) Solids have a rigid shape and fixed volume (B) Solids

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Simulation of Nanostructure Formation in Rigid-Chain Polyelectrolyte Solutions

Simulation of Nanostructure Formation in Rigid-Chain Polyelectrolyte Solutions Simulation of Nanostructure Formation in Rigid-Chain Polyelectrolyte Solutions Dissertation Zur Erlangung des Doktorgrades Dr. Rer. Nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt

More information

Free energy, electrostatics, and the hydrophobic effect

Free energy, electrostatics, and the hydrophobic effect Protein Physics 2016 Lecture 3, January 26 Free energy, electrostatics, and the hydrophobic effect Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap Protein structure

More information

An Introduction to namic Light Scattering by Macromole cules

An Introduction to namic Light Scattering by Macromole cules An Introduction to namic Light Scattering by Macromole cules Kenneth S. Schmitz Department of Chemistry University of Missouri-Kansas Kansas City, Missouri City ACADEMIC PRESS, INC. Harcourt Brace Jovanovich,

More information

Polymers Physics. Michael Rubinstein University of North Carolina at Chapel Hill

Polymers Physics. Michael Rubinstein University of North Carolina at Chapel Hill Polymers Physics Michael uinstein University of orth Carolina at Chapel Hill Outline 1. eal Chains. Thermodynamics of Mitures. Polymer Solutions Summary of Ideal Chains Ideal chains: no interactions etween

More information

Introduction to polymer physics Lecture 1

Introduction to polymer physics Lecture 1 Introduction to polymer physics Lecture 1 Boulder Summer School July August 3, 2012 A.Grosberg New York University Lecture 1: Ideal chains Course outline: Ideal chains (Grosberg) Real chains (Rubinstein)

More information

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan

Origins of Mechanical and Rheological Properties of Polymer Nanocomposites. Venkat Ganesan Department of Chemical Engineering University of Texas@Austin Origins of Mechanical and Rheological Properties of Polymer Nanocomposites Venkat Ganesan $$$: NSF DMR, Welch Foundation Megha Surve, Victor

More information

Rouse chains, unentangled. entangled. Low Molecular Weight (M < M e ) chains shown moving past one another.

Rouse chains, unentangled. entangled. Low Molecular Weight (M < M e ) chains shown moving past one another. Physical Picture for Diffusion of Polymers Low Molecular Weight (M < M e ) chains shown moving past one another. Z X Y Rouse chains, unentangled Figure by MIT OCW. High Molecular weight (M > M e ) Entanglements

More information

IV. Ionomer Phenomena

IV. Ionomer Phenomena IV. Ionomer Phenomena (Eisenberg and Kim, Introduction to Ionomers, Wiley, 1998) The modulus, glass transition temperature, viscosity, melt strength, fatigue, and barrier properties are all strongly affected

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

Quiz 5 Morphology of Complex Materials

Quiz 5 Morphology of Complex Materials 20302 Quiz 5 Morphology of Complex Materials ) a) The density of a mass-fractal decreases with the size of the mass fractal. Calculate the mass density of a mass-fractal and show that it decreases with

More information

Molecular Theories of Linear Viscoelasticity THE ROUSE MODEL (P. 1)

Molecular Theories of Linear Viscoelasticity THE ROUSE MODEL (P. 1) THE ROUSE ODEL (P. 1) odel polymer dynamics by a system of N + 1 beads connected by N springs. Figure 1: apping the Polymer Chain onto a Chain of Beads Connected by Springs. ROUSE SCALING Recall that a

More information

Dielectric relaxation of DNA aqueous solutions

Dielectric relaxation of DNA aqueous solutions Dielectric relaxation of aqueous solutions S. Tomić, S. Dolanski Babić, and T. Vuletić Institut za fiziku, 00 Zagreb, Croatia S. Krča and D. Ivanković Institute Rudjer Bošković, 00 Zagreb, Croatia arxiv:cond-mat/0602255v6

More information

This page intentionally left blank

This page intentionally left blank POLYMER SOLUTIONS This page intentionally left blank POLYMER SOLUTIONS An Introduction to Physical Properties IWAO TERAOKA Polytechnic University Brooklyn, New York WILEY- INTERSCIENCE A JOHN WILEY & SONS,

More information

8.333: Statistical Mechanics I Problem Set # 5 Due: 11/22/13 Interacting particles & Quantum ensembles

8.333: Statistical Mechanics I Problem Set # 5 Due: 11/22/13 Interacting particles & Quantum ensembles 8.333: Statistical Mechanics I Problem Set # 5 Due: 11/22/13 Interacting particles & Quantum ensembles 1. Surfactant condensation: N surfactant molecules are added to the surface of water over an area

More information