COVALENT BONDING NOTES (Ch 7 Section 2)

Size: px
Start display at page:

Download "COVALENT BONDING NOTES (Ch 7 Section 2)"

Transcription

1 COVALENT BONDING NOTES (Ch 7 Section 2) I. Introduction: Remember from the last section we talked about how an ionic bond forms when one atom loses and electron and one atom gains an electron. Bonds can also form when atoms electrons. This type of bond is called a. A. Terms used when describing covalent molecules: Molecule: a group of atoms that are by covalent bonds. Molecular Substance: substances which are made of. Molecular Formula: formulas used to describe the make-up of a molecular compound. These formulas tell are in a single molecule of a compound. Examples: C 12 H 22 O 11 (sucrose or table sugar) You can also write empirical formulas for molecules. Remember the empirical formula represents the of atoms in a compound. Examples: Glucose C 6 H 12 O 6 (molecular formula) The empirical formula would be (divide all subscripts by 6) Lactic Acid C 3 H 6 O 3 ( molecular formula) The empirical formula would be (divide all subscripts by 3) From these two examples you can see that empirical formulas can be the for different compound. Molecular formulas can also sometimes be the for different compounds; therefore there is another type of formula, a. Structural Formula: shows the of atoms in a molecule. This formula shows which atoms are bonded and in what arrangement. The ones we will draw are called and are based on Lewis Dot Diagrams. The main difference is that multiple atoms are combined with dots showing electrons as well as electrons.

2 Drawing Lewis Structures: When drawing Lewis Structures we must remember the which tells us that atoms will share electrons so that each atoms in the compound has valence electrons. You must check each atom to make sure it has its eight electrons. Example: Draw the Lewis Structure for F draw the lewis dot diagram for each atom in the compound. 2. Put the atoms together in a way which allows both atom to have 8 electrons, including the shared electrons. When putting the pieces together, you can move the electrons around, as long as you keep at most 2 dots on a side (exception is multiple bonds). The electrons found between the atoms are called of electrons. The other pairs are called pairs. Example: Draw the Lewis Structure for NH draw the lewis dot diagrams for each atom. 2. Put atoms together. I can look at N and see that it has three spots which need another electron. I also have three H atoms which each need one more electron ( remember, H needs only 2 valence electrons to have a full set). Both of these examples showed only molecules with bonds which are bonds where share of electrons. ( in F 2, these is one single covalent bond between the two F atoms. In NH 3, there are three single covalent bonds found between the N and H atoms.

3 Double Covalent Bonds: when share of electrons. Example: CH 2 O (formaldehyde) 1. Draw lewis dot diagrams for atoms. 2. Put pieces together. Usually when C is in a comp[ound, it will be found as the central atom. So start by putting C in the center and put the other three pieces around C. The problem now is that C and O each still have an empty spot, where there is neither a shared nor an unshared pair. What happens is that O and C will shift these unshared electrons between the C and O (where there is already a pair). Now we will have two shared pairs and C and O will each have 8 valence electrons ( sharing 4, plus the other shared or unshared pairs), and each H has 2 valence electrons. Triple Covalent Bonds: when share of electrons. Example: C 2 H 2 (ethyne) 1. Draw lewis dot diagrams for atoms. 2. Put pieces together. Since this molecule has two C atoms, put them next together in the center. Put one H on each C.

4 The problem is that each C has two extra unshared electrons. These 4 electrons will shift between the two C atoms so now there will be three pairs between the C atoms which is a triple covalent bond. Each C has 8 valence electrons and each H has 2 valence electrons. Sometimes you will see dashes used instead of dots for the shared electron pairs. For now you will need to use the dots. There are also some elements which will be stable with less than 8 valnce electrons. B needs only 6 valence electrons ( as well as other is group 3A). II. Properties of Covalent Bonds: As we have said, a covalent bond results from the of electrons, but the atoms do not always share electrons fairly. Just like two children will rarely share a bag of M & M s equally, atoms also have trouble sharing electrons equally. The unequal sharing results from the difference between atoms. The atom with the electronegativity will pull harder on the shared electrons. Because of this, the atom pulling harder on the electrons will have a slight charge (since it has the negative electrons closer to its side of the molecule). The atom with the lower electronegativity will have a slight charge. This slight charge is indicated on the molecule using either an arrow or a lower case delta with a + or -. We will talk more about this later. When one atom is more elctronegative than another, this results in what we call a bond. When two atoms have similar electronegativities, each atom is pulling equally on the electrons and there is no + or region. This is called a bond. We can actually calculate the type bond which will result between two atoms by their electronegativities (see chart for electronegativities).

5 After finding the difference between the electronegativities, use this guide to determine the type of bond which will result. >= 2.0 bond covalent covalent covalent III. Naming Covalent Compounds: We will be looking at (or two part) compounds. Naming these compounds is similar to ionic compounds, but it uses prefixes to indicate the number of atoms in the molecule. Prefixes: Steps: 1. Name the first element in the compound, using a to indicate how many atoms. If there is only a single atom of the first element, use the prefix mono, just write the element name. 2. Name the second element using the and modify name ending with, like with ionic compounds. Example: CO 2 CCl 4

6 Exceptions: Sometimes we will shorten the prefix to make the name easier. For example, CO would be carbon monoxide (not carbon monooxide). Also sometimes use common names, like H 2 O is water not dihydrogen monoxide. Practice: IV. Writing Molecular Formulas for Covalent Compounds: To write the formula for a covalent compound, you just need to know the prefixes and rules we used to name covalent compounds. For example, carbon tetrafluoride would be Other Practice:

AIM: HOW TO FORM COVALENT BONDS

AIM: HOW TO FORM COVALENT BONDS AIM: HOW TO FORM COVALENT BONDS DO NOW: EXPLAIN THE DIFFERENCE BETWEEN IONIC BONDING AND COVALENT BONDS. INCLUDE HOW THE PROPERTIES DIFFER IN SALTS AND MOLECULES, AND WHICH ELEMENTS ARE INVOLVED IN EACH

More information

Thursday Agenda. Do Now Pull out your POGIL packets and a scrap sheet of paper. Review POGIL exercise Covalent Bonding notes.

Thursday Agenda. Do Now Pull out your POGIL packets and a scrap sheet of paper. Review POGIL exercise Covalent Bonding notes. Thursday 10.27.16 Do Now Pull out your POGIL packets and a scrap sheet of paper Agenda Review POGIL exercise Covalent Bonding notes LDD for compounds Homework Covalent Bonding Bonding Ionic Bonding - attracted

More information

Unit 7. Bonds and Naming

Unit 7. Bonds and Naming Unit 7 Bonds and Naming I. Ionic Bonds Positive ion is attracted to a negative ion; usually a metal & a nonmetal Ionic compound: a substance that has ionic bonds Cation: positive ion Anion: negative ion

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Introduction to Chemical Bonding Chemical Bond

Introduction to Chemical Bonding Chemical Bond Introduction to Chemical Bonding Chemical Bond Mutual attraction between the and electrons of different atoms that binds the atoms together. Ionic Bond o that results from the attraction between large

More information

COVALENT COMPOUNDS. Back to Lewis Dot Structures and Valence Electrons!

COVALENT COMPOUNDS. Back to Lewis Dot Structures and Valence Electrons! COVALENT COMPOUNDS Back to Lewis Dot Structures and Valence Electrons! Review of Lewis Dot Structures Electron Dot Structures contain: Element s Symbol: representing the atom s nucleus and inner electrons

More information

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together

Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together Chemical Bond An attraction between the nuclei and valence electrons of different atoms, which binds the atoms together When atoms form chemical bonds their valence electrons move around. This makes atoms

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / Lewis Structures & Resonance Structures Last chapter we studied ionic compounds. In ionic compounds electrons are gained or lost. In this chapter we are going to study covalent

More information

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds.

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds. Unit 3 - Part 1: Bonding Objective - to be able to understand and name the forces that create chemical bonds. Bonding: Key Terms to Know 1. Chemical formula 2. Molecular formula 3. Bond Energy 4. Bond

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

Unit 1, Lesson 07: Introduction to Covalent Bonding and the Octet Rule

Unit 1, Lesson 07: Introduction to Covalent Bonding and the Octet Rule Unit 1, Lesson 07: Introduction to Covalent Bonding and the Octet Rule non-metals (except Noble gases) have high electronegativity and high ionization energy. They have a strong pull on new electrons if

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Molecular Geometry & Polarity Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized

More information

Chapter 5 BONDING AND MOLECULES

Chapter 5 BONDING AND MOLECULES Chapter 5 BONDING AND MOLECULES How Do Atoms Combine to Form Compounds? (5.1) Chemical bonds: a force of attraction between atoms or ions. Octet Rule: atoms tend to gain, lose, or share electrons in order

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one share or more pairs of valence electrons between

More information

Chapter 8: Covalent Bonding. Chapter 8

Chapter 8: Covalent Bonding. Chapter 8 : Covalent Bonding Bonding Ionic Bonding - attracted to each other, but not fully committed Covalent Bonding - fully committed, and shares everything Two methods to gain or lose valence electrons: Transfer

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2 NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one or more pairs of valence electrons between the

More information

Bonding-when atoms get it on. Ionic Compounds 9/22/2013. Chemical Formulas and Bonding

Bonding-when atoms get it on. Ionic Compounds 9/22/2013. Chemical Formulas and Bonding Bonding-when atoms get it on Chemical Formulas and Bonding There are two types of bonds that you need to know. The first kind of bond is Ionic bond. Ionic Bond = when a positive ion is attracted to a negatively

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Lewis Structures. Lewis Structures. Lewis Structures. Lewis Structures. What pattern do you see? What pattern do you see?

Lewis Structures. Lewis Structures. Lewis Structures. Lewis Structures. What pattern do you see? What pattern do you see? Look at the following chart: IA IIA IIIA IVA VA VIA VIIA VIIIA 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 The Roman Numerals are the Group numbers from the Periodic Table, Beneath them is the outer

More information

For a quick and enjoyable introduction to Covalent vs Ionic Bonding watch this video:

For a quick and enjoyable introduction to Covalent vs Ionic Bonding watch this video: Covalent Bonding Covalent Bonding is the result of sharing of electron pairs between 2 nonmetal atoms Caution: sharing can be complicated Recall the Octet Rule: Atoms tend to gain, lose or share valence

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6.1: Introduction to Chemical Bonding Things That You Should Know What is a chemical bond? Why do atoms form chemical bonds? What is the difference between ionic and

More information

Chemical Bonds & Reactions

Chemical Bonds & Reactions Chemical Bonds & Reactions Chemical Bond A force of attraction that holds two atoms together Involves the valence electrons (they determine the chemical characteristics of the atom!) Valence Electrons

More information

Covalent Molecules and Lewis Structures Time required: two 50-minute periods

Covalent Molecules and Lewis Structures Time required: two 50-minute periods Mega Molecules, LLC!!!!! Name: Hands-On Science with Molecular Models!! Date:!!!!!!!! Hour: Introduction Covalent Molecules and Lewis Structures Time required: two 50-minute periods To study covalent molecules,

More information

6.1 Intro to Chemical Bonding Name:

6.1 Intro to Chemical Bonding Name: 6.1 Intro to Chemical Bonding Name: A. Chemical bond Favored by nature because: 3 main types of bonds 1. 2. 3. B. Ionic Bonds C. Covalent Bonds D. Metallic Bond E. Bond Determination RECALL: Electronegativity

More information

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

Name: Date: Period: Study Guide: 8th grade - Chapter 8 Test, Elements and Chemical Bonds

Name: Date: Period: Study Guide: 8th grade - Chapter 8 Test, Elements and Chemical Bonds Name: Date: Period: Study Guide: 8th grade - Chapter 8 Test, Elements and Chemical Bonds 1. Water is a covalent bond because. 2. Ionic bonds have the ability to. 3. When atoms gain or lose electrons, an

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

The attractions that hold together the atoms in water and carbon dioxide can not be explained by ionic bonding. Ionic bonding =

The attractions that hold together the atoms in water and carbon dioxide can not be explained by ionic bonding. Ionic bonding = In unit six, we discussed ionic compounds, which are generally crystalline solids with high melting points. Other compounds, however, have very different properties. Water is a liquid at room temperature.

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Chapter 8 The Concept of the Chemical Bond

Chapter 8 The Concept of the Chemical Bond Chapter 8 The Concept of the Chemical Bond Three basic types of bonds: Ionic - Electrostatic attraction between ions (NaCl) Metallic - Metal atoms bonded to each other Covalent - Sharing of electrons Ionic

More information

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound.

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound. Unit 11 Bonding INTRODUCTION Within molecules, there are forces that hold atoms together These forces are called bonds There are different types of bonds, or more correctly, variations Identifying the

More information

IONIC COVALENT BONDING WEBQUEST. IONIC BONDING WEBSITE 1:

IONIC COVALENT BONDING WEBQUEST. IONIC BONDING WEBSITE 1: IONIC COVALENT BONDING WEBQUEST IONIC BONDING WEBSITE 1: http://visionlearning.com/en/library/chemistry/1/chemical-bonding/55 1. Approximately how many elements are represented on the periodic table? 2.

More information

9. Apply the rules for naming and writing formulas for binary molecular compounds.

9. Apply the rules for naming and writing formulas for binary molecular compounds. Chemistry: Hood River Valley High School Unit 5 Note Pack and Goals Name: Period: Unit 5 Bonding, Chemical Names, and Formulas Unit Goals- As you work through this unit, you should be able to: 1. Understand

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Chemical Bonds & Reactions

Chemical Bonds & Reactions Chemical Bonds & Reactions Chemical Bonding Do you understand how it works? What do you think when I pull out a bag of candy? I want that candy cause I don t have any! Does everyone think the same thing?

More information

Life Science 1a Review Notes: Basic Topics in Chemistry

Life Science 1a Review Notes: Basic Topics in Chemistry Life Science 1a Review Notes: Basic Topics in Chemistry Atomic Structure and the Periodic Table The history of the discovery of the atom will be left for you to read in the textbook. What are atoms? What

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds Covalent Compounds Table of Contents Section 1 Covalent Bonds Section 2 Drawing and Naming Molecules Section 3 Molecular Shapes Section 1 Covalent Bonds Bellringer Make a list of the elements that form

More information

A. Lewis Dots and Valence electrons: Uses to represent

A. Lewis Dots and Valence electrons: Uses to represent Unit 5: Chemical bonding, names and formulas Ch. 7 & 8 7.1 Ions and Ionic Compounds I. Define Ion NAME Period: A. Lewis Dots and Valence electrons: Uses to represent B. Rule: Every atom wants a valence

More information

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds? I: Covalent Bonding How are atoms held together in compounds? IONIC or COVALENT bonds or forces For most atoms, a filled outer shell contains 8 electrons ----- an octet Atoms want to form octets when they

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Chemical Bonding and Molecular Models

Chemical Bonding and Molecular Models 25 Chemical Bonding and Molecular Models A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. Bonding involves only the valence (outer shell) electrons

More information

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) Se 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 December 10, 2014 Write the formulas for the following covalent compounds.

More information

Chapter 4 Molecular Compounds 4.11 Naming Binary Molecular Compounds (No Metals!)

Chapter 4 Molecular Compounds 4.11 Naming Binary Molecular Compounds (No Metals!) Chapter 4 Molecular Compounds 4.11 Naming Binary Molecular Compounds (No Metals!) When different elements combine, they form a binary compound. The electronegative element is written first. - A nonmetal

More information

Brainteaser 10/29/12. Answers

Brainteaser 10/29/12. Answers Brainteaser 10/29/12 Name these ionic compounds: NH 4 Br Fe(SO 4 ) Write the correct formula of these ionic compounds Manganese (II) perchlorate Sodium nitrate Cesium iodide Answers Name these ionic compounds:

More information

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles:

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles: Chemical Bonds What is this? Atom The basic unit of matter. Electrons: charge, mass? Negative charge(-), mass = 0 Made of subatomic particles: Protons: charge, mass? Positive charge (+), mass = 1 Neutrons:

More information

CHEMICAL BONDING. Valence Electrons. Chapter Ten

CHEMICAL BONDING. Valence Electrons. Chapter Ten CHEMICAL BONDING Chapter Ten Valence Electrons! The electrons occupying the outermost energy level of an atom are called the valence electrons; all other electrons are called the core electrons.! The valence

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons.

Atoms with a complete outer shell do not react with other atoms. The outer shell is called the valence shell. Its electrons are valence electrons. Bonding and the Outer Shell Use this table for reference: http://www.dreamwv.com/primer/page/s_pertab.html Atoms with incomplete shells react with others in a way that allows it to complete the outer shell.

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound

Copyright McGraw-Hill Education. Permission required for reproduction or display : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 1 8.1 Types of Bonds 8-3 8.1 Types of

More information

Chapter: Atomic Structure and Chemical Bonds

Chapter: Atomic Structure and Chemical Bonds Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why do atoms combine? Section 2: How Elements Bond Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why

More information

Elements and Chemical Bonds. Chapter 11

Elements and Chemical Bonds. Chapter 11 Elements and Chemical Bonds Chapter 11 Essential Question How does understanding periodic trends allow us to predict properties of different elements? Vocabulary Ionic bond Covalent bond Compounds, Chemical

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 12 CHEMICAL BONDING Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

IONIC AND COVALENT BONDS REVIEWED REDEFINING THE COVALENT BONDS. R. Ashby Duplication by permission only.

IONIC AND COVALENT BONDS REVIEWED REDEFINING THE COVALENT BONDS. R. Ashby Duplication by permission only. CH 11 TOPIC 23 PREDICTING BOND TYPES & POLARITY 1 You have mastered this topic when you can: 1) define IONIC, COVALENT and POLAR COVALENT BONDS. 2) use ELECTRONEGATIVITY values to predict the type of bond

More information

Often times we represent atoms and their electrons with Lewis Dot Structures.

Often times we represent atoms and their electrons with Lewis Dot Structures. They are trying to get their number of valence electrons to either 0 or 8. Group 1: 1 valence electron Group 2: 2 valence electrons Group 13: 3 valence electrons Group 14: 4 valence electrons Group 15:

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between.

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between. CHEMISTRY NOTES 6.1 COVALENT BONDS Objectives Explain the role and location of electrons in a covalent bond. Describe the change in energy and stability that takes place as a covalent bond forms. Distinguish

More information

CHM Simple Lewis Structures (r14) Charles Taylor 1/5

CHM Simple Lewis Structures (r14) Charles Taylor 1/5 CHM 110 - Simple Lewis Structures (r14) - 2014 Charles Taylor 1/5 Introduction In the previous note pack, you learned some about Lewis dot structures, which represent chemical compounds by showing how

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

!"##$%&'()$*+,%'-./'

!##$%&'()$*+,%'-./' !"##$%&()$*+,%-./ 0,1,%$234%5$1673896:2:567$2(),#6;+%& 6!#6+)! CHAPTER 3-4: Concepts to Know! The difference between ionic and covalent bonds! Define cations and anions! Predict cation/anion

More information

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie Intramolecular Bonding Chapters 4, 12 Chemistry Mr. McKenzie What determines the type of intramolecular bond? An intramolecular bond is any force that holds two atoms together to form a compound; 3 types

More information

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High Topic 4: Chemical Bonds IB Chemistry SL Ms. Kiely Coral Gables Senior High 5th PERIOD Bell Ringer - review of 4.1 Quiz (revised) 1. What is the formula of a compound formed by magnesium and phosphate?

More information

Physical Science 1 Chapter 12 THE MODERN ATOM

Physical Science 1 Chapter 12 THE MODERN ATOM THE MODERN ATOM The modern model of the atom describes the electron cloud consisting of separate energy levels, each containing a fixed number of electrons. The energy levels increase in energy based on

More information

Chemical Bonds & Lattice Energy

Chemical Bonds & Lattice Energy Chemical Bonds & Chemical bonds form when individual atoms become attached to other atoms. This happens when the electrons in each atom s outer energy level become filled. This is known as a stable octet.

More information

Chemical bonding is the combining of elements to form new substances.

Chemical bonding is the combining of elements to form new substances. Name Covalent Bonding and Nomenclature: Unit Objective Study Guide Class Period Date Due 1. Define chemical bonding. What is chemical bonding? Chemical bonding is the combining of elements to form new

More information

Unit 3 Ray Tedder s Chemistry I Test Prep Guide page 1

Unit 3 Ray Tedder s Chemistry I Test Prep Guide page 1 Unit 3 Ray Tedder s Chemistry I Test Prep Guide page 1 Bonding Unit 3: Chemistry I In this unit all students must be able to Understand that the structure of molecules is the result of nonmetals sharing

More information

Experiment Seven - Molecular Geometry

Experiment Seven - Molecular Geometry Experiment Seven - Geometry Introduction Although it has recently become possible to image molecules and even atoms using a highresolution microscope, our understanding of the molecular world allows us

More information

Thursday, April 3, Molecular Compounds

Thursday, April 3, Molecular Compounds Molecular Compounds Review: Classification of Matter Definition of compound: pure substance two or more elements chemically combined Types of Compounds Compounds Ionic Molecular Examples of Molecular Compounds

More information

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie Intramolecular Bonding Chapters 4, 12 Chemistry Mr. McKenzie What determines the type of intramolecular bond? An intramolecular bond is any force that holds two atoms together to form a compound; 3 types

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Chapter 4: Forces Between Particles

Chapter 4: Forces Between Particles Chapter 4: Forces Between Particles NOBLE GAS CONFIGURATIONS An electronic configuration that is characterized by two electrons in the valence shell of helium and eight electrons in the valence shell of

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Notes: Covalent Compounds

Notes: Covalent Compounds Notes: Covalent Compounds There are two ways that elements want to be like the nearest noble gas: 1) Gain or lose electrons to form an ionic compound. 2) Share electrons with other elements to form covalent

More information

Chapter: Atomic Structure and Chemical Bonds

Chapter: Atomic Structure and Chemical Bonds Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why do atoms combine? Section 2: How Elements Bond Table of Contents Chapter: Atomic Structure and Chemical Bonds Section 1: Why

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 2. Particle Charge Mass Location

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 2. Particle Charge Mass Location 1) Fill in the names beside the symbols of the following elements commonly found in living matter: a. Ca b. P c. K d. S e. Na f. Cl g. Mg 2) The different between the mass number and the atomic number

More information

Chapter 1 Section 1- Pages 4-7: Electrons and Chemical Bonding COMBINING ATOMS THROUGH CHEMICAL BONDING

Chapter 1 Section 1- Pages 4-7: Electrons and Chemical Bonding COMBINING ATOMS THROUGH CHEMICAL BONDING Study Guide Chapter 1 and 2 Interactions of Matter Chapter 1 Section 1- Pages 4-7: Electrons and Chemical Bonding COMBINING ATOMS THROUGH CHEMICAL BONDING 1. Which of these substances is a combination

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Chapter #3 Chemical Bonding

Chapter #3 Chemical Bonding Chapter #3 Chemical Bonding Valence Electrons electrons in the last energy level of an atom. Lewis dot symbols Consists of the symbol of an element and one dot for each valence electron in the atom of

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Chemical Bonding. 8.1 Types of Bonds. 8.1 Types of Bonds. : A force that holds atoms together in a molecule or compound

Chemical Bonding. 8.1 Types of Bonds. 8.1 Types of Bonds. : A force that holds atoms together in a molecule or compound : Chemical Bonding 8-1 8.1 Types of Bonds : A force that holds atoms together in a molecule or compound Two types of chemical bonds Ionic Bonds Covalent Bonds 8-2 8.1 Types of Bonds 8-3 1 8.1 Types of

More information

Chemical Bonds. A chemical bond is the force of attraction holding atoms together due to the transfer or sharing of valence electrons between them.

Chemical Bonds. A chemical bond is the force of attraction holding atoms together due to the transfer or sharing of valence electrons between them. Chemical Bonds A chemical bond is the force of attraction holding atoms together due to the transfer or sharing of valence electrons between them. Atoms will either gain, lose or share electrons in order

More information

Warm Up 9: Definitions LT I can explain how covalent molecules create attractive forces between molecules.

Warm Up 9: Definitions LT I can explain how covalent molecules create attractive forces between molecules. Warm Up 9: Definitions 11-3-17 LT I can explain how covalent molecules create attractive forces between molecules. Q1. Draw the Lewis dot structure, label oxidation number and structural formula for: O

More information

SCH 3UI Unit 3 Outline: Chemical Bonding

SCH 3UI Unit 3 Outline: Chemical Bonding SC 3UI Unit 3 Outline: Chemical Bonding Lesson Topics Covered omework Questions and ssignments review Note: Electron Configurations, Rutherford- Bohr and Electron Dot Diagrams (EDDs) 1 Note: Chemical Bonding

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Ch 6.1 Chemical Bonding

Ch 6.1 Chemical Bonding Ch 6.1 Chemical Bonding Chemical Bonds the attractive forces that hold different atoms or ions together (Intramolecular or electrostatic Forces Why Bond? Atoms bond to achieve a full outer energy level

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information