to all three phosphate groups P, P Q, P of ATP, Mg +, Ca +, p

Size: px
Start display at page:

Download "to all three phosphate groups P, P Q, P of ATP, Mg +, Ca +, p"

Transcription

1 Volume 4 Number 2 February 1977 Nucleic Acids Research A 31 P - NMR study of the interaction of M^2" 1 " ions with nucleoside diphosphates S.Tran-Dinh and J.M.Neumann Departement de Biologie - Centre d'etudes Nucleaires de Saclay - BP N Gif-sur-Yvette, France Received 29 November 1976 ABSTRACT : The interaction of Mg with nucleoside disphosphates : ADP, GDP, CDP and UDP has been studied by phosphorus magnetic resonance spectroscopy in aqueous solution. The results show that these four nucleotides behave similarly, the Mg2+ ion binds to the a but not to the B phosphate moiety. The strength of the interaction of Mg2 + ions with nucleoside diphosphates is weaker than with nucleoside triphosphates. The association of Mg2 + on the phosphate chain is stronger in a neutral than in an acid medium. INTRODUCTION : The nucleoside di- and triphosphates play an important role in the process of energy transfer in living organisms. Generally they participate as substrates in numerous enzymatic reactions in vivo and in vitro. Without doubt, divalent ions, in particular Mg^+, exert as activators, a large and often determining influence on the kinetics of these reactions. Indeed, in the last fifteen years, the interaction between divalent ions and nucleoside di- and triphosphates, in particular the adenosine di- (ADP) and tri- (ATP) phosphates ( 1 ~ 9 ), has been studied extensively. COHN and HUGUES (1) concluded from a 31 P - and 1 H - NMR study that in aqueous solution, Mn +, Co +, Ni, bind to all three phosphate groups P, P Q, P of ATP, Mg +, Ca +, p?+ ' 2+?+ 7+ Zn to Pg and P only. Concerning ADP, Mg, Mn, Cu interact, according to these authors, with both the a and g phosphate groups. However, TRAN-DINH et a_l (10) showed in a recent 31 P-NMR study that at both neutral and acid ph, Mg binds not to the Y but to the 3 phosphate group of ATP, GTP, CTP and UTP. The chemical shift variation of P, observed by COHN and HUGUES 2 + in the absence and presence of Mg ions, is simply due to the pk variation of this group (Py) by about 1.5 units (10). It is Information Retrieval Limited 1 Falconberg Court London W1V5FG England

2 now of interest to reinvestigate the interaction of the Mg ion on the phosphate chain of nucleoside diphosphates while taking into consideration a possible pk change of the P_ when adding divallent ions. In this paper, we should like to report a quantitative phosphorus magnetic resonance study of Mg complexing with four nucleoside diphosphates ADP, GDP, CDP and UDP. The results yield information on the nature of the complex, the Mg binding site and the conformation of the phosphate chain in the presence of Mg + ions. MATERIALS AND METHODS : The nucleoside diphosphates ADP, GDP, CDP, UDP of highest grade were purchased from P.L. Laboratories and magnesium chloride (reagent grade MgCl 2.6H 2 O crystals) from MERCK. Divalent ion impurities were systematically removed by shaking D 2 0 solutions of nucleotide with chelex 100. The ph was adjusted with concentrated solutions of DC1 or NaOD and measured with a Tacussel ph meter. The pd was taken to be equal to ph + 04 (11). The 31 P-NMR spectra were recorded at 40.5 MHz on a Varian XL100-12WG spectrometer at about 30 c C. Proton noise decoupling was obtained with a varian gyrocode spin decoupler. An acquisition time of 3 sec was used throughout this work (resolution a 0.3 Hz). For all the measurements, D 2 O used as solvent provided the deuterium lock signal. The 31 p chemical shifts of nucleotides (in ppm) are measured from a 854 H PO RESULTS AND DISCUSSION : constant J external reference. The chemical shifts of phosphorus and p - p coupling Q of the four nucleotides ADP, GDP, CDP, UDP, were P 2 + determined as a function of the Mg concentration at constant nucleoside diphosphate concentration (0.05M) and constant pd between 8.2 and 9.2. In general, when the ratio R = ^Mg + J / [nucleotide] varies from 0 to 1, the chemical shift variation observed is comparatively large for P and small for Pg. When R = 1-2, virtually no change in chemical shift or coupling constant J o was observed. In the absence of Mg, the four a ~p 2 + nucleotides studied behave similarly. In the presence of Mg, GDP is less soluble than its analogues but the chemical shifts 388

3 and coupling constant J a _ 6 are not very different. Fig. 1 shows the phosphorus spectra (with proton noise decoupling) of ADP in the absence and presence of a stoichiometric quantity for Mg ions at neutral ph. When R varies from 0 to 1, P of the four nucleotides studied is shifted towards lowfields by ppm, while J a _ g decreases from 22.2 ± 0.2 Hz to 17.3 ± 0.5 Hz. If the J o values observed are plotted against P a chemical shift, with different value of R = [Mg j/[nucleotide], a straight line is obtained (Fig.2). This means that under such conditions the variations of 6 and of J are con- 2+ a a " B comitant and result, in fact, from Mg binding on the phosphate chain. [ADP] = 0.05 M [Mg 2 '] = 0.05 M pd = 8.6 [ADP] «0.05 M pd > ( ppm) Figure 1 : 'P - NMR spectra of ADP (0.05M.pD - 8.6,30*C) in the absence and presence of Mg ions (0.05M). 399

4 5a(ppm) Ji 11/ 1 i i _ ADP (0.05M, pd = 8' R= [Mg *J [ADP] / R= / / Figure 2 : Chemical shift of P versus J a a a-b i i Ja-/3(Hz) The four nucleoside diphosphates were also titrated in the absence and presence of Mg +. Fig. 3 shows the typical titration curves of ADP and Table I sums up the phosphorus chemical shifts and 31 P - 31 P coupling constants of the four nucleoside diphosphates investigated. In the absence and presence of Mg ions, the 6 g variation is found to be comparable before (pd =8.5) and after (pd = 4) protonation of the 6 phosphate group, only the pk values differing by 1.4 units as in the case of nucleoside triphosphates (10). This explains why COHN and HUGUES (1) observed a difference of 2.7 and 2.3 ppm for P g at ph = 5.3 et 6.8 (pd = 5.7 and 7.2) respectively. The variation of J o as a function of pd for the typical a-p 2 + case of CDP in the absence and presence of Mg ions is shown group in Fig.4. is protonated, It is interesting in the absence to note of that Mg when the B phosphate about 2Hz, while in the presence of Mg -B decreases by ob i ncreases by a- bout 1 Hz. Similar results have been obtained et al (12) for ADP in the absence of Mg +. Moreover by ELLENBERGER it may be seen in table I that in an acid medium (ph = 4) the respective 400

5 filppm) 13. ADPI0.05M) -go P.. w J i 4 1 K n pd Figure 3 : P titration curvea of ADP in the absence and presence of Mg TABLE I 31 P chenical shifts (in ppn upfield from 851 H,PO. as external T 1 T standard) and -"p--' p coupling constants (in Hz) of nucleoside diphosphates in the absence and presence of Mg (R - CMg + D / CNucleotide]) at neutral and acid ph. NEUTRAL ph ACID ph R pd J a 4 B VB pd S a 4 B V 6 ADP (0.05 i) *Mg2* AS, AJ GDP (0.05 u) * Mg 2 ' A4, AJ SS S1C CDP (0.05 u) * Mg 2 * A«, AJ S UDP (0.05 p) * Mg 2 * 46, AJ

6 values of P Q, P g chemical shifts and the J a _ 6 coupling constant are very similar in the absence and presence of Mg ions. From these different results we conclude that : - At neutral ph, the Mg + ion binds not to the 6 but only to the a phosphate group. The interaction arises from 1 : 1 metal nucleotide complexing. - After protonation of the 6 phosphate group (ph=4) the association of the Mg ion on the phosphate chain, if it does exist, is very weak. - In addition the fact that the variation of 6 is much larger than that of 6 suggests that the Mg ion binds not to the two oxygen atoms of the phosphate chain (R-O-P Pg) but to the other two oxygen atoms of the a phosphate group, otherwise the P. chemical shift variation, which is very sensitive to environment, should be equal at least to half A6. - Finally some remarks are called for : 1) Although the terminal phosphate group of nucleoside di - and tri-phosphates has two negative charges at neutral ph, it is surprising to note that the Mg ion binds not to this group but to the preceding one (P g for nucleoside triphosphates Jo-/3(Hz) Figure 4 : ph dependence of the P - P coupling constant J _ of CDP (0.05M) in the absence and presence of Mg ions (0.05M). 402

7 and P a for nucleoside diphosphates). 2) In the absence and presence of Mg ions the J _ variation of nucleoside diphosphates (A J = 4.7 Hz) is comparable with that of J _ and J g for nucleoside triphosphates (10) (AJ =4.0 Hz) while A& a (= 0,5-0.7 ppm) of the former category of compounds is three or four times smaller than A6 g (= ppm) of the latter. Thus it seems likely that in the presence of Mg ions, the conformation of the phosphate chain (R P Pg) is similar for both families of compounds while the polarisation for the binding site (P for diphosphates and P g for triphosphates) is quite different. This suggests that the strength of the interaction of Mg ions with nucleoside diphosphates is 'weaker than with nucleoside triphosphates. On may imagine that in the case of the nucleoside diphosphates, one water molecule br: bridges the a phosphate moiety and the Mg ion. REFERENCES. 1) COHN, M. and HUGUES, T.R. (1962) J. Biol. chem. 237, ) STERNLICHT, H., JONES, D.E. and KUSTIN, K. (1968) J. Araer. Chem. Soc. 90, ) GLASSMAN, T.A., COOPER, C, HARRISON, L.W., and SWIFT, T.J., (1971) Biochemistry 10, ) KUNTZ, G.P.P., GLASSRSN, T.A., COOPER, C, and SWIFT, T.J., (1972) Biochemistry 11, ) LAM, Y.F., KUNTZ, G.PTP., and KOTOWYCZ, G., (1974) J. Amer. Chem. Soc. 6, ) HEYDE, M.E., and RIMAI, L., (1971) Biochemistry 10, ) SIGEL, H., (1975) J. Amer. Chem. Soc. 97, ) BANYASZ, J.L., and STUEHR, J.E., (1973"T~J. Amer. Chem. Soc. 95, ) TA~NSWELL, P., THORNTON, J.M., KORDA, A.V., and WILLIAMS, R.J.P., (1975) Eur. J. Biochem. 57, ) TRAN-DINH, S., ROUX, M. and ELLENlERGER, M., (1975) Nucleic Acids Res. 2, ) GLASOE, P.K. and LONG, F.A., (1960) J. Phys. Chem. 64, ) ELLENBERGER, M., BREHAMET, L., VILLEMIN, M. and TOMA, F., (1970) F.E.B.S. Letters 8,

8 404

31p-NMR Spectra of AP4

31p-NMR Spectra of AP4 Res Exp Med (1985) 185 : 145-150 Research in Experimental Medicine Springer-Verlag 1984 31p-NMR Spectra of AP4 W. Klaus, P. R6sch, and R. S. Goody Max-Planck-Institut for medizinische Forschung, Abt. Biophysik,

More information

A Simple Approach for Discrimination of Nucleotides Based on A Water-Soluble Polythiophene Derivative

A Simple Approach for Discrimination of Nucleotides Based on A Water-Soluble Polythiophene Derivative Supplementary information for A Simple Approach for Discrimination of Nucleotides Based on A Water-Soluble Polythiophene Derivative Zhiyi Yao, Xueling Feng, Wenjing Hong, Chun Li* and Gaoquan Shi* Department

More information

NMR = Nuclear Magnetic Resonance

NMR = Nuclear Magnetic Resonance NMR = Nuclear Magnetic Resonance NMR spectroscopy is the most powerful technique available to organic chemists for determining molecular structures. Looks at nuclei with odd mass numbers or odd number

More information

Bioenergetics, or biochemical thermodynamics, is the study of the energy changes accompanying biochemical reactions. Biologic systems are essentially

Bioenergetics, or biochemical thermodynamics, is the study of the energy changes accompanying biochemical reactions. Biologic systems are essentially Bioenergetics Bioenergetics, or biochemical thermodynamics, is the study of the energy changes accompanying biochemical reactions. Biologic systems are essentially isothermic and use chemical energy to

More information

Chemistry 605 (Reich)

Chemistry 605 (Reich) Chemistry 605 (Reich) THIRD HOUR EXAM Wed. May 15, 2013 Question/Points R-12L /20 R-12M /15 R-12N /25 R-12O /10 R-12P /20 Total /90 Name If you place answers anywhere else except in the spaces provided,

More information

A Proton Nuclear-Magnetic-Resonance Study of Self-stacking in Purine and Pyrimidine Nucleosides and Nucleotides

A Proton Nuclear-Magnetic-Resonance Study of Self-stacking in Purine and Pyrimidine Nucleosides and Nucleotides Eur. J. Biochem. 88, 149 154 (1978) A Proton NuclearMagneticResonance Study of Selfstacking in Purine and Pyrimidine Nucleosides and Nucleotides Paul R. MITCHELL and Helmut SIGEL Institute of lnorganic

More information

Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition

Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition Supplementary information Zn(II) and Cd(II) based complexes for probing the enzymatic hydrolysis of Na 4 P 2 O 7 by Alkaline phosphatase in physiological condition Priyadip Das, Sourish Bhattacharya, Sandhya

More information

Hillel K. Brandes and David S. Bell Supelco, Liquid Separations, Bellefonte PA T GIH

Hillel K. Brandes and David S. Bell Supelco, Liquid Separations, Bellefonte PA T GIH Hillel K. Brandes and David S. Bell Supelco, Liquid Separations, Bellefonte PA 16823 T403163 GIH Abstract 2 ucleotides are ubiquitous in cells, with major functions including the control of cellular energetics,

More information

Analyze Nucleotides, Nucleosides, Purine, and Pyrimidine Bases Simultaneously with the Ultra IBD Column

Analyze Nucleotides, Nucleosides, Purine, and Pyrimidine Bases Simultaneously with the Ultra IBD Column pharmaceutical #9 Applications note Analyze Nucleotides, Nucleosides, Purine, and Pyrimidine Bases Simultaneously with the Ultra IBD Column Mixtures of nucleotides, nucleosides, and their respective purine

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

1. Sodium-Nucleotide Complexes

1. Sodium-Nucleotide Complexes Investigating the Interaction of Metal Ions with Nucleotides and Macromolecular RNA Using Solid- State 23 Na, 25 Mg and 59 Co NMR for Direct Observation of the Metals 1. Sodium-Nucleotide Complexes Metals

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 10. Biochemical Transformations II. Phosphoryl transfer and the kinetics and thermodynamics of energy currency in the cell: ATP and GTP.

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Magnetic Nuclei other than 1 H

Magnetic Nuclei other than 1 H Magnetic Nuclei other than 1 H 2 H (Deuterium): I = 1 H,D-Exchange might be used to simplify 1 H-NMR spectra since H-D couplings are generally small; - - - -O- - - -D 2 -O- triplet of triplets slightly

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

More information

Supporting Information

Supporting Information Supporting Information Highly Selective Colorimetric Chemosensor for Co 2+ Debabrata Maity and T. Govindaraju* Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced

More information

X-ray Examination of the Complex Adenosine, Guanosine and Cytidine with UO 2 2+ Ions

X-ray Examination of the Complex Adenosine, Guanosine and Cytidine with UO 2 2+ Ions J. Chem. Chem. Eng. 9 (2015) 408-414 doi: 10.17265/1934-7375/2015.06.004 D DAVID PUBLISHING X-ray Examination of the Complex Adenosine, Guanosine and Cytidine with UO 2 Ions Aibassov Yerkin Zhakenovich

More information

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination Chung-Ming Sun Department of Applied Chemistry National Chiao Tung University Hualien 300, Taiwan Introduction NMR (Nuclear Magnetic

More information

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t HINDERED ROTATION IN N-METHYLFORMAMIDE. A PEPTIDE-BOND MODEL SYSTEM.*t Robert C. Neuman, Jr., Violet Jonas, Karen Anderson, and Ronald Barry Department of Chemistry University of California Riverside,

More information

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M19_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. 15 N NMR spectroscopy 3. 19 F NMR spectroscopy

More information

'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems

'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems Gen. Physiol. Biophys. (1987), 6, 609 615 609 'H NMR Techniques in Studies of Transport of Paramagnetic Ions in Multicellular Systems S. RATKOVIČ 1 AND G. BAČIČ 2 1 Department of Technology and Chemical

More information

NUCLEOSIDES AND NUCLEOTIDES OF THE COLD ACID-SOLUBLE PORTION OF THE BLOOD OF STEERS 1

NUCLEOSIDES AND NUCLEOTIDES OF THE COLD ACID-SOLUBLE PORTION OF THE BLOOD OF STEERS 1 NUCLEOSIDES AND NUCLEOTIDES OF THE COLD ACID-SOLUBLE PORTION OF THE BLOOD OF STEERS 1 Robert C. Smith and Connie M. Stricker Auburn University 2, Auburn, Alabama 36830 SUMMARY The ultraviolet absorption

More information

Biology Slide 1 of 20

Biology Slide 1 of 20 Biology 1 of 20 8-1 Energy and Life 2 of 20 8-1 Energy and Life Autotrophs and Heterotrophs Where do plants get the energy they need to produce food? Living things need energy to survive. This energy comes

More information

USE OF NMR RELAXATION MEASUREMENTS TO DERIVE THE BINDING SITE OF PLASTOCYANIN IN COMPLEXES WITH CYTOCHROME-F AND C

USE OF NMR RELAXATION MEASUREMENTS TO DERIVE THE BINDING SITE OF PLASTOCYANIN IN COMPLEXES WITH CYTOCHROME-F AND C Vol. 14, No. 1-4 159 USE OF NMR RELAXATION MEASUREMENTS TO DERIVE THE BINDING SITE OF PLASTOCYANIN IN COMPLEXES WITH CYTOCHROME-F AND C Sandeep Modi 1, Ewen McLaughlin 1, Derek S. Bendall 1, S. He 2 and

More information

Nuclear Magnetic Resonance Spectrum of Deamino-Lysine-Vasopressin in Aqueous Solution and Its Structural Implications

Nuclear Magnetic Resonance Spectrum of Deamino-Lysine-Vasopressin in Aqueous Solution and Its Structural Implications Proc. Nat. Acad. Sci. USA Vol. 69, No. 11, pp. 3322-3326, November 1972 Nuclear Magnetic Resonance Spectrum of Deamino-Lysine-Vasopressin in Aqueous Solution and Its Structural Implications P. H. VON DREELE,

More information

Principles of Biological Chemistry

Principles of Biological Chemistry Principles of Biological Chemistry This document reviews some principles of chemistry that you will be using in Cell Biology. References at the end indicate which edition the figures are from so be aware

More information

BIOLOGY 101. CHAPTER 4: Carbon and the Molecular Diversity of Life: Carbon: the Backbone of Life

BIOLOGY 101. CHAPTER 4: Carbon and the Molecular Diversity of Life: Carbon: the Backbone of Life BIOLOGY 101 CHAPTER 4: Carbon and the Molecular Diversity of Life: CONCEPTS: 4.1 Organic chemistry is the study of carbon compounds 4.2 Carbon atoms can form diverse molecules by bonding to four other

More information

Understanding ATP Activity

Understanding ATP Activity Name: Period: Understanding ATP Activity Background & Objectives: Energy within a cell exists in the form of chemical energy. A source of this chemical energy is a compound called adenosine triphosphate

More information

Ultra-Sensitive ph Control of Supramolecular Polymers and Hydrogels: pk a Matching of Biomimetic Monomers

Ultra-Sensitive ph Control of Supramolecular Polymers and Hydrogels: pk a Matching of Biomimetic Monomers Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information for Ultra-Sensitive ph Control of Supramolecular Polymers and

More information

Supporting Text Z = 2Γ 2+ + Γ + Γ [1]

Supporting Text Z = 2Γ 2+ + Γ + Γ [1] Supporting Text RNA folding experiments are typically carried out in a solution containing a mixture of monovalent and divalent ions, usually MgCl 2 and NaCl or KCl. All three species of ions, Mg, M +

More information

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems Agilent s new solution for obtaining routinely quantitative results from NMR measurements. 1 Magnetic Resonance Systems The Scope of Analytical Chemistry Analytical Chemistry is the study of the separation,

More information

Carbamoyl Phosphate Synthetase from Escherichia coli Does Not Catalyze the Dehydration of Bicarbonate to Carbon Dioxide 1

Carbamoyl Phosphate Synthetase from Escherichia coli Does Not Catalyze the Dehydration of Bicarbonate to Carbon Dioxide 1 BIOORGANIC CHEMISTRY 26, 255 268 (1998) ARTICLE NO. BH981103 Carbamoyl Phosphate Synthetase from Escherichia coli Does Not Catalyze the Dehydration of Bicarbonate to Carbon Dioxide 1 Grant E. Gibson, Leisha

More information

2017 Ebneshahidi. Dr. Ali Ebneshahidi

2017 Ebneshahidi. Dr. Ali Ebneshahidi Dr. Ali Ebneshahidi A. Introduction Chemistry science that deals with the composition of substances and the changes that take place in their composition. Organic chemistry chemistry that deals with organic

More information

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP)

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP) This journal is The Royal Society of Chemistry 213 Supplementary Information for An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP) Lei Shi, Ping Hu, Yanliang Ren and

More information

Proton NMR Studies of Supported Titanium Catalyst for Quantification of Incorporated Internal Electron Donor

Proton NMR Studies of Supported Titanium Catalyst for Quantification of Incorporated Internal Electron Donor Eurasian J. Anal. Chem. 4(3): 270-275, 2009 Proton NMR Studies of Supported Titanium Catalyst for Quantification of Incorporated Internal Electron Donor Mukesh K. Yadav and Virendra K. Gupta 1 Catalyst

More information

4 Examples of enzymes

4 Examples of enzymes Catalysis 1 4 Examples of enzymes Adding water to a substrate: Serine proteases. Carbonic anhydrase. Restrictions Endonuclease. Transfer of a Phosphoryl group from ATP to a nucleotide. Nucleoside monophosphate

More information

Glucose Anomers. Conformational Analysis by NMR

Glucose Anomers. Conformational Analysis by NMR Glucose Anomers Conformational Analysis by NMR Glucose in solution remains mostly in the cyclic pyranose form in two conformational anomers shown in the figure above. These two forms interconvert via an

More information

NMR NEWS June To find tutorials, links and more, visit our website

NMR NEWS June To find tutorials, links and more, visit our website Department of Chemistry NMR Facilities Director: Dr. Carlos A. Steren NMR NEWS June 2014 To find tutorials, links and more, visit our website www.chem.utk.edu/facilities/nmr Computers and software updates

More information

Chem 460 Laboratory Fall 2008 Experiment 3: Investigating Fumarase: ph Profile, Stereospecificity and Thermodynamics of Reaction

Chem 460 Laboratory Fall 2008 Experiment 3: Investigating Fumarase: ph Profile, Stereospecificity and Thermodynamics of Reaction 1 Chem 460 Laboratory Fall 2008 Experiment 3: Investigating Fumarase: ph Profile, Stereospecificity and Thermodynamics of Reaction Before Lab Week 1 -- ph Profile for Fumarase Read Box 11-1 (page 323)

More information

Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible

Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information for the article Spin mixing at level anti-crossings

More information

The Nature of Organic Materials in Intimate Associations with the Soil Clay Fraction

The Nature of Organic Materials in Intimate Associations with the Soil Clay Fraction The Nature of Organic Materials in Intimate Associations with the Soil Clay Fraction Michael H.B. Hayes 1, Andre J. Simpson 2, Guixue Song 1 1 Chemical and Environmental Sciences University of Limerick,

More information

Prerequisites Properties of allosteric enzymes. Basic mechanisms involving regulation of metabolic pathways.

Prerequisites Properties of allosteric enzymes. Basic mechanisms involving regulation of metabolic pathways. Case 16 Allosteric Regulation of ATCase Focus concept An enzyme involved in nucleotide synthesis is subject to regulation by a variety of combinations of nucleotides. Prerequisites Properties of allosteric

More information

Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPcS

Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPcS Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPcS Michael Spoerner 1, Andrea Nuehs 1, Christian Herrmann 2, Guido Steiner 1 and Hans Robert

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supporting Information Kinetic Resolution of Constitutional Isomers Controlled by Selective Protection inside a Supramolecular Nanocapsule Simin Liu, Haiying Gan, Andrew T. Hermann,

More information

ph = - log [H3O+] Example: ph 7 = - log [ 1 x 10-7] [H3O+] = mole/liter units ph values are unitless

ph = - log [H3O+] Example: ph 7 = - log [ 1 x 10-7] [H3O+] = mole/liter units ph values are unitless E4 Acids, Bases, and Salts Oct. 1517 and Oct. 2728* Session One of two session lab Complete Parts 1 and 2 in lab. Part 1. Structure and AcidBase Properties Q. Are properties of a compound predictable from

More information

Chemical Exchange and Ligand Binding

Chemical Exchange and Ligand Binding Chemical Exchange and Ligand Binding NMR time scale Fast exchange for binding constants Slow exchange for tight binding Single vs. multiple binding mode Calcium binding process of calcium binding proteins

More information

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!!

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!! CHEM 345 Problem Set 4 Key Grignard (RMgX) Problem Set You will be using Grignard reagents throughout this course to make carbon-carbon bonds. To use them effectively, it will require some knowledge from

More information

Chapter 15 Lecture Outline

Chapter 15 Lecture Outline Organic Chemistry, First Edition Janice Gorzynski Smith University of Hawaii Chapter 5 Lecture Outline Introduction to NMR Two common types of NMR spectroscopy are used to characterize organic structure:

More information

Module 13: Chemical Shift and Its Measurement

Module 13: Chemical Shift and Its Measurement Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy CHE_P12_M13_e-Text TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Shielding and deshielding

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction:

Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear Magnetic Resonance (NMR) Spectroscopy Introduction: Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. Like IR spectroscopy,

More information

Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments

Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments Supporting Information for Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments Donghoon Shin, Jong-Won Lee, Yesol Woo, Minjun Cha, Yongjae Lee, Seen Ae Chae, Sun Ha Kim,

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (II) AFB QO I 2007/08 2 1 Adaptado de Organic Chemistry, 6th Edition; L.G. Wade,

More information

The Use of NMR Spectroscopy

The Use of NMR Spectroscopy Spektroskopi Molekul Organik (SMO): Nuclear Magnetic Resonance (NMR) Spectroscopy All is adopted from McMurry s Organic Chemistry The Use of NMR Spectroscopy Used to determine relative location of atoms

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Chapter 15: Enyzmatic Catalysis

Chapter 15: Enyzmatic Catalysis Chapter 15: Enyzmatic Catalysis Voet & Voet: Pages 496-508 Slide 1 Catalytic Mechanisms Catalysis is a process that increases the rate at which a reaction approaches equilibrium Rate enhancement depends

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Table of Contents S1 1. General materials and methods S2 2. Syntheses of {Pd 84 } and {Pd 17 } S3-S4 3. MS studies of {Pd 84 }, {Pd 17 } and the two-component reactions S5-S6 4.

More information

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1 Chapter 9 Nuclear Magnetic Resonance Ch. 9-1 1. Introduction Classic methods for organic structure determination Boiling point Refractive index Solubility tests Functional group tests Derivative preparation

More information

Copy into Note Packet and Return to Teacher

Copy into Note Packet and Return to Teacher Copy into Note Packet and Return to Teacher Section 1: Nature of Matter Objectives: Differentiate between atoms and elements. Analyze how compounds are formed. Distinguish between covalent bonds, hydrogen

More information

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. Chapter 13: Nuclear magnetic resonance spectroscopy NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. 13.2 The nature of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Multicomponent Hydrogels from Enantiomeric amino acid derivatives: Helical Nanofibers, Handedness and Self-Sorting Bimalendu Adhikari, Jayanta Nanda and Arindam Banerjee*

More information

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W CHEM 2423. Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W Short Answer 1. For a nucleus to exhibit the nuclear magnetic resonance phenomenon, it must be magnetic. Magnetic nuclei include: a. all

More information

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) Spectroscopy Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD) A)From a structure: B)From a molecular formula, C c H h N n O o X x, Formula for saturated hydrocarbons: Subtract the

More information

Advanced Cell Biology. Lecture 8

Advanced Cell Biology. Lecture 8 Advanced Cell Biology. Lecture 8 Alexey Shipunov Minot State University January 28, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 8 January 28, 2013 1 / 33 Outline Questions and answers Energy and

More information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

Chapter 14. Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 14 Nuclear Magnetic Resonance Spectroscopy Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Laboratory Guide to Biochemistry, Enzymology, and Protein Physical Chemistry. A Study of Aspartate Transcarbamylase

Laboratory Guide to Biochemistry, Enzymology, and Protein Physical Chemistry. A Study of Aspartate Transcarbamylase Laboratory Guide to Biochemistry, Enzymology, and Protein Physical Chemistry A Study of Aspartate Transcarbamylase Laboratory Guide to Biochemistry, Enzymology, and Protein Physical Chemistry A Study of

More information

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift Dr. Sapna Gupta Introduction NMR is the most powerful tool available for organic structure determination.

More information

Mukogawa Women s University Nishinomiya, Hyogo , Japan 2 Hyogo Nutrition Vocational College, Nishinomiya, Hyogo , Japan

Mukogawa Women s University Nishinomiya, Hyogo , Japan 2 Hyogo Nutrition Vocational College, Nishinomiya, Hyogo , Japan J. Biol. Macromol., 4(1) 13-22 (2004) Article Stimulating Effect of High Concentration of Calcium Ion on the Polymerization of the Tubulin-Colchicine Complex. Relationship between Magnesium and Calcium

More information

Supporting Information

Supporting Information Supporting Information One Pot Synthesis of 1,3- Bis(phosphinomethyl)arene PCP/PNP Pincer Ligands and Their Nickel Complexes Wei-Chun Shih and Oleg V. Ozerov* Department of Chemistry, Texas A&M University,

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 Synthesis of substrates 2,2-[ 2 H 2 ]-Decanoyl-CoA (3) was synthesised using an extension of the method previously described by us. 1 Thus, diethyl malonate 7 (Scheme 1) was deprotonated and the resulting

More information

Materials. The three sulfonated calixarene host molecules, p- molecules, 5,6-dihydropyrazion[1,2,3,4-lmn][1,10]phenanthroline-4,7-diium (DP 2+ ) 4

Materials. The three sulfonated calixarene host molecules, p- molecules, 5,6-dihydropyrazion[1,2,3,4-lmn][1,10]phenanthroline-4,7-diium (DP 2+ ) 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Experimental Section Materials. The three sulfonated calixarene host molecules, p- sulfonatocalix[4]arene

More information

First Prebiotic Generation of a Ribonucleotide from Adenine, D Ribose and Trimetaphosphate

First Prebiotic Generation of a Ribonucleotide from Adenine, D Ribose and Trimetaphosphate Supplementary information First Prebiotic Generation of a Ribonucleotide from Adenine, D Ribose and Trimetaphosphate Graziano Baccolini, a * Carla Boga, a and Gabriele Micheletti a a* Department of Organic

More information

A pentose bisphosphate pathway for nucleoside degradation in Archaea. Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto , Japan.

A pentose bisphosphate pathway for nucleoside degradation in Archaea. Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto , Japan. SUPPLEMENTARY INFORMATION A pentose bisphosphate pathway for nucleoside degradation in Archaea Riku Aono 1,, Takaaki Sato 1,, Tadayuki Imanaka, and Haruyuki Atomi 1, * 7 8 9 10 11 1 Department of Synthetic

More information

E4 Acids, Bases, and Salts

E4 Acids, Bases, and Salts E4 Acids, Bases, and Salts Session One of two session lab Complete Parts 1 and 2 in lab. If time allows, start or complete Part 3. Acids and Bases Q. Are acid-base properties of substances predictable

More information

Convenient Synthesis of Nucleoside 5 -Triphosphates for RNA Transcription. Supplemental Materials

Convenient Synthesis of Nucleoside 5 -Triphosphates for RNA Transcription. Supplemental Materials Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2010 Convenient Synthesis of ucleoside 5 -Triphosphates for RA Transcription Julianne Caton-Williams,

More information

K ex. Conformational equilibrium. equilibrium K B

K ex. Conformational equilibrium. equilibrium K B Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any yprocess in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Review of Lecture 1. Be able to identify the cell components for bacterial, animal, and plant cells and know their functions Properties of water

Review of Lecture 1. Be able to identify the cell components for bacterial, animal, and plant cells and know their functions Properties of water Review of Lecture 1 Be able to identify the cell components for bacterial, animal, and plant cells and know their functions Properties of water Bulk properties Atomic properties Weak acids and bases Acid

More information

Lecture 12. Metalloproteins - II

Lecture 12. Metalloproteins - II Lecture 12 Metalloproteins - II Metalloenzymes Metalloproteins with one labile coordination site around the metal centre are known as metalloenzyme. As with all enzymes, the shape of the active site is

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

Chem Identifying point groups

Chem Identifying point groups Special cases: Perfect tetrahedral (T d ) e.g. P 4, C 4 Perfect octahedral ( h ) e.g. S 6, [B 6 6 ] -2 Perfect icosahedral (I h ) e.g. [B 12 12 ] -2, C 60 Low symmetry groups: nly* an improper axis (S

More information

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name:

Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: Chemistry 31A Autumn 2004 Professors Chidsey & Zare Exam 2 Name: SUNetID: @stanford.edu Honor Code Observed: (Signature) Circle your section 9:00am 10:00am 2:15pm 3:15pm 7:00pm 8:00pm S02 OC103 S04 OC103

More information

From Gen. Chem.: 1. WHAT is an ACID? 2. WHAT is a BASE?

From Gen. Chem.: 1. WHAT is an ACID? 2. WHAT is a BASE? Expt. 1: Biological Buffers Goals: 1. Learn how to use the Henderson-Hasselbach (H-H) eqn. 2. Learn how to prepare buffers. 3. Learn something about physical properties of biological buffers which are

More information

Asian Journal of Chemistry; Vol. 25, No. 4 (2013),

Asian Journal of Chemistry; Vol. 25, No. 4 (2013), Asian Journal of Chemistry; Vol. 25, No. 4 (213), 214-218 http://dx.doi.org/1.14233/ajchem.213.13346 Observation of Triplet Traces Obtained with Inversion Recovery Method in Both Residual Water- and H

More information

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts What do I need to know about electrochemistry? Electrochemistry Learning Outcomes: Candidates should be able to: a) Describe

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

The Chemical Level of Organization

The Chemical Level of Organization PowerPoint Lecture Slides prepared by Meg Flemming Austin Community College C H A P T E R 2 The Chemical Level of Organization Chapter 2 Learning Outcomes 2-1 2-2 2-3 2-4 Describe an atom and how atomic

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information A new chemo-enzymatic route to chiral 2-hydroxy-4-phenylbutyrates by combining lactonase-mediated resolution with hydrogenation over Pd/C Bing Chen, a Hai-Feng Yin,

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Features: Used to identify products of reactions Also gives information about chemical environment, connectivity and bonding of nuclei Requirements: Pure or mostly

More information

BMB Lecture 2

BMB Lecture 2 BMB 178 2018 Lecture 2 How to map transition state Covalent Catalysis How to Map Transition States 1. Linear Free Energy Relationship 2. Kinetic Isotope Effects 3. Transition state analogues Linear Free

More information

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Supporting Information for Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols Michael R. Kember, Charlotte K. Williams* Department

More information

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018 Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018 These problems are given to help you review concepts you may have forgotten. Old tests, quizzes and review sheets are also important in studying. Chapter

More information

Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex

Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex Spectroscopy 17 (2003) 39 44 39 IOS Press Solid state 13 Cand 1 H MAS NMR investigations of C 60 (ferrocene-d 10 ) 2 complex E. Shabanova, K. Schaumburg and F.S. Kamounah CISMI, Department of Chemistry,

More information

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Prof. Jason D. Kahn Your Signature: Exams written in pencil or erasable ink will not be re-graded under any circumstances. 1 Biochemistry 461, Section I February 27, 1997 Exam #1 Prof. Jason D. Kahn Your Printed ame: Your SS#: Your Signature: You have 80 minutes for this exam. Exams written in pencil or erasable ink will not

More information

ESI for. A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition. Nicholas G. White & Paul D.

ESI for. A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition. Nicholas G. White & Paul D. ESI for A rotaxane host system containing integrated triazole C H hydrogen bond donors for anion recognition Nicholas G. White & Paul D. Beer* Contents 1 Details of instrumentation 2 NMR Spectra of new

More information

AD-A

AD-A AD-A262 979 13C NMR SPECTRA OF ALLOSTERIC EFFECTORS OF HEMOGLOBIN Stanislaw Ostrowskil) Thomas G. Burke, and Waldemar Priebe The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030,

More information

Enzymatic Assay of GUANYLATE KINASE (EC )

Enzymatic Assay of GUANYLATE KINASE (EC ) PRINCIPLE: GMP + ATP Guanylate Kinase > GDP + ADP ADP + PEP Pyruvate Kinase > ATP + Pyruvate GDP + PEP Pyruvate Kinase > GTP + Pyruvate 2 Pyruvate + 2 ß-NADH Lactic Dehydrogenase > 2 Lactate + 2 ß-NAD

More information

The Fic protein Doc uses an inverted substrate to phosphorylate and. inactivate EF-Tu

The Fic protein Doc uses an inverted substrate to phosphorylate and. inactivate EF-Tu The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu Daniel Castro-Roa 1, Abel Garcia-Pino 2,3 *, Steven De Gieter 2,3, Nico A.J. van Nuland 2,3, Remy Loris 2,3, Nikolay

More information

the Recognition of Hydrogenpyrophosphate in

the Recognition of Hydrogenpyrophosphate in Biscarbazolylureas as Selective Receptors for the Recognition of Hydrogenpyrophosphate in Aqueous Media Guzmán Sánchez, Arturo Espinosa*, David Curiel, Alberto Tárraga and Pedro Molina* SUPPLEMENTARY INFRMATIN

More information

NMR Spectroscopy. Chapter 19

NMR Spectroscopy. Chapter 19 NMR Spectroscopy Chapter 19 Nuclear Magnetic Resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbon-hydrogen frameworks within molecules.

More information

File: {ELS_REV}Cavanagh X/Revises/Prelims.3d Creator: / Date/Time: /9:29pm Page: 1/26 PREFACE

File: {ELS_REV}Cavanagh X/Revises/Prelims.3d Creator: / Date/Time: /9:29pm Page: 1/26 PREFACE PREFACE The second edition of Protein NMR Spectroscopy: Principles and Practice reflects the continued rapid pace of development of biomolecular NMR spectroscopy since the original publication in 1996.

More information