Curium and the Transactinides

Size: px
Start display at page:

Download "Curium and the Transactinides"

Transcription

1 Curium and the Transactinides Dr Clint Sharrad Centre for Radiochemistry Research School of Chemical Engineering and Analytical Science Research Centre for Radwaste and Decommissioning Dalton Nuclear Institute The University of Manchester

2

3 Marie Curie No involvement in the discovery of curium or the transactinides.

4 Who first discovered Cm? Glenn T. Albert Ralph A. Seaborg Ghiorso James Nobel prize for Chemistry 1951 Discovered 10 elements Discovered 12 elements Expert in developing radiation detection instrumentation

5 G. T. Seaborg, R. A. James and A. Ghiorso, National Nuclear Energy Series, 1949, 14B,

6 Was anyone else involved in the discovery of curium??? Stanley G. Thompson Submitted Ph.D. thesis entitled Nuclear and Chemical Properties of Americium and Curium in 1948

7 Why Curium? G. T. Seaborg, R. A. James and A. Ghiorso, National Nuclear Energy Series, 1949, 14B,

8 Why Curium? Vasili Samarsky- Bykhovets Johan Gadolin Lanthanides Actinides Transactinides Marie & Pierre Curie Albert Einstein Enrico Fermi Dmitri Mendelev Alfred Noble Ernest Lawrence Cn Copernicium (285) Ernest Rutherford Glenn T. Seaborg Niels Bohr Lise Meitner Wilhelm Roentgen Nicolaus Copernicus

9 1850 Timeline 1859 Pierre Curie born 1867 Maria Skłodowska born 1891 Maria Skłodowskamoves to Paris to study chemistry at the Sarbonne 1895 Maria Skłodowska marries Pierre Curie 1898 Curie s publish discovery of Po and Ra 1903 Curie s awarded Nobel prize for physics (with Becquerel) 1906 Death of Pierre Curie 1911 Marie Curie awarded Nobel prize for chemistry 1912 Glenn Seaborg born 1915 Albert Ghiorso born Death of Marie Curie; Seaborg awarded B.Sc Seaborg awarded PhD; Ghiorso awarded B.Sc Start of WWII 1940 Discovery of plutonium (Seaborg et al.) 1942 Manhattan project established 1944 Discovery of curium and americium 1949 Discovery of berkelium; 1950 Discovery of californium 1951 Seaborg awarded Nobel prize for chemistry (with McMillan)

10 Any link between Marie Curie and Seaborg et al.?

11 How was Cm first made? 60 inch cyclotron at Berkeley 239 Pu + He Cm + n 239 Pu + He Cm + 3n Pu(NO 3 ) 4 solutions allowed to evaporate onto a grooved Pt plate. Mild ignition formed PuO 2. Predicted redox properties of Cm were exploited to separate from Pu. Proof of the presence of Cm by analysing α particle energies. Also made by neutron irradiation of Am samples.

12 Where is Cm found?

13 Curium facts Curium isotopes from 238 Cm to 251 Cm. Most common isotopes are 244 Cm, 246 Cm and 248 Cm. Typically formed by neutron capture. Most Cm isotopes have a higher specific activity than 239 Pu. Predominantly α emitters. Chemical properties are similar to the lanthanides.

14 D. L. Clark, The Chemical Complexities of Plutonium, Los Alamos Science, 2000, 26. Redox properties Curium vs Light actinides

15 Curium redox properties Cm(III) oxidation state is very stable. - as predicted by Seaborg. - due to half-filled (5f 7 ) configuration. Redox potentials for the Cm(IV/III) couple are not known but oxidation to Cm 4+ only occurs with the strongest oxidising agents and conditions. Curium spectroscopy Solutions of Cm(III) are normally colourless but concentrated solutions can have a green appearance. Weak f-f transitions observed. Strong flourescence at ~600 nm after appropriate excitation. - Used to probe Cm solution speciation. W. T. Carnall, P. R. Fields, D. C. Stewart and T. K. Keenan, J. Inorg. Nucl.Chem., 1958, 6, 213.

16 Curium separations Most common methods for actinide separations are by ionexchange or solvent extraction processes. How was Cm separated from Puwhen it was first made? 1) Bombarded PuO 2 dissolved in H 2 SO 4 and heated to dryness. 2) Residue dissolved in HNO 3 with any remaining insoluble oxide dissolved by heating with a small amount of HF. 3) Pu oxidised to Pu(VI) in HNO 3 (or Cr 2 O 2-7 ). 4) Addition of fluoride precipitates insoluble CmF 3 (and LnF 3 present as fission products) while the Pu remains soluble. 5) The fluoride precipitate redissolved and procedure repeated until all Pu removed. Higher FP concentration in Cm fraction accepted, as the αactivity from Cm could still be examined.

17 Methods for the extraction of U and Pu from spent nuclear fuel have been established (e.g. PUREX). Separation usually achieved by exploiting the different chemical properties of light actinides vs FPs. Why separate curium? Research interests. Waste management timeframes for storage/disposal. Separate other nuclides: - Americium used in smoke detectors. -Lanthanides potential worldwide shortages.

18 How is curium separated from lanthanides? With great difficulty!! General process: - transfer of a charged metal complex (or ion) from a polar aqueous phase to an immiscible phase (different solvation properties). Dictated by: - phase transfer properties of the species present. - the relative affinity of the counterphasefor the species to be separated. For curium/lanthanide separations need to exploit the subtle differences in ionic radii/covalency/polarisability. Main difference between ion-exchange and solvent extraction methods: - Solvation of a hydrophobic complex in solvent extraction. -Resin acts as a second aqueous phase in ion exchange.

19 Example separation processes Most processes attempt to separate both Am and Cm from lanthanides. TRAMEX Tertiary Amine Extraction n-octyl and n-decyl tertiary amines in diethylbenzene Various mixtures used in all 3 extraction steps. Separation of Cm from Am achieved by exploiting accessible higher oxidation states of Am. Developed at Oak Ridge National Lab (1961). Pilot plant purified ~1.5 kg of 244 Cm. W. E. Prout, H. E. Henry, H. P. Holcomb, W. J. Jenkins, DP-1302, 1972.

20 TALSPEAK Trivalent Actinide-Lanthanide Separation by Phosporous Reagent Extraction from Aqueous Complexes O O O O HO OH N N N DTPA OH OH OHO O HO OH Lactic acid B. Weaver and F. Kappelmann, F., ORNL- 3559, HDEHP DTPA is known as a hold back reagent as the complexes it forms with Cm and Am stay in the aqueous phase. The lanthanides are extracted into the organic phase.

21 Where to from here for curium/lanthanide separations? Better understanding of the chemistry that underpins separations processes is required. Molecular speciation, binding affinities, mass transfer kinetics, role of phase transfer catalysts, solubilities, ph dependency, ionic strength etc. TALSPEAK O O HO OH O OH N N N O OH OHO O OH What is the role of lactate? Buffer, Complexant or both? HO Using soft donor ligands for preferential binding of trivalent actinides over lanthanides exploits the slightly greater covalency exhibited in actinide binding vs lanthanides. continuing development of novel extractants.

22 Uses for Curium Space batteries in satellites or crewless space probes Cm produces 3 W/g of heat energy. Used to characterise lunar soil.

23 Transactinides Cn Copernicium (285) Most of the transactinides can be formed using 248 Cm. Obtained by hot fusion reactions with 18 O, 19 F, 22 Ne, 26 Mg, 34 S and 48 Ca projectiles. Need particle accelerators that provide heavy ion beam currents of ~ particles per second. Particle accelerator at Dubna laboratories.

24 Properties of the Transactinides All transactinide isotopes are radioactive. Half-lives less than 3 min; typically between 30 s and 0.5 ms. Some isotopes can only be formed a single atom at a time. Providing proof of existence is extremely difficult and has, at times, been controversial. Single atom chemistry Initial characterisation usually by measuring radioactive decay. - many transactinidesconfirmed by detecting αemission to known α-decaying daughters and granddaughters. Single atom experiments need to be repeated many times to get statistically valid results. Development of chemical procedures with fast process times and reproducible (usually automated) methods. Gas phase - thermochromatographic separations. - Aqueous chemistry rapid HPLC and liquid-liquid extractions.

25 Why?

26 We must not forget that when radium was discovered no one knew that it would prove useful in hospitals. The work was one of pure science. And this is a proof that scientific work must not be considered from the point of view of the direct usefulness of it. It must be done for itself, for the beauty of science, and then there is always the chance that a scientific discovery may become, like radium, a benefit for humanity.

Plutonium chemistry and other actinides in aqueous solutions Part 1 Actinide Familly

Plutonium chemistry and other actinides in aqueous solutions Part 1 Actinide Familly Plutonium chemistry and other actinides in aqueous solutions Part 1 Actinide Familly Ph. MOISY CEA/DEN/DMRC ; Marcoule philippe.moisy@cea.fr PAGE 2 Separation Sciences for Plutonium GT Seaborg: 6 teams

More information

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste

Science and Technology. Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste Science and Technology Solutions, Separation Techniques, and the PUREX Process for Reprocessing Nuclear Waste Spent Fuel Rods General Accounting Office Fission products that emit beta and gamma radiation

More information

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Name No-Calculators Allowed /65 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Lecture 1: RDCH 710 Introduction

Lecture 1: RDCH 710 Introduction Lecture 1: RDCH 710 Introduction Class organization Outcomes Grading Natural actinide species Th U Transuranic synthesis Lecture notes based on LANL radiochemistry course 1-1 Course overview The unique

More information

Actinides (f-block) 1-1

Actinides (f-block) 1-1 Actinides (f-block) Actinide Chemistry Speciation Role of Oxidation State Complexation Specific Actinides U, Pu, Am Example: Am and Cm transport at Oak Ridge Use of laboratory data to determine chemical

More information

Nobel prizes in nuclear and reactor physics. Szabolcs Czifrus Institute of Nuclear Techniques BME

Nobel prizes in nuclear and reactor physics. Szabolcs Czifrus Institute of Nuclear Techniques BME Nobel prizes in nuclear and reactor physics Szabolcs Czifrus Institute of Nuclear Techniques BME Nuclear physics in everyday life Electricity: production in nuclear power plants Sterilization by the application

More information

Introduction to Marie Curie. Paul Thompson, Vice-Chair Radiochemistry Group, Royal Society of Chemistry

Introduction to Marie Curie. Paul Thompson, Vice-Chair Radiochemistry Group, Royal Society of Chemistry Introduction to Marie Curie Paul Thompson, Vice-Chair Radiochemistry Group, Royal Society of Chemistry Purpose of Meeting Welcome to this meeting on behalf of the Radiochemistry Group RSC. The meeting

More information

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below: ATOMIC STRUCTURE An atom is composed of a positive nucleus surrounded by negatively charged electrons. The nucleus is composed of protons and neutrons. The protons and neutrons in a nucleus are referred

More information

A nuclear power plant is infinitely safer than eating, because 300 people choke to death on food every year. Dixy Lee Ray, former chair of the US

A nuclear power plant is infinitely safer than eating, because 300 people choke to death on food every year. Dixy Lee Ray, former chair of the US A nuclear power plant is infinitely safer than eating, because 300 people choke to death on food every year. Dixy Lee Ray, former chair of the US Atomic Energy Commission, 1977 Nuclear Chemistry Production

More information

12) The Chemistry of Transuranium elements (1)

12) The Chemistry of Transuranium elements (1) 12 The Chemistry of Transuranium elements (1 Neptunium - first transuranium element which was discovered in 1940 (McMillan, Abelson - bombardment of uranium with thermal neutrons: - long-lived isotope:

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia Nuclear Physics A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions Updated: 0Feb07 Rough draft A. Nuclear Structure. Parts of Atom. Parts of

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A.

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A. AstroPhysics Notes Tom Lehrer: Elements Dr. Bill Pezzaglia Nuclear Physics Updated: 0Feb Rough draft Nuclear Physics A. Nuclear Structure A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions. Parts

More information

Chapter 13. Solution Dynamics

Chapter 13. Solution Dynamics Chapter 13 Solution Dynamics Chapter Map Where we re headed: Separation of U, Pu, and Fission Products An organic solvent composed of 30% tributyl phosphate (TBP) in a hydrocarbon solvent, such as kerosene,

More information

The Search for Heavy Elements

The Search for Heavy Elements Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 8 The Search for Heavy Elements When a nucleus captures a neutron, it often

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc.

Fiesta Ware. Nuclear Chemistry. 2009, Prentice-Hall, Inc. Fiesta Ware 2009, Prentice-Hall, Inc. Measuring Radioactivity One can use a device like this Geiger counter to measure the amount of activity present in a radioactive sample. The ionizing radiation creates

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 1 - Course Organiser: Deputy: Dr E. Rizvi (room 401) Dr A. Bevan My Office hours 1000 1100 Thursday 3 lecture slots per week Thursday 0900-1000

More information

Marie Curie: Radium, Polonium

Marie Curie: Radium, Polonium 1 Chapter 5 Radium and Polonium Photographer unkown; copyright expired This photo of Marie and Pierre Curie was taken as they worked in their laboratory in 1904. Marie won two Nobel Prizes. The first she

More information

SOME ELEMENTS AND ISOTOPES OF SPECIAL CONCERN IN FUEL CYCLE C SEPARATIONS S Tc: ( 99 Tc) U: ( 3 U, 33 U, 34 U, Np: ( 37 Np) Pu: ( 38 Pu, 39 Pu, Am: (

SOME ELEMENTS AND ISOTOPES OF SPECIAL CONCERN IN FUEL CYCLE C SEPARATIONS S Tc: ( 99 Tc) U: ( 3 U, 33 U, 34 U, Np: ( 37 Np) Pu: ( 38 Pu, 39 Pu, Am: ( COMPLEXATION REACTIONS IN NUCLEAR SEPARATIONS A PRESENTATION AT THE SHORT COURSE ON INTRODUCTION TO NUCLEAR CHEMISTRY AND FUEL CYCLE SEPARATIONS BY R. G. WYMER DECEMBER 16-18, 18, 008 1/6/008 1 SOME ELEMENTS

More information

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University MODERN NUCLEAR CHEMISTRY WALTER D. LOVELAND Oregon State University DAVID J. MORRISSEY Michigan State University GLENN T. SEABORG University of California, Berkeley O WILEY- INTERSCIENCE A JOHN WILEY &

More information

History of the Atom. Scientists and Their Contribution to the Model of an Atom

History of the Atom. Scientists and Their Contribution to the Model of an Atom History of the Atom Scientists and Their Contribution to the Model of an Atom 1700s 1800s 1900s History of the Atom Timeline 1766 1844 Antoine Lavoisier makes J.J. a substantial Thomson number discovers

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 1 - Course Organiser: Deputy: Dr E. Rizvi (room 401) Prof. J. Emerson My Office hours 1000 1100 Thursday 3 lecture slots per week Thursday

More information

Chemistry. Atomic and Molecular Structure

Chemistry. Atomic and Molecular Structure Chemistry Atomic and Molecular Structure 1. The periodic table displays the elements in increasing atomic number and shows how periodicity of the physical and chemical properties of the elements relates

More information

Chapter 3. Radioactivity. Table of Contents

Chapter 3. Radioactivity. Table of Contents Radioactivity Table of Contents Introduction 1. Radioactivity 2. Types of Radioactive Decays 3. Natural Radioactivity 4. Artificial Radioactivity 5. The Rate of Radioactive Decay 6. The Effects of Radiation

More information

NUCLEAR MAGAZINE PROJECT QUESTIONS

NUCLEAR MAGAZINE PROJECT QUESTIONS Chemistry Name Teacher Per. NUCLEAR MAGAZINE PROJECT QUESTIONS NUCLEAR POWER NUCLEAR SUBMARINES 1. How does the nuclear reactor in a submarine work? 2. What are the benefits of nuclear subs over fuel powered

More information

: When electrons bombarded surface of certain materials, invisible rays were emitted

: When electrons bombarded surface of certain materials, invisible rays were emitted Nuclear Chemistry Nuclear Reactions 1. Occur when nuclei emit particles and/or rays. 2. Atoms are often converted into atoms of another element. 3. May involve protons, neutrons, and electrons 4. Associated

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Inner transition elements the lanthanides and actinides

Inner transition elements the lanthanides and actinides Inner transition elements the lanthanides and actinides In the lanthanides, the 4f electronic orbitals are being filled (elements 57 to 71, 4f 1 to 4f 14 ) while the two outer shell electronic configurations

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

Historical Background. Table of Contents. List of Figures

Historical Background. Table of Contents. List of Figures 1 Historical Background prepared by Dr, Robin Chaplin Professor of Power Plant Engineering (retired) University of New Brunswick Summary: A review of the historical background for the development of nuclear

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

1/28/2013. The Nuclear Age. X-Rays. Discovery of X-Rays. What are X-Rays? Applications. Production of X-Rays

1/28/2013. The Nuclear Age. X-Rays. Discovery of X-Rays. What are X-Rays? Applications. Production of X-Rays The Nuclear Age X-Rays Radioactivity Decay Processes Discovery of X-Rays 1895 Production of X-Rays What are X-Rays? Applications X-Rays first x-ray picture Discovery of X-Rays Production of X-Rays What

More information

Chapter IV: Radioactive decay

Chapter IV: Radioactive decay Chapter IV: Radioactive decay 1 Summary 1. Law of radioactive decay 2. Decay chain/radioactive filiation 3. Quantum description 4. Types of radioactive decay 2 History Radioactivity was discover in 1896

More information

A. Identify the highly penetrating radioactive emission that exposed the photographic plates.

A. Identify the highly penetrating radioactive emission that exposed the photographic plates. Name Unit 3: Nuclear Chemistry Date Part 2 Questions 1. In 1896, Antoine H. Becquerel discovered that a uranium compound could expose a photographic plate wrapped in heavy paper in the absence of light.

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Integrated Chemistry-Physics

Integrated Chemistry-Physics Standard 1: Principles of Integrated Chemistry - Physics Students begin to conceptualize the general architecture of the atom and the roles played by the main constituents of the atom in determining the

More information

From the SelectedWorks of James T Struck

From the SelectedWorks of James T Struck From the SelectedWorks of James T Struck 2010 Discovery of a New Element or New Element Groups and Associated Dangers and Risks, After the Trans Uranium and Uranium Investigations.Why Some Elements or

More information

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series

The Nature of Radioactivity. Chapter 19 Nuclear Chemistry. The Nature of Radioactivity. Nuclear Reactions. Radioactive Series John W. Moore Conrad L. Stanitsi Peter C. Jurs http://academic.cengage.com/chemistry/moore Chapter 9 Nuclear Chemistry Stephen C. Foster Mississippi State University The Nature of Radioactivity Henri Becquerel

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

CHEMISTRY I - HONORS MIDTERM REVIEW* *Test may cover other topics not included on this review, yet have been covered throughout the semester.

CHEMISTRY I - HONORS MIDTERM REVIEW* *Test may cover other topics not included on this review, yet have been covered throughout the semester. Name Period CHEMISTRY I - HONORS MIDTERM REVIEW* *Test may cover other topics not included on this review, yet have been covered throughout the semester. Chapter 2 Measurement & Calculations Describe the

More information

Nuclear Physics. Name and Surname: Class: L E A R N I N G O U T C O M E S. What is matter made up of? What are atoms? Are atoms unbreakable?

Nuclear Physics. Name and Surname: Class: L E A R N I N G O U T C O M E S. What is matter made up of? What are atoms? Are atoms unbreakable? L E A R N I N G O U T C O M E S What is matter made up of? What are atoms? Nuclear Physics Are atoms unbreakable? Y E A R 1 0 C H A P T E R 1 4 What distinguishes particles of different materials? What

More information

Unit 13: Nuclear Chemistry

Unit 13: Nuclear Chemistry Name Unit 13: Nuclear Chemistry Skills: 1. Review Atomic Structure 2. Determining Nuclear Stability 3. Naming and Drawing Hydrocarbons 4. Using N + O to Write Decay Equations Period 5. Solve Various Half

More information

Glenn T. Seaborg (1912- Nobel Prize for Chemistry (1951)

Glenn T. Seaborg (1912- Nobel Prize for Chemistry (1951) ETH Geschichte der Radioaktivität Arbeitsgruppe Radiochemie Glenn T. Seaborg (1912- Nobel Prize for Chemistry (1951) Glenn Theodore Seaborg was born on April 19, 1912, in Ishpeming, Michigan. The family

More information

Nuclear & Particle Physics

Nuclear & Particle Physics AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia A. Nuclear Structure Nuclear & Particle Physics B. Nuclear Decay C. Nuclear Reactions D. Particle Physics Updated: 0Aug8 Rough draft A. Nuclear Structure

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6

Ch05. Radiation. Energy and matter that comes from the nucleus of an atom. version 1.6 Ch05 Radiation Energy and matter that comes from the nucleus of an atom. version 1.6 Nick DeMello, PhD. 2007-2016 Ch05 Radiation The Discovery of Radioactivity Phosphorescence Radioactive history Antoine

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Nuclear & Particle Physics

Nuclear & Particle Physics AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia A. Nuclear Structure Nuclear & Particle Physics B. Nuclear Decay C. Nuclear Reactions D. Particle Physics Updated: 03Aug9 (for physics 700) A. Nuclear

More information

Ch 22 Radioactivity Nuclear Chemistry

Ch 22 Radioactivity Nuclear Chemistry AMHS AP Chemistry Name Period S T A T I O N 1 Q U I Z O N P E O P L E Match the people with the following ideas. Each name may be used once, more than once, or not at all. a) Albert Einstein b) Marie Curie

More information

Rapid Separations. Activity Radioactive Solutions. Lawrence Jassin Eichrom Technologies LLC March 3, 2008 Pittcon 2008

Rapid Separations. Activity Radioactive Solutions. Lawrence Jassin Eichrom Technologies LLC March 3, 2008 Pittcon 2008 Rapid Separations for Environmental Level and High Activity Radioactive Solutions Lawrence Jassin Eichrom Technologies LLC March 3, 2008 Pittcon 2008 New Orleans, LA Outline Introduction to Extraction

More information

Actinide Chemistry. Associate Professor Susanna Wold

Actinide Chemistry. Associate Professor Susanna Wold Actinide Chemistry Associate Professor Susanna Wold Understanding fundamental chemistry and the nature of the periodic system Electronic configuration Oxidation states The metallic states Crystal structure

More information

June 01, Chapter 19 SMARTBOARD Notes.notebook. Objectives

June 01, Chapter 19 SMARTBOARD Notes.notebook. Objectives Objectives To learn the types of radioactive decay To learn to write nuclear equations for radioactive decay To learn how one element may be changed to another by particle bombardment To learn about radiation

More information

Radioactive elements in the Periodic Table

Radioactive elements in the Periodic Table 11) The Chemistry of Artificial and Radioelements (1) Radioactive elements in the Periodic Table 130 11) The Chemistry of Artificial and Radioelements (2) Technetium (atomic number 43) first artificial

More information

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear Radioactive Decay Radioactivity is the spontaneous disintegration of atomic nuclei. This phenomenon was first reported in 1896 by the French physicist Henri Becquerel. Marie Curie and her husband Pierre

More information

Isotopes: atoms with the same Z but different A s (number of neutrons varies)

Isotopes: atoms with the same Z but different A s (number of neutrons varies) All atomic nuclei have protons and neutrons, except hydrogen. Z = atomic number = number of protons in the nucleus A = mass number = Z + number of neutrons A Z X Isotopes: atoms with the same Z but different

More information

Ganado Unified School District (Chemistry/Grade 10, 11, 12)

Ganado Unified School District (Chemistry/Grade 10, 11, 12) Ganado Unified School District (Chemistry/Grade 10, 11, 12) PACING Guide SY 2016-2017 Timeline & AZ College and Career Readiness Essential Question Learning Goal Vocabulary Quarter 1 Sci 5.1 PO1. Describe

More information

Seaborg s Plutonium?

Seaborg s Plutonium? Seaborg s Plutonium? Eric B. Norman, Keenan J. Thomas, Kristina E. Telhami* Department of Nuclear Engineering University of California Berkeley, CA 94720 Abstract Passive x-ray and gamma ray analysis was

More information

Radiation can be defined as the propagation of energy through matter or space. It can be in the form of electromagnetic waves or energetic particles.

Radiation can be defined as the propagation of energy through matter or space. It can be in the form of electromagnetic waves or energetic particles. Lecture 1: Overview; History of Radiation Radiation can be defined as the propagation of energy through matter or space. It can be in the form of electromagnetic waves or energetic particles. Source: Lawrence

More information

The Decay of Radiochemistry

The Decay of Radiochemistry The Decay of Radiochemistry and The Decay of Don Wiles A short tour through the History of Radiochemistry Canadian Nuclear Society Ottawa, 19 March, 2009 Radium discovery and Development Artificial Radionuclides

More information

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity

#89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity #89 Notes Unit 11: Acids & Bases and Radiochemistry Ch. Acids, Bases, and Radioactivity Common Strong Acids Common Strong Bases HCl hydrochloric acid Group #1 + OH HNO 3 nitric acid NaOH, KOH etc. H 2

More information

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz Enfield Public Schools Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz November 2007 Lab Safety 1. Basic safety rules must be followed in the Advanced Chemistry laboratory.

More information

California Science Content Standards Chemistry Grades 9-12

California Science Content Standards Chemistry Grades 9-12 California Science Content Standards Chemistry Grades 9-12 Standards that all students are expected to achieve in the course of their studies are unmarked. Standards that all students should have the opportunity

More information

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes 1 Nuclear Chemistry Mass Defect 4 Some of the mass can be converted into energy Shown by a very famous equation! E=mc 2 Energy Mass Speed of light Radioactivity 2 Types of Radiation 5 One of the pieces

More information

SAVE PAPER AND INK!!!

SAVE PAPER AND INK!!! SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup. Also, turn off the backgrounds (Tools>Options>Print>UNcheck "Background Printing")!

More information

Sources of Radiation

Sources of Radiation Radioactivity Sources of Radiation Natural Sources Cosmic Radiation The Earth is constantly bombarded by radiation from outside our solar system. interacts in the atmosphere to create secondary radiation

More information

Ciclo combustibile, scorie, accelerator driven system

Ciclo combustibile, scorie, accelerator driven system Ciclo combustibile, scorie, accelerator driven system M. Carta, C. Artioli ENEA Fusione e Fissione Nucleare: stato e prospettive sulle fonti energetiche nucleari per il futuro Layout of the presentation!

More information

Chemistry 132 NT. Nuclear Chemistry. Review

Chemistry 132 NT. Nuclear Chemistry. Review Chemistry 132 T If you re courting a pretty girl, an hour can seem like a second. If you sit on a red hot cinder, a second can seem like an hour. That s relativity. Albert Einstein 1 Chem 132 T uclear

More information

Unit 4 Exam, Spring 2018 (Electrochemistry & Nuclear Chemistry)

Unit 4 Exam, Spring 2018 (Electrochemistry & Nuclear Chemistry) Chem 401 (Nuss) Name: Unit 4 Exam, Spring 2018 (Electrochemistry & Nuclear Chemistry) Seat # Lab Day DO NOT REMOVE THIS PAGE FROM YOUR TEST BOOKLET! The time allotted for this exam is 80 minutes. Be sure

More information

Unit Two: Atomic Structure

Unit Two: Atomic Structure Unit Two: Atomic Structure TEKS 5: The student understands the historical development of the Periodic Table and can apply its predictive power. (b) use the Periodic Table to identify and explain the properties

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

ANALYTICAL SEPARATIONS GROUP

ANALYTICAL SEPARATIONS GROUP ANALYTICAL SEPARATIONS GROUP Megan Bennett, Ashlee Crable, Sherry Faye, Narek Gharibyan, Julie Gostic, and Chris Klug Subgroup Leader: Ralf Sudowe COMMON RESEARCH GOALS Develop better separation schemas

More information

19.1 Nuclear Chemistry

19.1 Nuclear Chemistry 9. Nuclear Chemistry Radio Activity Dr. Fred Omega Garces Chemistry Miramar College RadioActivity One Winter Day in Chicago The Chain Reaction. Construction halted with the fifty-seventh layer on December,

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

4, 6 4.3, , , , , ,7,8 5.1, 5.2, 7.1, 7.2, 8.2 4, 5 4.2, 5.3

4, 6 4.3, , , , , ,7,8 5.1, 5.2, 7.1, 7.2, 8.2 4, 5 4.2, 5.3 1. Atomic and Molecular Structure Ch. Sect. 1. The periodic table displays the elements 4, 5, 6, 7, 8, 25 in increasing atomic number and shows how periodicity of the physical and chemical properties of

More information

Cherokee High School. Class Syllabus

Cherokee High School. Class Syllabus Cherokee High School Class Syllabus 2017-2018 Teacher: Lynne Styke lynne.styke@hck12.net Course Title: AP Chemistry Course Description This AP Chemistry course is designed to be the equivalent of the general

More information

7. Atomic & Nuclear Physics

7. Atomic & Nuclear Physics 7. Atomic & Nuclear Physics Topic Outline Section Recommended Time Giancoli Sections 7.1 The Atom 2h 27.8, 27.9 7.2 Radioactive Decay 3h 30.1, 30.3-30.6, 30.8 7.3 Nuclear Reactions, Fission and Fusion

More information

Chemistry 6A F2007. Dr. J.A. Mack 12/3/07. What do I need to bring? Exam 3: Friday 12/7/07 (here in lecture)

Chemistry 6A F2007. Dr. J.A. Mack 12/3/07. What do I need to bring? Exam 3: Friday 12/7/07 (here in lecture) Chemistry 6A F2007 Dr. J.A. Mack Exam 3: Friday 12/7/07 (here in lecture) What will be covered on the exam? Chapter 6: 6.9-6.15 Chapter 7: All Chapter 8: All Chapter 9: 9.1-9.9 Any thing from lab as well

More information

Nuclear Chemistry. Chapter 23

Nuclear Chemistry. Chapter 23 Nuclear Chemistry Chapter 23 n/p too large beta decay X Y n/p too small positron decay or electron capture Nuclear Stability Certain numbers of neutrons and protons are extra stable n or p = 2, 8, 20,

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Nuclear Physics. AP Physics B

Nuclear Physics. AP Physics B Nuclear Physics AP Physics B Nuclear Physics - Radioactivity Before we begin to discuss the specifics of radioactive decay we need to be certain you understand the proper NOTATION that is used. To the

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA ABSTRACT Recovering Americium and Curium from Mark-42 Target Materials New Processing Approaches to Enhance Separations and Integrate Stream Disposition 12228 Brad D. Patton, Dennis Benker, Emory D. Collins,

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

Complete the table by ticking one box in each row to identify the appropriate isotope. The first row has been completed for you.

Complete the table by ticking one box in each row to identify the appropriate isotope. The first row has been completed for you. Q1.The table below contains five statements that refer to isotopes and some radium isotopes. Ra Ra Ra Ra Isotope with the smallest mass number Isotope with most neutrons in nucleus Isotope with nucleus

More information

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie Radioactivity Toward the end of the 19 th century, minerals were found that would darken a photographic plate even in the absence of light. This phenomenon is now called radioactivity. Marie and Pierre

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Discovery of electrons

Discovery of electrons This week: What are atoms made of? How do you name compounds and molecules? Dalton s atomic theory 1806 A good theory: Explains all available data Predicts future results Well tested Is usually ignored/disgraced

More information

Radiochemistry and Nuclear Methods of Analysis

Radiochemistry and Nuclear Methods of Analysis Radiochemistry and Nuclear Methods of Analysis WILLIAM D. EHMANN Professor, Department of Chemistry University of Kentucky Lexington, Kentucky DIANE E. VANCE Staff Development Scientist Analytical Services

More information

Chapter 17. Radioactivity and Nuclear Chemistry

Chapter 17. Radioactivity and Nuclear Chemistry Chapter 17 Radioactivity and Nuclear Chemistry The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine whether phophorescent minerals also gave off X-rays. Bequerel

More information

Nuclear 2. Fission and Fusion

Nuclear 2. Fission and Fusion Nuclear 2 Fission and Fusion History 1896: Becquerel discovers radioactivity 1898: Marie & Pierre Curie discover radium 1911: Rutherford discovers nucleus 1932: Chadwick discovers neutrons 1933: Hitler

More information

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents.

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Table of Contents Slide 3 / 87 Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Nuclear Physics. Nuclear Structure. Slide 1 / 87 Slide 2 / 87. Slide 4 / 87. Slide 3 / 87. Slide 6 / 87. Slide 5 / 87. Table of Contents.

Nuclear Physics. Nuclear Structure. Slide 1 / 87 Slide 2 / 87. Slide 4 / 87. Slide 3 / 87. Slide 6 / 87. Slide 5 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Slide 4 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity

More information

Chapter 4 The Atom. Philosophers and scientists have proposed many ideas on the structure of atoms.

Chapter 4 The Atom. Philosophers and scientists have proposed many ideas on the structure of atoms. Chapter4 TheAtom 4.1 Early Models of the Atom An atom is the smallest particle of an element that retains its identity in a chemical reaction. Philosophers and scientists have proposed many ideas on the

More information