SELECTED ION FLOW TUBE MASS SPECTROMETRY. Interscience Expert Center: VIP Meeting 15 Sept. 2009

Size: px
Start display at page:

Download "SELECTED ION FLOW TUBE MASS SPECTROMETRY. Interscience Expert Center: VIP Meeting 15 Sept. 2009"

Transcription

1 SELECTED ION FLOW TUBE MASS SPECTROMETRY Interscience Expert Center: VIP Meeting 15 Sept. 2009

2 PROGRAM u: The IS. X strategy u: What exactly is SIFT-MS? u: Developing methods on the Voice u: Reproducibility at ultratrace levels u: Hyphenating Syft to less straightforward inlet systems u: Application of µ-cte/sift-ms in the beer industry u: Mobile applications with SIFT-MS u: Closing remarks and end

3 WHAT EXACTLY IS SIFT-MS? Hardware, theory and basic principles

4 SUMMARY The following topics will be addressed during this presentation, General introduction SIFT-MS technology Principles & theory

5 HISTORY The technique of SIFT-MS, Developed in the 1970s Measurement of kinetic data for gasphase ion/neutral reactions Demonstrated as a trace analytical technique in the 1990s

6 THE EARLY DAYS

7 NOWADAYS SIFT-MS detects & quantifies trace amounts of target volatiles, Absolute concentrations From whole air In real time PPT level concentrations Organic & inorganic compounds

8 THEORY The key is in the name, S I : selected precursor ions (H 3 O +, NO +, O 2+ ) F T : injected in a thermalized flow tube MS : mass spectrometric detection in real time SIFT-MS is based on soft ionisation, which minimises fragmentation.

9 HARDWARE Configuration of the Syft Voice 200, Reagent ion generation Reagent ion selection (Q1) Ion/sample reactions in flight tube Reaction products selection (Q2) Detection

10 REAGENT IONS Ions are generated under microwave heating, N 2 + O + N + H 2 O + H 2 O + H 2 O + O 2 + N 2 H + O 2 + O 2 + H 3 O + H 3 O + NO + H 3 O + No reaction with the major constituents of air.

11 FLIGHT TUBE The flight tube is fed with helium, Provide thermalized reaction conditions Minimize diffusion Inert transport medium Flight tube bent in 90 angle for size reduction.

12 CHEMICAL IONISATION Typical CI reactions that occur inside the flight tube, Precursor Flight tube Detection H 3 O + Proton transfer MH + M+1 NO + Hydride abstraction [M-H] + M-1 Hydroxide abstraction [M-OH] + M-17 Addition M.NO + M+30 O 2 + Charge exchange M + M Thermalized reaction conditions permit absolute quantification. SIFT-MS 12

13 REAGENT MULTIPLICITY The use of three CI agents increases confidence, H 3 O + NO + O 2 + Acetone , 58 Mw 58 Propanal , 58 Mw 58 Separation of isobaric and isomeric compounds.

14 QUANTIFICATION The absolute concentration of a particular analyte, Flowrate of sample gas into the flight tube Reagent and product ion signals Rate coefficient of the reaction between reagent and analyte Rate coefficients for > 400 compounds are stored in the Syft database.

15 CONCLUSIONS Most important advantages of the Syft instrument, Easy-to-use Fast analysis No sample prep required Absolute quantification Multiple reagent agents Broad application range

16 DEVELOPING METHODS ON THE VOICE 200 Basic strategy and practical examples

17 SUMMARY The following issues will be presented today, How to start developing Syft methods Initial optimization Fine tuning This presentation is accompanied by a software demonstration.

18 STARTING POINT SIFT-MS is generally used for target analysis, Define target components Select monitored reactions Beware of primary & secondary product ions.

19 OPTIMISATION In a second step one should, Verify reaction rates Verify branching ratio Eliminate all conflicts Calculate cycle time

20 CONFLICTS Conflicts occur when products ions from different compounds have the same mass or when product ions occur at the same mass of a reagent ion, Both primary and secondary ions Concentration level Reaction rate Branching ratio And what about matrix interferences?

21 FINE TUNING Critically evaluate test results, Blanks, standards and real samples Remove inaccurate and/or instable traces Example: analysis of contaminants in CO2

22 EXAMPLES

23 EXAMPLES

24 EXAMPLES

25 EXAMPLES

26 EXAMPLES

27 EXAMPLES

28 REPRODUCIBILITY AT ULTRATRACE LEVELS Correct standardisation and blank control

29 SUMMARY The following issues will be addressed today, Critical considerations Preparation of standards Analytical setup Results & discussion Closing remarks

30 CRITICAL CONSIDERATIONS The reliability of any gas analytical system largely depends on the reliability of the standard used to validate the system, Proper preparation of standards Proper sample introduction Proper blank control Adequate system control

31 INTENDED CONCENTRATION LEVELS PPM (one part per parts): Equivalent to one drop of water diluted into 50 liters or one second of time in approximately 11.5 days. PPB (one part per parts): Equivalent to one drop of water diluted into 250 chemical drums (+/ L) or one second of time in approximately 32 years. PPT (one part per parts): Equivalent to one drop of water diluted into 20, two-meter-deep Olympic-size swimming pools or one second of time in approximately years.

32 STANDARD PREPARATION Preparation of low level gas standards, Tedlar bag Canister Permeation tubes ASTM METHOD D 4051 Details are described in ASTM D4051.

33 TEDLAR BAG Most straightforward, but not the correct way to proceed, Increased blank levels, e.g. acetic acid, phenol, DMAC Memory effects, e.g. methanol Loss of polar compounds, e.g. formaldehyde Not suitable for reactive compunds Risk of condensation of compounds

34 IN-LINE PREPARATION Systems equipped with permeation tubes, Sub-ppb to %-level Modular Humidification Compressed gas

35 PERMEATION TUBES Small containers filled with a pure chemical compound in a two-phase equilibrium between gas and liquid phase. Containers are made in inert polymeric material and held at constant temperature. The device emits the compound through a permeable wall at a constant rate. The permeate is mixed with carrier gas at a controlled flow rate to obtain a known mixture that can be used as reference gas.

36 CONSEQUENCES SIFT-MS is more susceptible to interferences at low levels, High sensitivity No chromatographic pre-separation Dedicated precautions are required to permit appropriate evaluation.

37 DEDICATED SET-UP The evaluated set-up consists of, Zero air generator Permeation tube chamber with six tubes Direct split interface Closed system

38 SCHEMATIC Direct sampler with split interface Zero air generator Permeation tube chamber Syft VOICE200

39 EXPERIMENTS Prime aim was to focus on, Blank levels and blank control Repeatability of results Reproducibility of results Linearity

40 BLANK LEVELS Absolute level is function of the quality of supplied air, Laboratory air? Compressed nitrogen In-line filter systems Zero air from generator

41 LABORATORY AIR The IS-X lab air was contaminated with, Hexane Dichloromethane GC/MS analysis of lab air. No information on polar solvents.

42 RESULTS Several types of gas supply were evaluated, Compound Blank N2 Thermo filter Restek filter Blank Zero air Acetaldehyde Acetone Formaldehyde Heptane M-xylene Toluene All concentrations in ppb

43 REPEATABILITY Analysis of permeation feed, Compound 30 ppb 15 ppb 10 ppb 5 ppb 2.5 ppb Acetaldehyde Acetone Formaldehyde Heptane M-xylene Toluene

44 REPRODUCIBILITY Daily analysis of 15 ppb standard (QCS), 120 Acetaldehyde Acetone Formaldehyde Heptane Toluene M-xylene Compound %RSD 100 Acetaldehyde Acetone Day Formaldehyde 8.80 Heptane 10.1 M-xylene 7.21 Toluene 11.1 Please note that SIFT-MS does not use internal standards!

45 LINEARITY (1) Overview of calibration curves, Acetaldehyde Linear (Acetaldehyde) Acetone Linear (Acetone) Formaldehyde Linear (Formaldehyde) R 2 = R 2 = R 2 =

46 LINEARITY (2) Overview of calibration curves, Heptane Linear (Heptane) Toluene Linear (Toluene) M -xylene Linear (M -xylene) 8.25 R 2 = R 2 = R 2 =

47 CONCLUSION Relevant operation at ultratrace levels, Control of blank levels Reproducible standard preparation Proper system control

48 EXPANDING THE APPLICATION AREA OF SYFT Hyphenation to less straightforward inlet systems

49 SUMMARY The following issues will be addressed today, Overview of Voice 200 inlets Precautions Coupling types Examples

50 HYPHENATION IN PRACTICE A number of factors need to be taken into account, Selection of Syft inlet type Direct or indirect coupling Short transfer paths Inertness

51 SYFT INLETS The Syft Voice 200 has a variety of inlets configured, Two standard sample inlets (front) One direct inlet (front) One ambient inlet (rear)

52 STANDARD INLET Particularly suited for the introduction of, Canisters Tedlar bags Monitoring Inlet is equipped with a needle valve and closed from exterior air. Permits automatic background subtraction.

53 DIRECT INLET Particularly well-suited for the analysis of, High sensitivity analyses Less volatile compounds Active compounds The direct inlet provides immediate entrance to the flight tube.

54 HEATED EXTERNAL INLET The direct inlet is fitted with a heated transferline, Flexible tube Inert path (Siltek) Heatable to 200 C Internal restriction Absolute sensitivity is proportional to total flow towards the flight tube.

55 PRECAUTIONS When using the direct inlet, Avoid valves in the flow path Control administered flows Beware of dirty samples Beware of leaks Beware of cold spots

56 INDIRECT COUPLING This configuration is most suited when, The sampling point needs to remain accessible Inlet flows are too high Sensitivity is less of an issue Indirect coupling uses a restriction. Two types: 10 ml/min and 40 ml/min

57 DIRECT COUPLING This configuration is most suited when, Sensitivity is important Inlet flows are constant Inlet flows are accurately controlled Direct coupling does not use a restriction.

58 HYPHENATED SYSTEMS The following sample introduction systems were hyphenated, Static headspace injection with CombiPAL Thermodesorption with Unity 2 Material emissions with Microchamber

59 STATIC HEADSPACE The easiest way to introduce volatile components, Well understood Dedicated autosamplers Broad application area Aqueous and non-aqueous

60 IN PRACTICE Practical hyphenation was achieved, CombiPAL installed on TraceGC S/SL injector with laminar cup liner Direct coupling to Syft, i.e. without restriction Retention gap at 150 C MS transferline at 150 C

61 METHOD DEVELOPMENT Parameters that need optimization, Injection type: split or splitless Injection rate Syft acquisition parameters

62 RESULTS AND DISCUSSION Experiments were carried out in the field of, Environmental: analysis of BTEX in water Chemical: analysis of solvents Food: analysis of aldehydes in malt

63 BTEX IN WATER Considerations, Occuring conflicts Injection optimisation Blank levels Repeatability Linearity

64 SYFT METHOD Overview of key parameters, Dwell time: 100 ms per single reaction Analysis time: sec Tolerance ratio: 20 % Reagents: H 3 O +, NO + and O + 2

65 SYRINGE SELECTION Accurate quantification necessitates stable analyte flows, Syringe, ml 10 µl/sec 20 µl/sec 50 µl/sec min 0.8 min 0.3 min min 2.1 min 0.8 min min 4.2 min 1.7 min Use of multi-injection methods, e.g. splitless and split in one run Use of multi-syft methods, e.g. optimal dwell times

66 INJECTION SPEED Fast injection reduces carrier gas dilution, thus increases absolute response, Benzene Ethyl benzene + xylenes Toluene Fast injection disturbs Syft analysis stability.

67 VALIDATION (1) Blank levels and repeatability, Compound Blank, ppb 20 ppb, %RSD Benzene Ethylbenzene + xylenes Toluene No interferences detected Highly repeatable analysis

68 VALIDATION (2) Linearity, Benzene Toluene Ethylbz + xylenes Response Conc, ppb Response Conc, ppb Response Conc, ppb R² = R² = R² =

69 SOLVENTS Considerations, Broad range of target compounds High concentration levels Real samples contain limited number of solvents Many negative samples Tedious calibration procedure

70 SYFT METHOD Overview of key parameters, Dwell time: 100 ms per reaction Analysis time: sec Tolerance ratio: 20 % Reagents: H 3 O + and NO +, no O 2+! Target compounds: ACN, EtOH, EtOAc, i-proh and iso-octane (IS)

71 VALIDATION (1) Blank levels and repeatability, Compound Blank, ppb 500 ppm, %RSD 50 ppm, %RSD 2-Propanol Acetonitrile Ethanol Ethyl acetate Iso-octane Little interference due to high reporting limit Repeatable analysis at various levels

72 VALIDATION (2) Linearity, R 2 = R 2 = R 2 = R 2 = (EtOAc) (ACN) (EtOH) (i-proh) Conc, ppm

73 VALIDATION (3) Reproducibility, 2-Propanol Acetonitrile Ethanol Ethyl acetate All RSDs < 10%; EtOH and EtOAc < 5%.

74 THERMAL DESORPTION A well understood way of preconcentrating air samples, High sensitivity analyses Superior limits of detection Environmental monitoring Material emissions, e.g. automotive

75 IN PRACTICE Practical hyphenation of both systems, Unity 2 transferline Syft direct heated transferline Direct coupling, i.e. without restriction Flowrates matched

76 METHOD DEVELOPMENT Parameters that require optimization, TD parameters, e.g. desorption temperature Split ratio Trap heating rate

77 SYFT METHOD Overview of key parameters, Dwell time: 100 ms per reaction Analysis time: 250 sec Tolerance ratio: 20 % Reagents: H 3 O +, NO + and O + 2

78 RESULTS AND DISCUSSION Following analyses were carried out, Syft standard on Tenax Standard TD settings Sensitivity Linearity

79 SYFT STANDARD Tube loaded with ng of analytes,

80 LINEARITY Ethylbenzene,

81 MICROCHAMBER A fast way for sensitive material emission analysis, Miniature emissions testing Six samples at 120 C Four samples at 250 C Inert interior No complex pneumatics

82 IN PRACTICE Practical hyphenation of both systems, Restriction installed on Syft TD tube with frit fixed in front of restriction Total assembly connected to µ-cte Restriction permits exposure of transferline to ambient air.

83 RESULT AND DISCUSSION Several experiments were carried out using the µ-cte/syft hyphenation. Results will be discussed in the next presentation. Thank you for your attention

SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW \ SYFT TECHNOLOGIES

SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW \ SYFT TECHNOLOGIES SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW \ SYFT TECHNOLOGIES CONTENTS 1. An overview of SIFT-MS 2. Principles of SIFT-MS a. Why chemical ionization? b. Why multiple reagent

More information

Headspace Technology for GC and GC/MS: Features, benefits & applications

Headspace Technology for GC and GC/MS: Features, benefits & applications Headspace Technology for GC and GC/MS: Features, benefits & applications Karima Baudin Oct 2015 Why use Headspace? Very Simple no to minimum sample prep Robust enhance uptime Non-detectable carry-over

More information

SIFT-MS. technology overview

SIFT-MS. technology overview SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY technology overview contents 1. An overview of SIFT-MS 2. Principles of SIFT-MS a. Why chemical ionization? b. Why three reagent ions? c. How does SIFT-MS

More information

SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW

SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW NEXT GENERATION MASS SPECTROMETRY CONTENTS: 3 How SIFT-MS works 4 Soft chemical ionisation 5 Quantification in real-time 6 Utilising

More information

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Replaces: Dated: Author: Date: AM-No.: New New Nils Arne Jentoft 18.06.2014 0 CHANGES This procedure is new. 1 SCOPE This document describes

More information

Innovative Thermal Desorption From Agilent Technologies. Vivek Dhyani Application Chemist

Innovative Thermal Desorption From Agilent Technologies. Vivek Dhyani Application Chemist Innovative Thermal Desorption From Agilent Technologies Vivek Dhyani Application Chemist What is thermal desorption (TD)? How does thermal desorption compare to Head Space? Thermal desorption (TD) is the

More information

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 77A mini TD and 70A GC Application Note Environmental Authors Tingting Bu, Xiaohua Li Agilent Technologies (Shanghai) Co.,

More information

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application

Static Headspace Blood Alcohol Analysis with the G1888 Network Headspace Sampler Application Static Headspace Blood Alcohol Analysis with the G Network Headspace Sampler Application Forensics Author Roger L. Firor and Chin-Kai Meng Agilent Technologies, Inc. 0 Centerville Road Wilmington, DE 90-0

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

VOC measurements in ambient air using Selected Ion Flow Tube Mass Spectrometry-automation and calibration considerations

VOC measurements in ambient air using Selected Ion Flow Tube Mass Spectrometry-automation and calibration considerations VOC measurements in ambient air using Selected Ion Flow Tube Mass Spectrometry-automation and calibration considerations Environmental Chemistry group, water Science Forum and the Separation Science Group

More information

Application Note 116 Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ

Application Note 116 Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ Application Note Monitoring VOCs in Ambient Air Using Sorbent Tubes with Analysis by TD-GC/MS in Accordance with Chinese EPA Method HJ -3 Application Note Abstract This application note demonstrates the

More information

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Application Note Forensic Toxicology and Drug Testing Author Jared Bushey Agilent Technologies, Inc. 285 Centerville

More information

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis A. Caruso, M. Santoro, P. Magni, S. Pelagatti, and R. Facchetti Thermo Fisher Scientific, Milan,

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Analysis of Residual Solvents in Pharmaceuticals (USP<467>) with Shimadzu GC-2010 Plus and HS-10 Headspace Sampler

Analysis of Residual Solvents in Pharmaceuticals (USP<467>) with Shimadzu GC-2010 Plus and HS-10 Headspace Sampler No. SSI-GC- Gas Chromatography No. GC- Analysis of Residual Solvents in Pharmaceuticals (USP) with Shimadzu GC- Plus and HS- Headspace Sampler Introduction Organic solvents are routinely used in manufacturing

More information

INNOVATIVE PRODUCTS, SUPERIOR SUPPORT. Presenter: Anne Jurek, Senior Applications Chemist, EST Analytical

INNOVATIVE PRODUCTS, SUPERIOR SUPPORT. Presenter: Anne Jurek, Senior Applications Chemist, EST Analytical INNOVATIVE PRODUCTS, SUPERIOR SUPPORT Presenter: Anne Jurek, Senior Applications Chemist,, pp, EST Analytical Air pollution is a growing problem due to the global economy and industrial development in

More information

Forensic Toxicology. Analysis of Ethanol in Blood using Master SHS Static Headspace Sampler and Master GC Gas Chromatograph APPLICATION NOTE

Forensic Toxicology. Analysis of Ethanol in Blood using Master SHS Static Headspace Sampler and Master GC Gas Chromatograph APPLICATION NOTE Analysis of Ethanol in Blood using Master SHS Static Headspace Sampler and Master GC Gas Chromatograph APPLICATION NOTE Authors: DANI Instruments SpA viale Brianza, 87 Cologno Monzese Milano Italy Key

More information

High-Speed Gas and Headspace Analysis for the Process-Line and Laboratory: SIFT- MS IFPAC 2017

High-Speed Gas and Headspace Analysis for the Process-Line and Laboratory: SIFT- MS IFPAC 2017 High-Speed Gas and Headspace Analysis for the Process-Line and Laboratory: SIFT- MS IFPAC 2017 Y.J. Mange D.B. Milligan V.S. Langford B.J. Prince M. Perkins C. Anderson T. Wilks Who is using Syft Technologies

More information

Application Note. Abstract. Introduction. Experimental-Instrument Conditions. By: Anne Jurek

Application Note. Abstract. Introduction. Experimental-Instrument Conditions. By: Anne Jurek Automated Handling Techniques for the Analysis of Elevated Volatile Organic Compound (VOC) Concentrations in Soils Utilizing the Atomx Concentrator/Multimatrix Autosampler. Application Note By: Anne Jurek

More information

Evaluation of a New Analytical Trap for Gasoline Range Organics Analysis

Evaluation of a New Analytical Trap for Gasoline Range Organics Analysis Abstract Purge and Trap (P&T) is a concentration technique used for the analysis of Volatile Organic Compounds (VOCs). The major component of any P&T system is the analytical trap. This trap is responsible

More information

Study of Residual Solvents in Various Matrices by Static Headspace

Study of Residual Solvents in Various Matrices by Static Headspace Application Note Abstract United States Pharmacopeia (USP) chapter is a widely used method for identifying and quantifying Organic Volatile Impurities (OVI) used in the production of pharmaceuticals.

More information

Detection of Volatile Organic Compounds in polluted air by an Agilent mini Thermal Desorber and an Agilent 5975T LTM GC/MS

Detection of Volatile Organic Compounds in polluted air by an Agilent mini Thermal Desorber and an Agilent 5975T LTM GC/MS Detection of Volatile Organic Compounds in polluted air by an Agilent mini Thermal Desorber and an Agilent 5975T LTM GC/MS Application Note Environmental Author Xiaohua Li Agilent Technologies (Shanghai)

More information

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds Atmospheric Analysis Gases Sampling and analysis of gaseous compounds Introduction - External environment (ambient air) ; global warming, acid rain, introduction of pollutants, etc - Internal environment

More information

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry Application Note Food Authors Jianqiu Mi, Zhengxiang Zhang, Zhixu Zhang,

More information

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling Andrea Caruso and Massimo Santoro, Thermo Fisher Scientific, Milan, Italy Application Note 1316 Key

More information

high performance OPTIC 3 and applications a total analytical solution

high performance OPTIC 3 and applications a total analytical solution high performance OPTIC 3 and applications a total analytical solution Excellent by nature Excellent effectivity, efficient performance and great flexibility. OPTIC 3: a fully programmable injector for

More information

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106

Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106 Turk J Chem 24 (2000), 131 139. c TÜBİTAK Magnitudes of Back Diffusion During Long-Term Diffusive Sampling of Volatile Organic Compounds Using Carbotrap and Chromosorb 106 Naciye KILIÇ University of Uludağ,

More information

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System Application Note Residual Solvent Analysis of USP Method Residual Solvents on the Agilent 889 GC System Author Lukas Wieder, Jie Pan, and Rebecca Veeneman Agilent Technologies, Inc. 8 Centerville Road

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

Tar analysis by Solid Phase Adsorption (SPA) associated with Thermal Desorption (TD) and Gas Chromatography (GC) analysis

Tar analysis by Solid Phase Adsorption (SPA) associated with Thermal Desorption (TD) and Gas Chromatography (GC) analysis Tar analysis by Solid Phase Adsorption (SPA) associated with Thermal Desorption (TD) and Gas Chromatography (GC) analysis E. Masson (CRITT Bois, Epinal, France) A. Dufour (CNRS, Nancy, France) International

More information

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System Application Note Abstract The Massachusetts Department of Environmental Protection (MassDEP) developed the Method

More information

Vapor Intrusion Sampling Options: Performance Data for Canisters, Badges, and Sorbent Tubes for VOCs

Vapor Intrusion Sampling Options: Performance Data for Canisters, Badges, and Sorbent Tubes for VOCs Vapor Intrusion Sampling Options: Performance Data for s, Badges, and Sorbent Tubes for VOCs Linda S. Coyne SKC Inc., 863 Valley View Road, Eighty Four, PA 1533 George Havalias, Maria C. Echarte American

More information

The Analysis of Residual Solvents in Pharmaceutical Products Using GC-VUV and Static Headspace

The Analysis of Residual Solvents in Pharmaceutical Products Using GC-VUV and Static Headspace The Analysis of Residual Solvents in Pharmaceutical Products Using GC-VUV and Static Headspace The Analysis of Residual Solvents in Pharmaceutical Products Using GC-VUV and Static Headspace_Rev3 Introducing

More information

Application. Gas Chromatography February Introduction

Application. Gas Chromatography February Introduction Ambient Headspace Analysis with the Agilent 7683 Automatic Liquid Sampler Application Gas Chromatography February 1998 Authors Matthew S. Klee and Chin Kai Meng Agilent Technologies, Inc. 2850 Centerville

More information

The Determination of Residual Solvents in Pharmaceuticals Using the Agilent G1888 Network Headspace Sampler Application

The Determination of Residual Solvents in Pharmaceuticals Using the Agilent G1888 Network Headspace Sampler Application The Determination of Residual Solvents in Pharmaceuticals Using the Agilent G1888 Network Headspace Sampler Application Pharmaceuticals Author Roger L. Firor Agilent Technologies, Inc. 2850 Centerville

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation

Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation Introduction Fire investigation involves many different types of analyses from crime scene

More information

Maximizing Sample Throughput In Purge And Trap Analysis

Maximizing Sample Throughput In Purge And Trap Analysis Maximizing Sample Throughput In Purge And Trap Analysis LINDSEY PYRON ANNE JUREK INTRODUCTION There are several demands and requirements imposed on chemists performing volatile organic analysis (VOC) in

More information

Odor Detection and Analysis using GC/SAW znose

Odor Detection and Analysis using GC/SAW znose Complimentary Copy Odor Detection and Analysis using GC/SAW znose Edward J. Staples Electronic Sensor Technology 1077 Business Center Circle Newbury Park, California 91320 Ph. 1-805-480-1994 FAX 1-805-480-1984

More information

A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins

A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins TECHNICAL NOTE 39 A novel high resolution accurate mass Orbitrap-based GC-MS platform for routine analysis of Short Chained Chlorinated Paraffins Author Cristian Cojocariu Thermo Fisher Scientific, Runcorn,

More information

COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation

COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation COMPLIANCE EMISSIONS TEST California Dept. of Public Health Standard Method Version 1.1 and FloorScore Flooring Evaluation SAMPLE DESCRIPTION & TESTING PARAMETERS Tesoro Woods submitted exemplars of their

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES ROBOKROM 1 TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview ROBOKROM 2 +8 OPERATIONAL MODES HRGC+HRGC-MS HRGC+HPLC-MS STATIC HEAD SPACE PURGE & TRAP SMPE

More information

Real Time On-Site Odor and VOC Emission Measurements Using a znose

Real Time On-Site Odor and VOC Emission Measurements Using a znose Real Time On-Site Odor and VOC Emission Measurements Using a znose Edward J. Staples, Electronic Sensor Technology, EST@ESTCAL.COM Remediation Site Description Remediation of contaminated soil from where

More information

Using Hydrogen as An Alternative Carrier Gas for US EPA 8260

Using Hydrogen as An Alternative Carrier Gas for US EPA 8260 Using Hydrogen as An Alternative Carrier Gas for US EPA 8260 Application Note Abstract Due to regional shortages and increasing costs of helium, the preferred carrier gas in gas chromatography, alternative

More information

NON-METHANE ORGANIC CARBON ANALYZER (NMOC Method 25)

NON-METHANE ORGANIC CARBON ANALYZER (NMOC Method 25) Gas Chromatography NON-METHANE ORGANIC CARBON ANALYZER (NMOC Method 25) The Non-Methane Organic Compounds (NMOC) Analyzer is a gas chromatograph configured for analyzing gaseous samples for total organic

More information

Application Note. Abstract. Introduction. Experimental-Instrument Conditions. By: Anne Jurek

Application Note. Abstract. Introduction. Experimental-Instrument Conditions. By: Anne Jurek Requirements of an Automated Sample Delivery System in Today s Realm of Ever Increasing Sensitivity Demands Utilizing the Atomx Concentrator/Multimatrix Autosampler. Application Note By: Anne Jurek Abstract

More information

C146-E209. Headspace Samplers. HS-20 Series

C146-E209. Headspace Samplers. HS-20 Series C146-E209 Headspace Samplers HS-20 Series HS-20 Series of Headspace Samplers A Revolutionary System Aimed at Performance and Ease of Use The HS-20 Series is the optimal solution for volatile component

More information

Supporting Information

Supporting Information Supporting Information KINETICS AND PRODUCT FORMATION DURING THE PHOTOOXIDATION OF BUTANOL ON ATMOSPHERIC MINERAL DUST Milena Ponczek and Christian George* Univ Lyon, Université Claude Bernard Lyon 1,

More information

Chemical Analysis. Low Level Oxygenates Analyzer. Trace Analysis of Oxygenates in Hydrocarbon Matrices. Gas Chromatography.

Chemical Analysis. Low Level Oxygenates Analyzer. Trace Analysis of Oxygenates in Hydrocarbon Matrices. Gas Chromatography. Chemical Analysis Low Level Oxygenates Analyzer Trace Analysis of Oxygenates in Hydrocarbon Matrices think forward Gas Chromatography The determination of sub to high ppm levels of ethers, alcohols, aldehydes

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

Optimization of 1,4-Dioxane and Ethanol Detection Using USEPA Method 8260 Application Note

Optimization of 1,4-Dioxane and Ethanol Detection Using USEPA Method 8260 Application Note Solid Phase Micro Extraction of Flavor Compounds in Beer ANNE JUREK Optimization of 1,4-Dioxane and Ethanol Detection Using USEPA Method 8260 Application Note Environmental Author Anne Jurek Applications

More information

Analysis of TO-15/TO-17 air toxics in urban air using TD GC/TOF MS and automated compound identification software

Analysis of TO-15/TO-17 air toxics in urban air using TD GC/TOF MS and automated compound identification software Analysis of TO-15/TO-17 air toxics in urban air using TD GC/TOF MS and automated compound identification software NEMC, Washington D.C. August 6 th 2012 Nicola Watson Environmental Specialist Markes International

More information

Gel Permeation Chromatography - GPC

Gel Permeation Chromatography - GPC Isolation and Separation Methods J. Poustka, VŠCHT Praha, ÚAPV 2014, http://web.vscht.cz/poustkaj Gel Permeation Chromatography - GPC Separation and clean-up method Group separation of compounds with similar

More information

Determination of N-Nitrosamines by USEPA Method 521 using Triple Quadrupole Gas Chromatography Mass Spectrometry

Determination of N-Nitrosamines by USEPA Method 521 using Triple Quadrupole Gas Chromatography Mass Spectrometry PO-CON111E Determination of N-Nitrosamines by USEPA Method 521 using Triple Quadrupole Gas Chromatography Mass Spectrometry Pittcon 201 1120-2 Brahm Prakash, William Lipps, Di Wang, Shilpi Chopra, Nicole

More information

Analysis of Ethanol and Isotopomers by 240 Quadrupole Ion Trap GC/MS

Analysis of Ethanol and Isotopomers by 240 Quadrupole Ion Trap GC/MS Analysis of Ethanol and Isotopomers by 240 Quadrupole Ion Trap GC/MS Application Note Energy and Fuels - Biofuels Authors Ron Honnold, Ph.D. and Robert Kubas Agilent Technologies, Inc. Santa Clara, CA

More information

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument

USP <467> Headspace Residual Solvent Assay with a HT3 Headspace Instrument Application Note Abstract The US Pharmacopeia recently released USP as the current monograph for determining residual solvents in pharmaceutical products by static headspace. The USP classified these

More information

Electronic Supplementary Material Experimentally Validated Mathematical Model of Analyte Uptake by Permeation Passive Samplers

Electronic Supplementary Material Experimentally Validated Mathematical Model of Analyte Uptake by Permeation Passive Samplers Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Material Experimentally Validated Mathematical

More information

Thermal Desorption Technical Support

Thermal Desorption Technical Support Thermal Desorption Technical Support Note 86a: US EPA Method TO-17 for Monitoring Air Toxics in Ambient Air Using Sorbent Tubes and Automated, Cryogen-free Thermal Desorption Application Note Environmental,

More information

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES

AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES JPACSM 127 AUTOMATED ONLINE IDENTIFICATION AND MONITORING OF IMPURITIES IN GASES Trace Analytical Inc. Menlo Park, CA ABSTRACT GC based gas analyzers with Reduction Gas Detector (RGD) and Flame Ionization

More information

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor Application Note Pesticides Authors Charlie Spanjers and Paul Dauenhauer University of Minnesota, Twin Cities

More information

Application Note # Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS

Application Note # Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS Application Note #1820230 Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS GC-MS Introduction USEPA Method 8270 [1] for semivolatiles is is used by by laboratories to measure

More information

Application Note 032

Application Note 032 Application Note 3 Analysis of Sulfur Compounds Using On-line and Off line TD GC Application Note Abstract This application note shows how Markes TD technology is compatible with trace level sulfur compounds,

More information

Sensitive Detection of 2-MIB and Geosmin in Drinking Water

Sensitive Detection of 2-MIB and Geosmin in Drinking Water Sensitive Detection of -MIB and Geosmin in Drinking Water Application Note Environmental Author Yean-Woong You Agilent Technologies, Inc. Seoul, Korea Abstract An automated SPME extraction method for easy

More information

AppNote 4/2008. Automated Dynamic Headspace Sampling of Aqueous Samples Using Replaceable Adsorbent Traps KEYWORDS ABSTRACT

AppNote 4/2008. Automated Dynamic Headspace Sampling of Aqueous Samples Using Replaceable Adsorbent Traps KEYWORDS ABSTRACT AppNote 4/2008 Automated Dynamic Headspace Sampling of Aqueous Samples Using Replaceable Adsorbent Traps John R. Stuff, Jacqueline A. Whitecavage Gerstel, Inc., 701 Digital Drive, Suite J, Linthicum, MD

More information

Assay Transfer from HPLC to UPLC for Higher Analysis Throughput

Assay Transfer from HPLC to UPLC for Higher Analysis Throughput MAY 2005 SEPARATION SCIENCE REDEFINED 31 Assay Transfer from HPLC to UPLC for Higher Analysis Throughput A typical HPLC assay was transferred and optimized for a Waters ACQUITY UPLC system to achieve both

More information

Improved Volatiles Analysis Using Static Headspace, the Agilent 5977B GC/MSD, and a High-efficiency Source

Improved Volatiles Analysis Using Static Headspace, the Agilent 5977B GC/MSD, and a High-efficiency Source Improved Volatiles Analysis Using Static Headspace, the Agilent 5977B GC/MSD, and a High-efficiency Source Application Note Environmental Authors Peter Gautschi and Harry Prest Senior Application Scientist

More information

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry TYPICAL SOLVENT USE IN Pharma Industry Usage of solvents in an API process development is for: Diluent to carry out reaction

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Methanol Extraction of high level soil samples by USEPA Method 8260C

Methanol Extraction of high level soil samples by USEPA Method 8260C Methanol Extraction of high level soil samples by USEPA Method 8260C Abstract In order to determine the concentration of Volatile Organic Compounds (VOCs) in soil and waste samples the USEPA developed

More information

Residual Solvents in Pharmaceuticals by USP Chapter <467> Methodology

Residual Solvents in Pharmaceuticals by USP Chapter <467> Methodology APPLICATION NOTE Gas Chromatography Author: David Scott PerkinElmer, Inc. Shelton, CT Residual Solvents in Pharmaceuticals by USP Chapter Methodology Introduction The synthesis of active pharmaceutical

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

[ a ppl ic at ion no t e ]

[ a ppl ic at ion no t e ] [ a ppl ic at ion no t e ] Fast A nalysis of A ldehydes and K etones by A C Q U I T Y U P L C Mark E. Benvenuti Waters Corporation, Milford, MA, USA INT RO DUC T ION Aldehydes and ketones are products

More information

METHYLETHYLKETONE (M.E.K.) IN URINE BY GC/MS in head space Code GC10010

METHYLETHYLKETONE (M.E.K.) IN URINE BY GC/MS in head space Code GC10010 METHYLETHYLKETONE (M.E.K.) IN URINE BY GC/MS in head space Code GC10010 BIOCHEMISTRY The MEK is presented as a colorless liquid odor similar to that of acetone, is volatile and potentially explosive. The

More information

GC-CI-MS analysis of TMS derivatives

GC-CI-MS analysis of TMS derivatives GC-CI-MS analysis of TMS derivatives This method describes analysis of TMS derivatives with methane chemical ionisation (CI) rather than the more normal electron impact (EI) ionisation. Methane CI is a

More information

US EPA Method 8260 with the Tekmar Atomx XYZ P&T System and Agilent 7890B GC/5977A MS

US EPA Method 8260 with the Tekmar Atomx XYZ P&T System and Agilent 7890B GC/5977A MS Application Note US EPA Method 8260 with the Tekmar Atomx XYZ P&T System and Agilent 7890B GC/5977A MS Author Amy Nutter Applications Chemist, Teledyne Tekmar Abstract US EPA Method 8260 in conjunction

More information

Determination of trace anions in concentrated hydrofluoric acid

Determination of trace anions in concentrated hydrofluoric acid APPLICATION NOTE 78 Determination of trace anions in concentrated hydrofluoric acid Authors Archava Siriraks Thermo Fisher Scientific, Sunnyvale, CA Keywords HF, ICS-5000 +, IonPac AS10, IonPac AC10, ion

More information

Fast Determination of Impurities in Propane- Propylene Streams Using a Pulsed Flame Photometric Detector (PFPD) and a New Capillary.

Fast Determination of Impurities in Propane- Propylene Streams Using a Pulsed Flame Photometric Detector (PFPD) and a New Capillary. Application Note 36720111 Fast Determination of Impurities in Propane- Propylene Streams Using a Pulsed Flame Photometric Detector (PFPD) and a New Capillary PLOT Column Keywords Pulsed Flame Photometric

More information

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No. G12871B_02

EMICODE Test Report. 1 Sample Information. 2 Evaluation of the Results. Report No. G12871B_02 Polyseam A/S Ravneveien 7 Linnestad Næringsområde 3174 Revetal Norway Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark voc@eurofins.com www.eurofins.com/voc-testing Date 09 October 2014

More information

Low-Level Sulfur Compounds in Beer by Purge and Trap with a Pulsed Flame Photometric Detector (PFPD)

Low-Level Sulfur Compounds in Beer by Purge and Trap with a Pulsed Flame Photometric Detector (PFPD) Application Note 16181100 Low-Level Sulfur Compounds in Beer by Purge and Trap with a Pulsed Flame Photometric Detector (PFPD) Keywords Beer PFPD Purge and Trap Sulfur Introduction The presence or absence

More information

VOC EMISSION TEST REPORT ISO 16000

VOC EMISSION TEST REPORT ISO 16000 Proxy A/S Gothersgade 12, 1.th 1123 København K DENMARK Eurofins Product Testing A/S Smedeskovvej 38 8464 Galten Denmark CustomerSupport@eurofins.com www.eurofins.com/voc-testing 1 Sample Information VOC

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

Secrets of GC Column Dimensions

Secrets of GC Column Dimensions Secrets of GC Column Dimensions GC Columns and Consumables Simon Jones Application Engineer May 20, 2008 Slide 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution Equation Changes

More information

Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP <467> method

Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP <467> method APPLICATION NOTE 0676 Routine-grade performance of a new static headspace autosampler for the analysis of residual solvents according to USP method Authors Giulia Riccardino, Paolo Magni, Stefano

More information

Automated, intelligent sample preparation: Integration of the ESI prepfast Auto-dilution System with the Thermo Scientific icap 7400 ICP-OES

Automated, intelligent sample preparation: Integration of the ESI prepfast Auto-dilution System with the Thermo Scientific icap 7400 ICP-OES TECHNICAL NOTE 43252 Automated, intelligent sample preparation: Integration of the ESI prepfast Auto-dilution System with the Thermo Scientific icap 7400 ICP-OES Keywords Auto-dilution, Intelligent dilution,

More information

Multi-residue analysis of pesticides by GC-HRMS

Multi-residue analysis of pesticides by GC-HRMS An Executive Summary Multi-residue analysis of pesticides by GC-HRMS Dr. Hans Mol is senior scientist at RIKILT- Wageningen UR Introduction Regulatory authorities throughout the world set and enforce strict

More information

Determination of Trace Cations in Power Plant Waters Containing Morpholine

Determination of Trace Cations in Power Plant Waters Containing Morpholine Application Note 8 Determination of Trace Cations in Power Plant Waters Containing Morpholine INTRODUCTION Morpholine and ammonium are used as additives in power plant waters. Morpholine acts as a corrosion

More information

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005 Gas Chromatography Chromatography Laboratory Course The laboratory course experiments General Aim: Gain general experience using a GC Constant Injection technique Temperature variations Qualitative and

More information

METHOD 3520B CONTINUOUS LIQUID-LIQUID EXTRACTION

METHOD 3520B CONTINUOUS LIQUID-LIQUID EXTRACTION METHOD 3520B CONTINUOUS LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

Analysis of Volatile Organic Compounds Using USEPA Method 8260 and the 4760 Purge and Trap and the 4100 Autosampler

Analysis of Volatile Organic Compounds Using USEPA Method 8260 and the 4760 Purge and Trap and the 4100 Autosampler Analysis of Volatile Organic Compounds Using USEPA Method 8260 and the 4760 Purge and Trap and the Introduction Although analysis of VOCs by purge and trap is considered a mature technique, advances in

More information

Application Note. Application Note 081 Innovative Cryogen-Free Ambient Air Monitoring in Compliance with US EPA Method TO-15. Abstract.

Application Note. Application Note 081 Innovative Cryogen-Free Ambient Air Monitoring in Compliance with US EPA Method TO-15. Abstract. Application Note 8 Innovative Cryogen-Free Ambient Air Monitoring in Compliance with US EPA Method TO-5 Application Note Environmental, Canister, TO-5, Air Monitoring, Air Toxics Abstract This application

More information

EPA TO-17 Volatile Organic Compounds

EPA TO-17 Volatile Organic Compounds EPA TO-17 Volatile Organic Compounds Method TO-17 is used to analyze samples for volatile organic compounds collected on multi-bed sorbent tubes, which are thermally desorbed and cryo-focused on the capillary

More information

DETERMINATION OF UPTAKE RATES FOR VOCs IN AMBIENT AIR BY USING AXIAL TYPE THERMAL DESORPTION PASSIVE TUBES

DETERMINATION OF UPTAKE RATES FOR VOCs IN AMBIENT AIR BY USING AXIAL TYPE THERMAL DESORPTION PASSIVE TUBES DETERMINATION OF UPTAKE RATES FOR VOCs IN AMBIENT AIR BY USING AXIAL TYPE THERMAL DESORPTION PASSIVE TUBES Mihriban Yılmaz Civan, Öznur Kuntasal and Gürdal Tuncel 1 1 OUTLINE Introduction Importance and

More information

Volatile Organic Compounds in Every Day Food

Volatile Organic Compounds in Every Day Food Volatile Organic Compounds in Every Day Food Application Note Abstract Volatile Organic Compounds (VOCs) have been analyzed in drinking water and pharmaceuticals extensively in recent years. Now, VOCs

More information

-xt. -xt SYSTEM. Specifications for PAL-xt Systems. Valid for PAL-xt System models only. Prep and Load Platform

-xt. -xt SYSTEM. Specifications for PAL-xt Systems. Valid for PAL-xt System models only. Prep and Load Platform -xt SYSTEM Prep and Load Platform -xt Specifications for PAL-xt Systems Valid for PAL-xt System models only Revised March 2013 V5 PAL is a registered trademark of CTC Analytics AG Switzerland -xt SYSTEM

More information

M M e M M H M M H. Ion Sources

M M e M M H M M H. Ion Sources Ion Sources Overview of Various Ion Sources After introducing samples into a mass spectrometer, the next important step is the conversion of neutral molecules or compounds to gas phase ions. The ions could

More information

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009)

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009) Method OIV-MA-AS315-16 Type IV method Determination of releasable in wine by cork stoppers (Resolution OIV-Oeno 296/2009) 1 SCOPE: The method of determination of releasable (TCA) by cork stoppers measures

More information

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation

Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of 2,2 Dinitrobiphenyl with TiO 2 and UV light irradiation Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Content: Selective Formation of Benzo[c]cinnoline by Photocatalytic Reduction of

More information