+ IO 3 + 8I - 4. What is the concentration of I -, if 7.50 ml of a M solution of KI was diluted to a final volume of ml?

Size: px
Start display at page:

Download "+ IO 3 + 8I - 4. What is the concentration of I -, if 7.50 ml of a M solution of KI was diluted to a final volume of ml?"

Transcription

1 Study Guide SCHM 109 for Vinegar titration, Kinetics, Equilibrium, Enzyme kinetics, & DNA I A. Review all pre-lab questions, reports and post-lab questions. B. Work the sample questions. Remember that all possible types of questions may not be represented. SHOW ALL WORK! Remember to use proper s.f. and units. Titration of Fake Vinegar In general: Be able to perform the four steps for the calculation of a titration. Review the experiment and your results. Know what was in the buret, what was in the titrating flask, the color of the indicator and in general how the titration was performed. 1. During a titration of a ml sample of acetic acid (CH 3 COOH), the endpoint was reached after adding ml of M NaOH. a) Write a balanced equation for this titration. b) How many moles of NaOH were added? c) How many moles of CH 3 COOH were present in the sample? d) What was the concentration of the CH 3 COOH in the sample? Kinetics: 1. Based on the following results for the reaction: A + B C Trial [A] (in M) [B] (in M) Average Rate (M s -1 ) Std. Dev E E E E E E E E E E E E-10 a) Write a general rate law for the reaction b) Calculate the order (n & m) of the reaction with respect to each reactant. c) Calculate k for the rate law using trial 1. d) Propose a specific rate law for this reaction. 2. For the reaction we studied: 6H IO 3 + 8I I 3 + 3H 2 O a) Which was the species used to follow the progress of the reaction? Why? b) Using Beer s Law (A = a b c) calc. the concen., c, (in M) for a sample reading A 353 = (a = 26,400 cm -1 M -1, b = 1.08 cm) 3. Given the following plot of concentration of I - 3 versus reaction time, determine the rate of the reaction. 1.80E-04 Production of I 3 - versus Time 1.60E E-04 y = 1.48E-06x E-06 R 2 = 9.96E E E-04 [I 3 - ] 8.00E E E E E Time (s) 4. What is the concentration of I -, if 7.50 ml of a M solution of KI was diluted to a final volume of ml?

2 Equilibrium: Review all the equilibria studied. Remember that heating and cooling can affect an equilibrium. Do you remember what exothermic and endothermic mean? 2-1. Given the following equilibrium: 2CrO 4 + 2H + 2- Cr 2 O 7 + H 2 O a) Adding sulfuric acid (H 2 SO 4 ) to the yellow chromate solution (CrO 2-4 ) results in a persisting orange color; explain the observed change. b) Write the equilibrium constant expression in terms of concentration of reactants and products. 2. Given the following data for the equilibrium: Fe 3+ + SCN - Fe(SCN) 2+ tube A 456 [Fe(SCN) 2+ ] Total [Fe 3+ ] Free [Fe 3+ ] Free [SCN - ] K eq E E E E-04 NA E E E E-04 a) Write the expression for the equilibrium constant K eq b) Find the values for the equilibrium constant for tube 2. Enzyme Kinetics Given information: A = abc b = 1.08 cm a =10,300 M -1 cm -1 (for benzoq. ) A = abc Student data for enzymatic conversion of catechol to benzoquinone by catechol oxidase. A, Absorbance values for given time Rate Tube Catechol Conc. 30 s 60 s 90 s 120 s (M/s) 1 10 mm mm E mm, no enzyme E mm, boiled enzyme E mm, with inhibitor E For the 10 mm sample, calculate the concentration of benzoquinone for each of the four time points. 2. Using the 30 s and 90 s data from the 10 mm catechol assay, calculate the approximate Rate (or [benzoquinone]/ t). Express your rate in [benzoquinone]/sec. 3. Calculate the relative % activity of your boiled enzyme. 4. Explain the results of question 3 in terms of protein structure. 5(a) Determine the maximum velocity of the enzyme from the graph. (b) At what catechol concentration was half-maximal activity obtained? Show the lines on graph that help in this determination. Reaction Rate (M/s) Enzyme Activity vs Catechol Concentration 3.50E E E E E E E E Catechol Concentration (mm)

3 6. Using the data from the accompanying graph, approximately how long of a boiling time was required to reduce enzyme activity to 20% of its original value? Show the lines on graph that help in this determination. Rate (M/s) 4.0E E E E E+00 Effect of Boiling on Enzyme Activity Time (s) DNA I 1. You should be able to draw or interpret a pedigree (family tree), especially as related to hemophilia. For example: what shape is used to represent a female? A male? A individual affect by a disease? 2. What places in a cell contain DNA? In each case, from whom is that DNA inherited? 3. What disease did Alexei of the Romanovs suffer from? What kind of protein does not function properly in individuals with this disease? 4. You should be able to determine some aspects of family relationships by comparing sets of sequences. For example, the table below contains bases from specific regions of mitochondrial DNA from Fred Genetico and four other people. Which people shown do not share the same maternal ancestor with Fred (a great grandmother of Fred s)? Explain. Comparing Bases Present in Particular Locations sample location 1 location 2 location 3 location 4 location 5 Philip T C C A T person 1 T C C A T person 2 T A G T C person 3 A G G C T person 4 T C C A T Some Answers! Titration of Fake Vinegar 1. During a titration of a ml sample of acetic acid (CH 3 COOH), the endpoint was reached after adding ml of M NaOH. a) Write a balanced equation for this titration CH 3 COOH + NaOH Na + CH 3 COO - + H 2 O Note: ratio or reactants is 1:1. b) How many moles of NaOH were added? (0.100 mol/l )( ml) ( ) = mol, rounds to mol NaOH c) How many moles of CH 3 COOH were present in the sample? mol NaOH) ( ) = mol, rounds to mol CH 3COOH d) What was the concentration of the CH 3 COOH in the sample? ( mol) / L = M, rounds to M CH 3 COOH

4 Kinetics: 1. Based on the following results for the reaction: A + B C a)write a general rate law for the reaction Rate = k[a] m [B] n b) Calculate the order (m,n) of the reaction with respect to each reactant. For determining m, compare trials 3 and 1. You must show the full work and find that m = 1. For determining n, compare trials 2 and 1. You must show the full work and find that n = 2. c) Calculate k for the rate law using trial E-08 = k(1.72e-03)( 1.38E-02) 2 Solve for k. The value for k = 5.95 x10-2 M -2 s -1 d) Propose a specific rate law for this reaction. Rate = 5.95x10-2 M -2 s -1 [A] [B] 2 2. b) Using Beer s Law (A = a b c) calc. the concen., c, (in M) for a sample reading A 353 = (a = cm -1 M -1, b = 1.08 cm) A = abc so c = A/(a x b) c = 0.042/ (26,400 x 1.08) = 1.5E-6 4. What is the concentration of I -, if 7.50 ml of a M solution of KI was diluted to a final volume of ml? Use M 1 V 1 = M 2 V 2 Answer is M Equilibrium: 2-1. Given the following equilibrium: 2CrO 4 + 2H + 2- Cr 2 O 7 + H 2 O a) Adding sulfuric acid (H 2 SO 4 ) to the yellow chromate solution (CrO 2-4 ) results in a persisting orange color; explain the observed change. H 2 SO 4 H HSO 4 This increases the concentration of H +. The collision rate between H + and CrO 2-4 increases. The rate of the forward reaction increases and the reaction shifts to the right. 2. Given the following data for the equilibrium: Fe 3+ + SCN - Fe(SCN) 2+ a) Write the expression for the equilibrium constant K eq K eq = [Fe(SCN) 2+ ] / ([Fe 3+ ][SCN - ]) b) Find the values for the equilibrium constant for tube 2. K eq = [1.97x10-6 ] / ([4.8x10-5 ][1.98x10-4 ]) = 207 Enzyme Kinetics 1. For the 10 mm sample, calculate the concentration of benzoquinone for each of the four time points. For the 30 s point, c =A/(ab) = 0.172/(10,300*1.08) = 1.55E-05 M For the 90 s point, c =A/(ab) = 0.564/(10,300*1.08) = 5.07E-05 M 2. Using the 30 s and 90 s data from the 10 mm catechol assay, calculate the approximate Rate (or [benzoquinone]/ t). Express your rate in [benzoquinone]/sec. Rate = (5.07E-05 M E-05 M)/(90 s -30 s) = 3.52E-05 M/60 s = 5.87E-07 M/s 3. Calculate the relative % activity of your boiled enzyme. Part/whole x100% 1.31E-07/7.22E-07 x 100% = 18.1% 4. Explain the results of question 3 in terms of protein structure. See answers to Enz. Kinetics post-lab question Using the data from the accompanying graph, approximately how long of a boiling time was required to reduce enzyme activity to 20% of its original value? Show the lines on graph that help in this determination.

5 Take the unboiled sample activity, 2.94E-07 and find 20% of that value or 5.88E-08. Locate that value on the y-axis and draw a horizontal line over to the graph line, then drop a vertical line to the x-axis and read the value. Should be ~14 seconds. DNA I 1. For example, what shape is used to represent a female? Circle 2. DNA is located in the nucleus and mitochondria. 3. What disease did Alexei of the Romanovs suffer from? hemophilia What kind of protein does not function properly in individuals with this disease? clotting factors 4. The table below contains bases from specific regions of mitochondrial DNA from Fred Genetico and four other people. Which people shown do not share the same maternal ancestor with Fred (a great grandmother of Fred s)? Explain. Comparing Bases Present in Particular Locations sample location 1 location 2 location 3 location 4 location 5 Fred T C C A T person 1 T C C A T person 2 T C G T T person 3 A C G C T person 4 T C C A T Persons 2 and 3 are not related to Fred Genetico. Their sequence differs from his at 2 or 3 locations. It would be seriously unlikely to have mutations at so many locations in a short stretch of mitochondrial DNA over a few generations time.

3. Calculate the percent yield if you started with 1.56 g of copper wire and recovered 0.88 g of copper. 4. What was the color of CuO?

3. Calculate the percent yield if you started with 1.56 g of copper wire and recovered 0.88 g of copper. 4. What was the color of CuO? Quiz Study Guide CHEM 109 Copper, Titration, Kinetics, Equilibrium, Enzyme Kinetics, DNA I A. Review all prelab questions, reports and postlab questions. B. Work the sample questions. Remember that all

More information

Quiz Study Guide CHEM 109

Quiz Study Guide CHEM 109 Quiz Study Guide EM 109 Rep. Organic Structures, opper, Titration, Kinetics, Equilibrium, Enzyme Kinetics, DNA I A. Review all prelab questions, reports and postlab questions. B. Work the sample questions.

More information

EXPERIMENT 23 Lab Report Guidelines

EXPERIMENT 23 Lab Report Guidelines EXPERIMENT 23 Listed below are some guidelines for completing the lab report for Experiment 23: For each part, follow the procedure outlined in the lab manual. Observe all safety rules, including wearing

More information

Lab #12: Determination of a Chemical Equilibrium Constant

Lab #12: Determination of a Chemical Equilibrium Constant Lab #12: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Chemistry 3202 Pre-Public Examination May 2012 Name:

Chemistry 3202 Pre-Public Examination May 2012 Name: Chemistry 3202 Pre-Public Examination May 2012 Name: Section A: Multiple Choice This section contains 40 multiple choice covering concepts from the entire course. Please answer all multiple choice items

More information

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the equilibrium

More information

Equilibrium Multiple Choice

Equilibrium Multiple Choice Equilibrium Multiple Choice January 1999 7. Consider the following graph: When equilibrium is reached, the rate of the forward reaction is A. 0.00 mol/min B. 0.25mol/min C. 1.0 mol/min D. 3.0 mol/min 8.

More information

8. The table below describes two different reactions in which Reaction 1 is faster. What accounts for this observation? Reaction 1 Reaction 2.

8. The table below describes two different reactions in which Reaction 1 is faster. What accounts for this observation? Reaction 1 Reaction 2. Public Review - Rates and Equilibrium June 2005 1. What does X represent in the diagram below? (A) activation energy for the forward reaction (B) activation energy for the reverse reaction (C) heat of

More information

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be:

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be: Name: Unit Test CHEMICAL EQUILIBRIUM Date: _ 50 marks total I. Multiple Choice 15 marks 1. Reactions that can proceed in both the forward and reverse directions are said to be: A. complete B. reversible

More information

John Abbott College Department of Chemistry Chemistry 202-NYB-05 Sample Final Exam

John Abbott College Department of Chemistry Chemistry 202-NYB-05 Sample Final Exam John Abbott College Department of Chemistry Chemistry 202-NYB-05 Sample Final Exam Please Note: 1. Available space for answers has been removed from some questions to conserve space. 2. The questions begin

More information

Chemistry 12 August 2008 Form A Provincial Examination Answer Key

Chemistry 12 August 2008 Form A Provincial Examination Answer Key Cognitive Processes K = Knowledge U = Understanding H = Higher Mental Processes Topics 1. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation Reduction

More information

Equilibrium Written Response

Equilibrium Written Response Equilibrium Written Response January 1998 2. Consider the following equilibrium: CS2 (g) + 3Cl2 (g) CCl4 (g) + S2Cl2 (g) ΔH = -238 kj a) Sketch a potential energy diagram for the reaction above and label

More information

Equilibrium Written Response

Equilibrium Written Response Equilibrium Written Response January 1998 2. Consider the following equilibrium: CS2 (g) + 3Cl2 (g) CCl4 (g) + S2Cl2 (g) H = -238 kj a) Sketch a potential energy diagram for the reaction above and label

More information

*You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet.

*You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet. Name Period 1 *You should work in groups of no more than 3 students. Each individual is responsible for all data and information in their own booklet. Pre-Lab Questions: What is the molarity equation?

More information

Final NYB Fall 2009 Condensed Version (Working Spaces Removed)

Final NYB Fall 2009 Condensed Version (Working Spaces Removed) Please Note: 1. There was a set of 15 multiple choice questions that were present on this exam, but have not been reproduced for the practice version. It would have taken approximately 10-30 minutes to

More information

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Lab 4. Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Prelab Assignment Before coming to lab: After reading "Lab Notebook Policy and Format for Lab Reports" handout, complete

More information

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+ AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2 Lab days: Thursday and Friday, February 22-23, 2018 Lab due: Tuesday, February 27, 2018 Goal (list in your lab book): The

More information

SCH4U: Practice Exam

SCH4U: Practice Exam SCHU_07-08 SCHU: Practice Exam Energy in Chemistry 1. Which of the following correctly describes a reaction that absorbs heat from the surroundings? a. the reaction is endothermic b. H for this reaction

More information

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k =

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k = Method I. Analysis by Spectrophotometric Measurement We ll be using the spectrophotometer ( Spec 20 ) to compare absorbances (A) indicated by the equipment and known concentrations of iron(iii) thiocyanate

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

Exploring Equilibria

Exploring Equilibria Exploring Equilibria Name: Chem 112 This experiment explores a variety of equilibrium systems. A reference Table of Reactions is attached to aid in your explanations. In this qualitative lab, your observations,

More information

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg )

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg ) UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg 818-829) *Remedial questions on Concentration of Solutions (3.10 pg 130-135) 3:1. ATTEMPT QUESTIONS a) 3.109 b) 3.113 c) 3.115 d) 3.118 on

More information

2] What is the difference between the end point and equivalence point for a monobasicmonoacid

2] What is the difference between the end point and equivalence point for a monobasicmonoacid 4 Titrations modified October 9, 2013 1] A solution of 0.100 M AgNO 3 is used to titrate a 100.00 ml solution of 0.100 M KCl. The K sp of AgCl is 1.8e-11 a) What is pag if 50.00 ml of the titrant is added

More information

Chemistry 12. Resource Exam B. Exam Booklet

Chemistry 12. Resource Exam B. Exam Booklet Chemistry 12 Resource Exam B Exam Booklet Contents: 21 pages Examination: 2 hours 50 multiple-choice questions in the Exam Booklet Additional Time Permitted: 60 minutes Province of British Columbia PART

More information

11 Equilibrium. S T A T I O N 1 K e q E X P R E S S I O N S S T A T I O N 2 G R A P H S. South Pasadena Honors Chemistry 11 Equilibrium Period Date

11 Equilibrium. S T A T I O N 1 K e q E X P R E S S I O N S S T A T I O N 2 G R A P H S. South Pasadena Honors Chemistry 11 Equilibrium Period Date South Pasadena Honors Chemistry Name 11 Equilibrium Period Date S T A T I O N 1 K e q E X P R E S S I O N S Write the expression for the equilibrium constant for the reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Purpose: The equilibrium constant for the formation of iron(iii) thiocyanate complex ion is to be determined. Introduction: In the previous week,

More information

DYNAMIC EQUILIBRIUM STUDY GUIDE multiple choice

DYNAMIC EQUILIBRIUM STUDY GUIDE multiple choice DYNAMIC EQUILIBRIUM STUDY GUIDE multiple choice Multiple Choice Section: This study guide is a compilation of questions from provincial exams since April 1994. I urge you to become intimately familiar

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Chemistry 12 August 2002 Provincial Examination

Chemistry 12 August 2002 Provincial Examination Chemistry 12 August 2002 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers 1. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation

More information

Class Results Simulator:

Class Results   Simulator: Class Results http://chemconnections.org/general/chem120/equil-graph.html Simulator: http://chemconnections.org/java/equilibrium/ http://chemconnections.org/general/chem120/equil-graph.html The changes

More information

All Things Being Equal!

All Things Being Equal! All Things Being Equal! OBJECTIVES To study equilibrium and understand what happens to the concentration of reactants and products in an equilibrium system. PROBLEM / QUESTION What does it mean to have

More information

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS

PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS INSERT STUDENT I.D. NUMBER (PEN) STICKER IN THIS SPACE APRIL 1996 PROVINCIAL EXAMINATION MINISTRY OF EDUCATION CHEMISTRY 12 GENERAL INSTRUCTIONS 1. Insert the stickers with your Student I.D. Number (PEN)

More information

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids

Dilutions 4/8/2013. Steps involved in preparing solutions from pure solids. Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Steps involved in preparing solutions from pure solids Calculate the amount of solid required Weigh out the solid Place in an appropriate volumetric

More information

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / /

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / / Aubrey High School PreAP -Chemistry 9 Equilibrium Name Period Date / / 9.2 Determination of Keq Lab - Equilibrium Problems Lab Overview In a reversible reaction, equilibrium is the state at which the rates

More information

ELECTRON CONFIGURATION

ELECTRON CONFIGURATION CHEMISTRY WKST SEMESTER 2 REVIEW NAME: DIRECTIONS: Answer these on another sheet of paper. ELECTRON CONFIGURATION 1) Tell how many orbitals are in the following: a) 4f sublevel b) 8d sublevel c) 3 rd energy

More information

Chemistry 12 January 2000 Provincial Examination

Chemistry 12 January 2000 Provincial Examination Chemistry 2 January 2000 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation

More information

Date: Names: Section: To investigate various chemical equilibria and explain them using Le Chatelier s Principle. Equilibrium I

Date: Names: Section: To investigate various chemical equilibria and explain them using Le Chatelier s Principle. Equilibrium I Chem 1105 EQUILIBRIUM Date: Names: Section: OBJECTIVE: PROCEDURE: To investigate various chemical equilibria and explain them using Le Chatelier s Principle. As in Chem. 1105 lab manual, pp. Equilibrium

More information

DETERMINATION OF ACETIC ACID IN VINEGAR

DETERMINATION OF ACETIC ACID IN VINEGAR DETERMINATION OF ACETIC ACID IN VINEGAR 1 INTRODUCTION Juices from plants and fruits contain sugar. When these juices are fermented, the sugar molecules are converted into ethyl alcohol molecules (C 2

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview Measured volume of several solutions having known concentrations of reactants are mixed in a series of trials. The time required for a visible color change to appear

More information

Lab 04 Equilibrium Constant of Ferric Thiocyanate

Lab 04 Equilibrium Constant of Ferric Thiocyanate Lab 04 Equilibrium Constant of Ferric Thiocyanate Introduction This experiment will give you an opportunity to determine the equilibrium constant for the formation of Fe(SCN) 2+. The experiment will require

More information

The Titration of Acetic Acid in Vinegar

The Titration of Acetic Acid in Vinegar Experiment 22 Revision 1.0 The Titration of Acetic Acid in Vinegar To learn about Volumetric Analysis and Titration. To learn about Aceticc Acid and Vinegar. To learn about Weak Acids. To learn about Equilibria

More information

CHE 113 FINAL EXAMINATION December 11, 2012

CHE 113 FINAL EXAMINATION December 11, 2012 CHE 113 FINAL EXAMINATION December 11, 2012 University of Kentucky Department of Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely important that you fill in the

More information

Shifts in Equilibrium: Le Châtelier s Principle

Shifts in Equilibrium: Le Châtelier s Principle 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation, react

More information

Chemistry 12 June 2003 Provincial Examination

Chemistry 12 June 2003 Provincial Examination Chemistry 12 June 2003 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers 1. Reaction Kinetics 2. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation

More information

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page find all choices before making your selection.

More information

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 Unit 2 1- The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 2- How many grams of Na 2 CO 3 (mw = 106 ) A) 318 B) 0.028 C) 134 D) 201 E) 67 in 3 moles, 3- Calculate the normal

More information

2 nd Semester Study Guide 2016

2 nd Semester Study Guide 2016 Chemistry 2 nd Semester Study Guide 2016 Name: Unit 6: Chemical Reactions and Balancing 1. Draw the remaining product 2. Write a balanced equation for the following reaction: The reaction between sodium

More information

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

Sect 7.1 Chemical Systems in Balance HMWK: Read pages SCH 4UI Unit 4 Chemical Systems and Equilibrium Chapter 7 Chemical Equilibrium Sect 7.1 Chemical Systems in Balance HMWK: Read pages 420-424 *Some reactions are reversible, ie not all reactions are as

More information

Chemistry 12 Provincial Workbook Unit 02: Chemical Equilibrium. Multiple Choice Questions

Chemistry 12 Provincial Workbook Unit 02: Chemical Equilibrium. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 0), P. 1 / 63 Chemistry 1 Provincial Workbook Unit 0: Chemical Equilibrium 1. Consider the following... Multiple Choice Questions Which of the following

More information

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT INTRODUCTION The principle underlying a spectrophotometric method of analysis involves the interaction of electromagnetic radiation

More information

1. Given the system at equilibrium: Fe 3+ (aq) + SCN (aq)

1. Given the system at equilibrium: Fe 3+ (aq) + SCN (aq) 1. Given the system at equilibrium: A) Fe 3+ (aq) + SCN (aq) FeSCN 2+ (aq) What happens to the concentrations of the three ions when some Fe 3+ ion is removed by precipitation from this aqueous solution,

More information

Student Worksheet for Buffers, Ksp, and Titrations

Student Worksheet for Buffers, Ksp, and Titrations Student Worksheet for Attempt to work the following practice problems after working through the sample problems in the videos. Answers are given on the last page(s). Relevant Equations Keq= [C]c [D] d

More information

13. Chemical Equilibria

13. Chemical Equilibria 13. Chemical Equilibria Many reactions are reversible + 3 2 All reversible reactions reach an dynamic equilibrium state. Dynamic equilibrium occurs when forward and backward reactions are occurring at

More information

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases Acids and Bases 1 UNIT 4: ACIDS & BASES OUTCOMES All important vocabulary is in Italics and bold. Outline the historical development of acid base theories. Include: Arrhenius, BronstedLowry, Lewis. Write

More information

CHE 113 MIDTERM EXAMINATION October 25, 2012

CHE 113 MIDTERM EXAMINATION October 25, 2012 CHE 113 MIDTERM EXAMINATION October 25, 2012 University of Kentucky Department of Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely important that you fill in the

More information

Part A: Multiple Choice (23 marks total)

Part A: Multiple Choice (23 marks total) Part A: Multiple Choice (23 marks total) Use the answer sheet found at the end of this examination to answer the multiple-choice questions in this section. Shade in the circle that corresponds to your

More information

If you have a Mac do whatever you have to do to play it as a slide show I don t know Macs well. Dr. Buckley

If you have a Mac do whatever you have to do to play it as a slide show I don t know Macs well. Dr. Buckley For best results please view this as a slide show. You can hit the F5 key or go to the Slide Show tab on the menu bar and click on From Beginning. Page Down and Page Up will move you through the presentation.

More information

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease? CHEMISTRY 12 UNIT II - REVIEW EQUILIBRIA Part I - Multiple Choice 1. In which of the following does the entropy decrease? A. NaCl (s) Na + (aq) + Cl (aq) B. 4 NO (g) + 6 H 2 O (g) 4 NH 3 (g) + 5 O 2 (g)

More information

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria E6 Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria Objective! Observe several interesting and colorful chemical reactions that are examples of chemical systems at equilibrium.!

More information

Science Olympiad Regional UW-Milwaukee Chemistry test 2013

Science Olympiad Regional UW-Milwaukee Chemistry test 2013 Science Olympiad Regional UW-Milwaukee Chemistry test 2013 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is another name for the representative

More information

D E T E R M I N A T I O N O F K e q L A B

D E T E R M I N A T I O N O F K e q L A B South Pasadena Honors Chemistry Name 8 Equilibrium Period Date D E T E R M I N A T I O N O F K e q L A B Lab Overview In a reversible reaction, equilibrium is the state at which the rates of forward and

More information

A is the frequency factor (related to the number of collisions)

A is the frequency factor (related to the number of collisions) Chemistry Week 10 Worksheet Notes Oregon State University Ea RT 1. Discuss k e k is the rate is the frequency factor (related to the number of collisions) Ea is the activation energy R is the gas constant

More information

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Exp. 20 - video (time: 41:13 minutes) Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Chemical Equilibrium Previously we have assumed that chemical reactions

More information

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy CHEM 0012 Lab 7: Determination of an Equilibrium Constant using Spectroscopy 1 Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN- (aq)

More information

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book)

Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Chemistry 1A, Spring 2007 Midterm Exam 3 April 9, 2007 (90 min, closed book) Name: KEY SID: TA Name: 1.) Write your name on every page of this exam. 2.) This exam has 34 multiple choice questions. Fill

More information

CHE FA Final Exam

CHE FA Final Exam CHE 113 2015 FA Final Exam Your Name: Your ID: # of Questions: 40 Date and Time of Exam Creation: Sun, Dec 13, 2015 @ 18:44:14 Total Exam Points: 40.00 attachment_for_pubexamuid_lnxp114500502548802289xx_46.jpg

More information

Problem Set on Tracking Reaction Progress

Problem Set on Tracking Reaction Progress CHM 103 Problem Set on Tracking Reaction Progress Sinex 1. Consider the titration of a weak acid, HX, as given below. A weak acid sample of 216.1 mg was dissolved to make 15.00 ml solution. This was titrated

More information

Experiment Nein! Acid Base. Equilibria. Last Week. This week. CH 204 Fall 2008 Dr. Brian Anderson

Experiment Nein! Acid Base. Equilibria. Last Week. This week. CH 204 Fall 2008 Dr. Brian Anderson Slide 1 Experiment Nein! Acid Base Equilibria CH 204 Fall 2008 Dr. Brian Anderson Slide 2 Last Week Heat in chemical reactions: heat is a measurable quantity produced and consumed in stoichiometric amounts

More information

4.16. Neutralization of Acids and Base: Acid-Base Titrations

4.16. Neutralization of Acids and Base: Acid-Base Titrations 4.16. Neutralization of Acids and Base: Acid-Base Titrations A.Review Titration: used to measure exact amounts of acid added to base (or vice versa) Buret Moles of standard Moles of sample Standard Solution

More information

MARK ALL WORK AND ANSWERS IN THIS BOOKLET CLEARLY FOR FULL CREDIT

MARK ALL WORK AND ANSWERS IN THIS BOOKLET CLEARLY FOR FULL CREDIT Fishers HS (IN) - 1 Chemistry Lab - Test Exchange School: Team #: Time: 50 minutes Instructions: MARK ALL WORK AND ANSWERS IN THIS BOOKLET CLEARLY FOR FULL CREDIT Answers are to be rounded to 3 significant

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Lab 13.3 Determining K c via Colorimetry

Lab 13.3 Determining K c via Colorimetry BACKGROUND Most chemical reactions are reversible. They will proceed forward to a point where the products they have formed begin to collide with one another and reform the original reactants. When the

More information

Chemistry Midterm Review. Topics:

Chemistry Midterm Review. Topics: Chemistry Midterm Review Unit 1: laboratory equipment and safety rules accuracy vs precision scientific method: observation, hypothesis. experimental design: independent vs dependent variables, control

More information

CHEMISTRY 12 JUNE 2000 STUDENT INSTRUCTIONS

CHEMISTRY 12 JUNE 2000 STUDENT INSTRUCTIONS Insert Personal Education Number (PEN) here. Insert only pre-printed PEN label here. STUDENT INSTRUCTIONS 1. Insert the stickers with your Personal Education Number (PEN) in the allotted spaces above.

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

TWO ENZYME CATALYSIS OVERVIEW OBJECTIVES INTRODUCTION

TWO ENZYME CATALYSIS OVERVIEW OBJECTIVES INTRODUCTION TWO ENZYME CATALYSS OVERVEW n this lab you will: 1. observe the conversion of hydrogen peroxide (H 2 0 2 ) to water and oxygen gas by the enzyme catalase, and 2. measure the amount of oxygen generated

More information

Chemistry 12 August 2000 Provincial Examination

Chemistry 12 August 2000 Provincial Examination Chemistry August 000 Provincial Examination ANSWER KEY / SCORING GUIDE CURRICULUM: Organizers. Reaction Kinetics. Dynamic Equilibrium 3. Solubility Equilibria 4. Acids, Bases, and Salts 5. Oxidation Ð

More information

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving:

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving: NCEA Chemistry 3.6 Aqueous Systems AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems Aqueous systems are limited to those involving sparingly soluble ionic solids Equilibrium

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemistry 11 Notes on Chemical Reactions Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred:

More information

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY

CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY CHEMISTRY 130 General Chemistry I OXIDATION-REDUCTION CHEMISTRY A solution of potassium permanganate is pink. [1] Color changes can often be used to monitor chemical reactions. DEPARTMENT OF CHEMISTRY

More information

Experimental Procedure Overview

Experimental Procedure Overview Lab 4: Determination of an Equilibrium Constant using Spectroscopy Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN (aq) Fe(SCN) 2+ (aq)

More information

Practice Examination #8B

Practice Examination #8B Practice Examination #8B Name: Date: 1. Equal volumes of 0.5 M HCl and 0.5 M NaOH are mixed. The total volume of the resulting mixture is 2 liters. The ph of the resulting solution is 1. A. 1 B. 2 C. 7

More information

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Complete the following for Pre-Lab on a clean sheet of paper: (1) In your own words, explain the following: a. why the I 2 concentration

More information

#11. Chemical Equilibrium

#11. Chemical Equilibrium #11. Chemical Equilibrium Goal To observe and explain equilibrium shifts based on Le Chatelier s Principle. Introduction In any chemical reaction, reactants are converted to products. In some cases, some

More information

REACTION RATES AND EQUILIBRIUM

REACTION RATES AND EQUILIBRIUM Name Date Class 18 REACTION RATES AND EQUILIBRIUM SECTION 18.1 RATES OF REACTION (pages 541 547) This section explains what is meant by the rate of a chemical reaction. It also uses collision theory to

More information

Experiment #7. Titration of Vinegar

Experiment #7. Titration of Vinegar Experiment #7. Titration of Vinegar Goals 1. To determine the mass percent of acetic acid in a solution via titration. 2. To master the technique of titration. Introduction Vinegar is a common household

More information

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3 BRCC CHM 101 Chapter 9 Notes (Chapter 8 in older text versions) Page 1 of 9 Chapter 9: Acids and Bases Arrhenius Definitions more than 100 years old Acid a substance that produces H + in water (H + is

More information

CHEMpossible. Final Exam Review

CHEMpossible. Final Exam Review CHEMpossible Final Exam Review 1. Given the following pair of reactions and their equilibrium constants: 2NO 2 (g) 2NO (g) + O 2 (g) K c = 15.5 2NO (g) + Cl 2 (g) 2 NOCl (g) K c = 3.20 10-3 Calculate a

More information

5.1 Module 1: Rates, Equilibrium and ph

5.1 Module 1: Rates, Equilibrium and ph 5.1 Module 1: Rates, Equilibrium and ph 5.1.1 How Fast? The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm 3 s 1 When a graph of concentration

More information

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations

Chapter 16: Applications of Aqueous Equilibrium Part 2. Acid-Base Titrations Chapter 16: Applications of Aqueous Equilibrium Part 2 Acid-Base Titrations When you add an acid and a base together, a neutralization rxn occurs. In the lab, we do neutralization rxns all the time as

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

Chapter Test A. Chapter: Chemical Equilibrium

Chapter Test A. Chapter: Chemical Equilibrium Assessment Chapter Test A Chapter: Chemical Equilibrium In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A 15.0 ml volume

More information

CONCENTRATION UNITS 0.800? concentration? What is the molar concentration of mercury? solution contain? 0.150? CHANGING CONCENTRATION UNITS

CONCENTRATION UNITS 0.800? concentration? What is the molar concentration of mercury? solution contain? 0.150? CHANGING CONCENTRATION UNITS CONCENTRATION UNITS 1. How many grams of CuSO 4 are required to make 650. ml of a 0.115 M solution? 2. How many grams of NaCl are required to prepare 250. ml of a 0.241 M solution? 3. How many grams of

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test tube

More information

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information