AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+

Size: px
Start display at page:

Download "AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+"

Transcription

1 AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2 Lab days: Thursday and Friday, February 22-23, 2018 Lab due: Tuesday, February 27, 2018 Goal (list in your lab book): The goal of this lab is to determine the equilibrium constant of the reaction of iron (III) ions and thiocyanate ions forming the complex ion FeSCN 2. Background (DON T write in your lab book): There are many reactions that take place in solution that are equilibrium reactions. They do not go to completion; both the forward and reverse reactions are occurring, and both reactants and products are always present. Examples of this type of reaction include weak acids, such as acetic acid, dissociating in water; weak bases, such as ammonia, reacting with water; and the formation of complex ions in which a metal ion combines with one or more negative ions. In this lab, a reaction involving the formation of complex ions from solutions of iron (III) and thiocyanate ions will be studied, and the equilibrium constant of the reaction will be determined. Chemical reactions are driven to completion by two forces: a decrease in energy (exothermic reactions), or an increase in entropy. If both an energy decrease and an entropy increase occur in the forward reaction, the reaction will go to completion. An example of this type of reaction is combustion the reaction is exothermic and has an increase in entropy, so it goes to completion. However, when an energy decrease drives a reaction in one direction and an entropy increase drives it in the reverse direction, equilibrium will result. The reaction will not go to completion, but it will reach a point where both reactants and products are present in a fixed ratio of concentrations. The reaction will continue at the same rate in both forward and reverse directions, and the concentrations of products and reactants will stay constant. These ideas can be expressed mathematically in the form of the equilibrium constant. Consider the following general equation for a reversible chemical reaction: aa bb cc dd The equilibrium constant, K eq, for this general equation is, where square brackets refer to the molar concentrations of the reactants and products at equilibrium. The equilibrium constant gets its name from the fact that for any reversible reaction, the value of K eq is a constant at a particular temperature. The concentrations of reactants and products at equilibrium vary, depending on the initial amounts of materials present. The special ratio of products to reactants described by the K eq is always the same as long as the system has reached equilibrium and the temperature does not change. The value of K eq can be calculated if the concentrations of reactants and products at equilibrium are known. The reversible chemical reaction of iron (III) ions with thiocyanate ions provides a convenient example for determining the equilibrium constant of a reaction. Fe 3 and SCN - ions combine

2 to form the FeSCN 2 ion according to the equation Fe 3 (aq) SCN - (aq) FeSCN 2 (aq) pale yellow colorless blood-red The value of K eq can be determined experimentally by mixing known concentrations of Fe 3 and SCN - ions and measuring the concentration of FeSCN 2 ions at equilibrium. The concentration of FeSCN 2 complex ions at equilibrium is proportional to the intensity of the red color. A colorimeter will be used to measure the concentration of FeSCN 2 ions using Beer s Law (also called the Beer-Lambert Law), A = a b c where A is the absorbance, a is the molar absorptivity of the sample, b is the cell path length, and c is the molar concentration of the substance absorbing the light. A graph of absorption verses concentration is a straight line. This experiment has two parts. In the first part, a series of reference solutions and test solutions are prepared. The reference solutions are prepared by mixing a large excess of Fe 3 ions with known, smaller amounts of SCN - ions. According to Le Châtelier s Principle, the large excess of iron (III) ions should effectively convert all of the thiocyanate ions to the blood-red FeSCN 2 complex ions. The concentration of FeSCN 2 complex ions in the reference solutions is essentially equal to the initial concentration of SCN - ions. The test solutions are prepared by mixing a constant amount of Fe 3 ions with different amounts of SCN - ions. These solutions contain unknown concentrations of FeSCN 2 ions at equilibrium. In the second part, the absorbances of both the reference solutions and the test solutions are measured by a colorimeter. A calibration curve is constructed from the absorption values of the reference solutions. The unknown concentrations of FeSCN 2 in the test solutions are calculated by comparing their absorbances to the absorbance values on the calibration curve. These values are then used to determine the equilibrium concentrations and the equilibrium constant for the reaction. Research questions (please answer in your lab book in complete sentences): 1) Define chemical equilibrium. 2) Briefly explain Le Châtelier s Principle. 3) A similar reaction to our is Ag (aq) 2 NH 3 (aq) Ag(NH 3 ) 2 (aq) (a) Write the equilibrium constant expression K for the reaction. (b) An experiment was carried out to determine the value of the K for the reaction. The following data were collected: Initial moles of Ag = 3.6 x 10-3 mol Initial moles of NH 3 present = 6.9 x 10-3 mol Measured concentration of Ag(NH 3 ) 2 at equilibrium = 3.4 x 10-2 M Total volume of solution = 100. ml i. Calculate the number of moles of Ag(NH 3 ) 2 at equilibrium ii. Calculate the number of moles of Ag that reacted to make Ag(NH 3 ) 2 at equilibrium

3 iii. Calculate the number of unreacted moles of Ag at equilibrium. iv. Calculate the molarity of the unreacted Ag at equilibrium. v. Calculate the number of unreacted moles of NH 3 at equilibrium. vi. Calculate the molarity of the unreacted NH 3 at equilibrium. vii. Use the molarities at equilibrium to calculate the value of the equilibrium constant. 4) Use the dilution equation (M 1 V 1 = V 2 M 2 ) to calculate the concentration of the SCN - ions in the five reference solutions before any reaction occurs. (NOTE: You are solving for the diluted molarity of SCN - for each of the reference solutions. Remember the total volume will be the total of all liquids added to the sample!) 5) Use the same dilution equation to calculate the concentrations of Fe 3 and SCN - ions in each test solution after mixing them together but before any reaction occurs. (NOTE: You are solving for diluted molarities of Fe 3 and SCN - separately in each of the test solutions. Remember the total volume will be the total of all liquids added to the sample!) 6) In the first part of the lab, we will use M Fe(NO 3 ) 3 and M KSCN. Why are we using such vastly different molarities? (HINT: Read the background section!) 7) Read through the background section and the procedure. (a) Why are we preparing samples 1-5? (Be specific!) (b) Why are we preparing samples 6-10? (Be specific!) Materials (don t list in your lab book): 3 10 ml pipets 50 ml M Fe(NO 3 ) 3 in 1 M HNO 3 1 wooden test tube rack 35 ml M Fe(NO 3 ) 3 in 1 M HNO 3 1 plastic test tube rack 25 ml M KSCN x 125 mm test tubes 30 ml M KSCN 4 50 ml beakers 1 small test tube brush 1 cuvet 1 permanent marker 1 thermometer 1 LabQuest with colorimeter 10 #0 (or 00) solid rubber stoppers 1 glass stirring rod 1 Kimwipe ml waste beaker Hazards (list in your lab book): (include the safety contract and the hazards of acidified iron (III) nitrate solution and and potassium thiocyanate solution see hazard sheets at the end of this packet) Procedure (don t list in your lab book): 1) Physically and chemically clean the beakers, stirring rod, test tubes, and pipets. 2) Obtain the four solutions in separate, labeled beakers. 3) Prepare the reference solutions below: a) Label the test tubes with the Reference Soln # and your initials b) Add the listed amount of M Fe(NO 3 ) 3 solution to each of the test tubes Sample Volume of M Fe(NO 3 ) 3 solution Volume of M KSCN solution Reference sol n #1 8.0 ml 2.0 ml Reference sol n #2 7.0 ml 3.0 ml Reference sol n #3 6.0 ml 4.0 ml Reference sol n #4 5.0 ml 5.0 ml Reference sol n #5 4.0 ml 6.0 ml c) Add the listed amount of M KSCN solution to each of the test tubes

4 d) Stir each test tube with the stirring rod, cleaning and drying the stirring rod between each to prevent cross-contamination. 4) Re-clean the pipets by drawing up and releasing distilled water several times. 5) Prepare the test solutions below: a) Label the test tubes with the Test Soln # and your initials b) Use the pipets to fill the test tubes with the listed amount of chemicals Sample Volume of M Fe(NO 3 ) 3 solution Volume of M KSCN solution Volume of Distilled Water Added Test sol n #6 5.0 ml 1.0 ml 4.0 ml Test sol n #7 5.0 ml 2.0 ml 3.0 ml Test sol n #8 5.0 ml 3.0 ml 2.0 ml Test sol n #9 5.0 ml 4.0 ml 1.0 ml Test sol n # ml 5.0 ml 0.0 ml c) Stir each test tube with the stirring rod, cleaning and drying the stirring rod between each to prevent cross-contamination. 6) Measure the temperature of one of the solutions. (This will be the equilibrium temperature.) 7) Plug in the LabQuest and connect the colorimeter. 8) Fill the cuvet with distilled water. 9) Set the colorimeter at 470 nm 10) With the distilled water cuvet in the spectrophotometer, calibrate the colorimeter. 11) Measure the absorbance of each of the reference solutions at 470 nm. (NOTE: Pour the contents of each cuvet into the 250 ml waste beaker, then rinse with distilled water, then rinse twice with the next solution.) 12) Measure the absorbance of each of the test solutions at 470 nm. 13) Clean up! Post-Lab Calculations: 1) Plot molar concentrations of FeSCN 2 for the reference solutions versus absorbance. (Remember, these concentrations are the same as the SCN - concentrations you calculated in research question 4.) Put a best-fit straight line/trendline through the data points. Include the origin as a valid point. Record the equation of the trendline and its R or R 2 value. Sample [FeSCN 2 ] Absorbance Reference sol n #1 Reference sol n #2 Reference sol n #3 Reference sol n #4 Reference sol n #5 Equation of best-fit line: R or R 2 :

5 2) Make a results table in your lab book with this information: Sample Abs [FeSCN 2 ] eq [Fe 3 ] eq [SCN - ] eq K eq Test sol n #6 Test sol n #7 Test sol n #8 Test sol n #9 Test sol n #10 Average value 3) Determine the unknown concentration of FeSCN 2 in each test solution by using the graph/equation and your test solution absorbances 4) Record the FeSCN 2 concentration for each test solution in the results table. 5) Write the K eq expression for this reaction (just a formula, not a number) 6) Draw a RICE table for each of the five test solutions. Use the RICE table to calculate the equilibrium concentration of Fe 3 ions and SCN - ions in each test solution. Show all work. 7) Calculate the equilibrium constant for each test solution using the formula you wrote in postlab question #5. Show all work. 8) Put the results of post-lab questions #3-7 in your results table. 9) Calculate the mean (average) value of the equilibrium constant for the five test solutions. 10) Was your equilibrium constant actually constant? Should it have been constant? Explain your answer. 11) What does the calculated equilibrium constant indicate about the degree of completion of the reaction? (At equilibrium, are there mostly products, reactants, or both?) 12) Explain how the colorimeter worked during this lab and how it was used to determine the answer. 13) What measurement(s) limited the number of significant figures in this lab? 14) What were the problems in this lab? How could this lab be improved? Lab handout based on the experiment The Determination of K eq for FeSCN 2 in Laboratory Experiments for Advanced Placement Chemistry (Second Edition) by S.A. Vonderbrink (Flinn Scientific, 2006) and Chemical Equilibrium: Finding a Constant, K c in Chemistry with Vernier (4 th Edition) by Holmquist, Randall, and Volz (Vernier Software & Technology, 2017)

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the equilibrium

More information

D E T E R M I N A T I O N O F K e q L A B

D E T E R M I N A T I O N O F K e q L A B South Pasadena Honors Chemistry Name 8 Equilibrium Period Date D E T E R M I N A T I O N O F K e q L A B Lab Overview In a reversible reaction, equilibrium is the state at which the rates of forward and

More information

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / /

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / / Aubrey High School PreAP -Chemistry 9 Equilibrium Name Period Date / / 9.2 Determination of Keq Lab - Equilibrium Problems Lab Overview In a reversible reaction, equilibrium is the state at which the rates

More information

Experiment #7. Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant Experiment #7. Determination of an Equilibrium Constant Introduction It is frequently assumed that reactions go to completion, that all of the reactants are converted into products. Most chemical reactions

More information

Lab #12: Determination of a Chemical Equilibrium Constant

Lab #12: Determination of a Chemical Equilibrium Constant Lab #12: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

aa + bb cc + dd Equation 1

aa + bb cc + dd Equation 1 Experiment: The Determination of K eq for FeSCN 2+ Introduction For any reversible chemical reaction at equilibrium, the concentrations of all reactants and products are constant or stable. There is no

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Lab12 Chemical Equilibrium: Finding a Constant, Kc The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Computer 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN -

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Calculator 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Spectrophotometric Determination of an Equilibrium Constant

Spectrophotometric Determination of an Equilibrium Constant Spectrophotometric Determination of an Equilibrium Constant v021214 Objective To determine the equilibrium constant (K c ) for the reaction of iron (III) ion with thiocyanate (SCN - ) to form the thiocyanatoiron(iii)

More information

DETERMINATION OF AN EQUILIBRIUM CONSTANT

DETERMINATION OF AN EQUILIBRIUM CONSTANT DETERMINATION OF AN EQUILIBRIUM CONSTANT In this experiment the equilibrium properties of the reaction between the iron(iii) ion and the thiocyanate ion will be studied. The relevant chemical equation

More information

K = [C]c [D] d [A] a [B] b (5)

K = [C]c [D] d [A] a [B] b (5) Chem 1B Dr. White 19 Experiment 3: Determination of an Equilibrium Constant Objectives To determine the equilibrium constant for a reaction. Introduction Equilibrium is a dynamic state in which, at a given

More information

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Purpose: The equilibrium constant for the formation of iron(iii) thiocyanate complex ion is to be determined. Introduction: In the previous week,

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemistry 102 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Lab 13.3 Determining K c via Colorimetry

Lab 13.3 Determining K c via Colorimetry BACKGROUND Most chemical reactions are reversible. They will proceed forward to a point where the products they have formed begin to collide with one another and reform the original reactants. When the

More information

THE IRON(III) THIOCYANATE REACTION SYSTEM

THE IRON(III) THIOCYANATE REACTION SYSTEM Experiment 7 THE IRON(III) THIOCYANATE REACTION SYSTEM Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate a novel reaction system by utilizing a spectrophotometer.

More information

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018 AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide Lab days: Thursday and Friday, February 1-2, 2018 Lab due: TBD Goal (list in your lab book): The goal of this lab is to

More information

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Lab 4. Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Prelab Assignment Before coming to lab: After reading "Lab Notebook Policy and Format for Lab Reports" handout, complete

More information

Lab 04 Equilibrium Constant of Ferric Thiocyanate

Lab 04 Equilibrium Constant of Ferric Thiocyanate Lab 04 Equilibrium Constant of Ferric Thiocyanate Introduction This experiment will give you an opportunity to determine the equilibrium constant for the formation of Fe(SCN) 2+. The experiment will require

More information

Experiment 7: SIMULTANEOUS EQUILIBRIA

Experiment 7: SIMULTANEOUS EQUILIBRIA Experiment 7: SIMULTANEOUS EQUILIBRIA Purpose: A qualitative view of chemical equilibrium is explored based on the reaction of iron(iii) ion and thiocyanate ion to form the iron(iii) thiocyanate complex

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Name Team Name CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations

More information

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy CHEM 0012 Lab 7: Determination of an Equilibrium Constant using Spectroscopy 1 Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN- (aq)

More information

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry AP LAB 13a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test tube

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant LabQuest 10 The equilibrium state of a chemical reaction can be characterized by quantitatively defining its equilibrium constant, Keq. In this experiment, you will determine the value of Keq for the reaction

More information

#11. Chemical Equilibrium

#11. Chemical Equilibrium #11. Chemical Equilibrium Goal To observe and explain equilibrium shifts based on Le Chatelier s Principle. Introduction In any chemical reaction, reactants are converted to products. In some cases, some

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

of the ferric thiocyanate. This was done by creating the solutions and putting them into a

of the ferric thiocyanate. This was done by creating the solutions and putting them into a Introduction: The equation of the reaction is Fe 3+ (aq) + SCN - (aq) Fe(NCS) 2+ (aq). The objective of this lab was to determine the equilibrium constant (K) for the formation of the ferric thiocyanate.

More information

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg )

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg ) UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg 818-829) *Remedial questions on Concentration of Solutions (3.10 pg 130-135) 3:1. ATTEMPT QUESTIONS a) 3.109 b) 3.113 c) 3.115 d) 3.118 on

More information

Experiment 12H, Parts A and B

Experiment 12H, Parts A and B Experiment 12H, Parts A and B AHRM 8/17 PRINCIPLES OF EQUILIBRIUM AND THERMODYNAMICS MATERIALS: PURPOSE: 0.0200 M Fe(NO 3 ) 3 in 1 M HNO 3, 0.000200 M KSCN, 2.0 M HNO 3, solid Fe(NO 3 ) 3. 9H 2 O with

More information

HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry HONORS LAB 11a: Le Chatelier's Principle ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry Aim To investigate Le Chatelier's Principle Apparatus Test tubes, 100. ml beaker, stirring rod, test

More information

Experimental Procedure Overview

Experimental Procedure Overview Lab 4: Determination of an Equilibrium Constant using Spectroscopy Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN (aq) Fe(SCN) 2+ (aq)

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant 7 Determination of an Equilibrium Constant Introduction When chemical substances react, the reaction typically does not go to completion. Rather, the system goes to some intermediate state in which the

More information

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract:

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract: Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert Abstract: This lab was performed to find the chemical equilibrium constant K c for the reaction Fe 3+ + SCN FeSCN 2+ using

More information

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer Computer The Determination of 0 an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT INTRODUCTION The principle underlying a spectrophotometric method of analysis involves the interaction of electromagnetic radiation

More information

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant CHEMISTRY 135 General Chemistry II Determination of an Equilibrium Constant Show above is a laboratory sample from chemistry, not phlebotomy. [1] Is the bloody-looking product the main component of this

More information

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT C H E M I S T R Y 1 5 0 Chemistry for Engineers DETERMINATION OF AN EQUILIBRIUM CONSTANT DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Determination of an Equilibrium Constant Introduction A system is at

More information

AP Chemistry Laboratory #18: Buffering in Household Products. Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018

AP Chemistry Laboratory #18: Buffering in Household Products. Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018 AP Chemistry Laboratory #18: Buffering in Household Products Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018 Goals (list in your lab book): The goals of this lab are to experiment

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview One set of solutions having known molar concentrations of FeNCS 2+ is prepared for a calibration curve, a plot of absorbance versus concentration. A second set of

More information

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k =

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k = Method I. Analysis by Spectrophotometric Measurement We ll be using the spectrophotometer ( Spec 20 ) to compare absorbances (A) indicated by the equipment and known concentrations of iron(iii) thiocyanate

More information

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Experiment 7B THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate the relationship between the equilibrium

More information

EXPERIMENT 6: Photometric Determination of an Equilibrium Constant

EXPERIMENT 6: Photometric Determination of an Equilibrium Constant EXPERIMENT 6: Photometric Determination of an Equilibrium Constant The following preparatory questions should be answered before coming to class. They are intended to introduce you to several ideas important

More information

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry Introduction In this lab you will experimentally determine the equilibrium constant with respect

More information

EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT The following preparatory questions should be answered before coming to class. They are intended to introduce you to several ideas important

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS To measure the molar solubility of a sparingly soluble salt in water. To

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 I. Introduction Equilibrium Consider the following situation: It is rush hour

More information

2 (aq) [FeSCN [Fe 3JSCN] Figure 1

2 (aq) [FeSCN [Fe 3JSCN] Figure 1 The Determination of an Equilibrium Constant Computer Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

THE THERMODYNAMICS OF POTASSIUM NITRATE DISSOLVING IN WATER V010516

THE THERMODYNAMICS OF POTASSIUM NITRATE DISSOLVING IN WATER V010516 THE THERMODYNAMICS OF POTASSIUM NITRATE DISSOLVING IN WATER V010516 OBJECTIVE The ΔG, ΔH and ΔS of the potassium nitrate (KNO3) dissolving reaction will be determined by measuring the equilibrium constant

More information

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction

Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Exp. 20 - video (time: 41:13 minutes) Exp. 20: Spectrophotometric Analysis: Determination of the Equilibrium Constant for a Reaction Chemical Equilibrium Previously we have assumed that chemical reactions

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

All Things Being Equal!

All Things Being Equal! All Things Being Equal! OBJECTIVES To study equilibrium and understand what happens to the concentration of reactants and products in an equilibrium system. PROBLEM / QUESTION What does it mean to have

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Lab #11: Heats of Reaction and Hess s Law Name: Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #11: Heats of Reaction and Hess s Law Name: Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #11: Heats of Reaction and Hess s Law Name: _ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the heat of reaction of burning

More information

Project: Chemical Equilibrium Lab

Project: Chemical Equilibrium Lab Project: Chemical Equilibrium Lab Potential Credits: /20 Name: Goal and Instructions: To observe the macroscopic properties of chemical systems at equilibrium and to explain the observations obtained by

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

Aqueous Balance: Equilibrium

Aqueous Balance: Equilibrium Activity 4 Aqueous Balance: Equilibrium GOALS In this activity you will: Determine ph and understand its meaning. Learn the basic principles behind equilibrium and the law of mass action. Calculate a solubility

More information

Separation and Qualitative Determination of Cations

Separation and Qualitative Determination of Cations Separation and Qualitative Determination of Cations Introduction Much of laboratory chemistry is focused on the question of how much of a given substance is contained in a sample. Sometimes, however, the

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex The data for this lab will be taken as a class to get one data set for the entire class. I. Introduction A. The Spectrophotometer

More information

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13 Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13 I. Introduction Equilibrium Consider the following situation: It is rush hour

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Amend Lab 15 Observing Equilibrium

Amend Lab 15 Observing Equilibrium Amend Lab 15 Observing Equilibrium Page 57 Add 50 ml graduated cylinder Page 58 In Procedure: steps 1 & 2 change 4 ml to 2 ml step 4 change 60 ml dilution to 30 ml steps 6, 7, 8 change 0.5 g to ½ scoop

More information

Lab Section. Observations and evidence for a chemical reaction:

Lab Section. Observations and evidence for a chemical reaction: Experiment #3: Shifting Reactions (Adapted from Exp. I-4 from Inquiries in Chemistry, 3 rd edition) Problem Statement: How can we shift reactions forward and backward? I. Data Collections and Analysis

More information

AP Chemistry Laboratory #21: Voltaic Cells. Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014

AP Chemistry Laboratory #21: Voltaic Cells. Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014 AP Chemistry Laboratory #21: Voltaic Cells Lab day: Monday, April 21, 2014 Lab due: Wednesday, April 23, 2014 Goal (list in your lab book): The goal of this lab is to determine what factors affect the

More information

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation,

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

Le Châtelier s Principle ANSWERS

Le Châtelier s Principle ANSWERS Le Châtelier s Principle ANSWERS 1. When extra NH 3 is added to the following system at equilibrium: 2. When N 2 is removed from the following system at equilibrium: A. In order to restore equilibrium,

More information

Equilibrium and Ionic Strength Effects

Equilibrium and Ionic Strength Effects Equilibrium and Ionic Strength Effects Objectives You will determine the thermodynamic equilibrium constant for the reaction between iron(iii) ion and thiocyanate ion to form iron(iii)-thiocyanate. Fe

More information

K sp = [Pb 2+ ][I ] 2 (1)

K sp = [Pb 2+ ][I ] 2 (1) Chem 1B Saddleback College Dr. White 1 Experiment 11: Determination of K sp Objectives To determine the concentration of an unknown using a Beer- Lambert Plot. To determine the K sp for a relatively insoluble

More information

Shifts in Equilibrium: Le Châtelier s Principle

Shifts in Equilibrium: Le Châtelier s Principle 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation, react

More information

Reaction mixtures that have reached equilibrium are represted by chemical equaitions with a doubleheaded

Reaction mixtures that have reached equilibrium are represted by chemical equaitions with a doubleheaded EXPERIMENT 24 LeChatelier s Principle INTRODUCTION Chemical reactions in which a product is essentially unionized, is given off as a gas, or is precipitated, may be thought of as running to completion.

More information

Experiment 1. Chemical Equilibria and Le Châtelier s Principle

Experiment 1. Chemical Equilibria and Le Châtelier s Principle Experiment 1 Chemical Equilibria and Le Châtelier s Principle A local theatre company is interested in preparing solutions that look like blood for their upcoming production of Lizzie Borden. They have

More information

11. Introduction to Acids, Bases, ph, and Buffers

11. Introduction to Acids, Bases, ph, and Buffers 11. Introduction to Acids, Bases, ph, and Buffers What you will accomplish in this experiment You ll use an acid-base indicating paper to: Determine the acidity or basicity of some common household substances

More information

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.

Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc. Introduction Kinetics of Crystal Violet Fading AP Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab (adapted by Flinn Scientific, Inc.) Crystal violet is a common, beautiful purple dye. In

More information

Exploring Equilibrium

Exploring Equilibrium Page 7 - It Works Both Ways Introduction The word equilibrium has two roots: mqui, meaning equal, and libra, meaning weight or balance. Our physical sense of equilibrium-in the motion of a seesaw or the

More information

Chemical Kinetics. The dependence of reaction rate on concentration is given by the rate law: rate = k[a] x [B] y [C] z (1)

Chemical Kinetics. The dependence of reaction rate on concentration is given by the rate law: rate = k[a] x [B] y [C] z (1) Chemical Kinetics Special mention goes to Ms. Rebecca Mack who single-handedly developed this experiment so that you could have a better understanding of kinetics. Introduction Chemical kinetics is the

More information

Chemical Kinetics Prelab. 4. Why do the solutions have to be mixed quickly before measuring the absorbance data?

Chemical Kinetics Prelab. 4. Why do the solutions have to be mixed quickly before measuring the absorbance data? 1. What is the purpose of this experiment? Chemical Kinetics Prelab 2. What is the function of SCN in the experiment? 3. Why do you discard the last data points of the kinetic runs? 4. Why do the solutions

More information

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria

Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria E6 Chemical Equilibrium: Le Chatelier s Principle Examples of Chemical Equilibria Objective! Observe several interesting and colorful chemical reactions that are examples of chemical systems at equilibrium.!

More information

Use the simulation at the following URL to answer the questions that follow;

Use the simulation at the following URL to answer the questions that follow; HONORS LAB 11c: Le Chatelier's Principle Simulation II Use the simulation at the following URL to answer the questions that follow; http://bit.ly/4bxfos Listen to the audio that plays once the page has

More information

EXPERIMENT 23 Lab Report Guidelines

EXPERIMENT 23 Lab Report Guidelines EXPERIMENT 23 Listed below are some guidelines for completing the lab report for Experiment 23: For each part, follow the procedure outlined in the lab manual. Observe all safety rules, including wearing

More information

Equilibrium and LeChatelier s Principle

Equilibrium and LeChatelier s Principle 1 Equilibrium and LeChatelier s Principle Purpose: To examine LeChatelier s Principle by studying disturbances applied to several equilibrium systems. Introduction Many chemical reactions reach a state

More information

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1 Determining the Concentration of a Solution: Beer s Law Computer 17 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You will use a

More information

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES Chemistry 213 A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH The objectives of this experiment are to... LEARNING OBJECTIVES study the reaction rate of crystal violet with NaOH using a Spectronic

More information

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab

Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab Introduction Kinetics of Crystal Violet Fading AP* Chemistry Big Idea 4, Investigation 11 An Advanced Inquiry Lab Catalog o. AP7644S Publication o. 7644S Crystal violet is a common, beautiful purple dye.

More information

Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium

Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction

More information

Lab Q: Chemical Equilibrium: Le Chatelier s Principle

Lab Q: Chemical Equilibrium: Le Chatelier s Principle Lab Q: Chemical Equilibrium: Le Chatelier s Principle Poppy Quinlan Partner: Katie Frese February 11, 2014 CHEM 123 L10 TA: Katie Nguyen Lab Performed: January 28, 2014 Introduction: Chemical equilibrium

More information

VISIBLE SPECTROSCOPY

VISIBLE SPECTROSCOPY INTRODUCTION SPECTROPHOTOMETRY OF Co 2+ (Revised: 1-24-93) In this experiment, the Beer-Lambert Law, A = åcl, will be applied to a series of aqueous solutions of CoCl 2. The pink color of the solutions

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview Measured volume of several solutions having known concentrations of reactants are mixed in a series of trials. The time required for a visible color change to appear

More information

Lab #14: Qualitative Analysis of Cations and Anions

Lab #14: Qualitative Analysis of Cations and Anions Lab #14: Qualitative Analysis of Cations and Anions Objectives: 1. To understand the rationale and the procedure behind the separation for various cations and anions. 2. To perform qualitative analysis

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases PURPOSE To investigate the resulting ph s of different mixtures of acid and base solutions. GOALS To calculate the ph of pure acid and base solutions. To calculate the ph of

More information

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION EXPERIMENT 23 Determination of the Formula of a Complex Ion INTRODUCTION Metal ions, especially transition metal ions, possess the ability to form complexes (as shown below) with ions, organic and inorganic

More information

(Lab 6) Extraction of Caffeine: ranking various teas and coffees by drug content

(Lab 6) Extraction of Caffeine: ranking various teas and coffees by drug content (Lab 6) Extraction of Caffeine: ranking various teas and coffees by drug content Introduction Caffeine is one of three legal, mind-altering drugs available in the U.S without a prescription. Two common

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law Vernier Spectrometer 1 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information