RATES OF POLYMERIZATION OF ACRYLATES AND METHACRYLATES IN EMULSION SYSTEMS

Size: px
Start display at page:

Download "RATES OF POLYMERIZATION OF ACRYLATES AND METHACRYLATES IN EMULSION SYSTEMS"

Transcription

1 RATES OF POLYMERIZATION OF ACRYLATES AND METHACRYLATES IN EMULSION SYSTEMS K. G. ~/ICCURDY AND K. J. LAIDLER Department of Chemistry, University of Ottawa, Ottawa, Canada Received October 3, 1963 ABSTRACT The microcalorimeter has been used to obtain rates of polymerization of a number of monomers in emulsion systems. The rates with the acrylates are consistently higher than those with the methacrylates, and this is attributed to less steric hindrance. Low rates found with monomers containing a hydroxyl group are explained as due to solvation in the initial state. In both the acrylates and methacrylates the rates go through a maximum as one goes up the series methyl: ethyl: butyl: hexyl. This is discussed in terms of inductive and steric effects. INTRODUCTION The preceding paper (I) describes a microcalorimetric study of a number of vinyl polymerizations in emulsion systems. Several investigators (2-6) have described procedures for determining rate constants on the basis of calorimetric measurements, and in particular Baumgartner and Duhaut (7) and Lueck, Beste, and Hall (8) have developed methods that are especially suitable for our technique using the Tian-Calvet microcalorimeter. Lovering and Laidler (9) have recently applied the Baumgartner-Duhaut procedure to the deternlination of alcohol-isocyanate rate constants. The inethod of Lueck, Beste, and Hall (8), which is very similar, applies specifically to the differential method, which is the one employed in the present work. EVALUATION OF THE RATE CONSTANTS Kinetics of Emulsion Polymerization The kinetic laws applicable to emulsion polymerization have been worked out in detail, and the present brief account covers only the essential points. Soap solutions such as those used in the present work, in which cetyltrimethylammonium bromide is the emulsifying agent, have been shown by McBain (10) and Harkins (11, 12) to contain micelles consisting of layers of oriented soap molecules. When substances such as the monomers used in the present investigation are added to such a soap solution they are "solubilized", which means that some of the monomer penetrates the micelles. Soine of the monomer also remains as suspended droplets in the aqueous phase. Harkins (13) proposed that in emulsion systems there are two principal loci of polymerization. Initially, when there is not much polymer present, the micelles contain largely monomer, and because the radii of the micelles are much smaller than those of the droplets the micelles present a much larger interfacial area. Most of the polymerization therefore takes place in these micelles. The process is that the free radicals generated by the initiation in the aqueous phase are captured by the micelles, and that monomer is supplied to the growing radicals froin the droplets in the surrounding solution. The micelles therefore grow larger and soon consist largely of polymer particles with soap adsorbed on them. After 2 to 3% of the monomer has been converted into polymer the micelles have in fact largely disappeared, and have been replaced by polyiner particles. From this point on, therefore, the locus of polymerization is the polymer particles. Canadian Journal of Chemistry. Volume 42 (1964)

2 826 CANADIAN JOURNAL OF CHEMISTRY. VOL A quantitative formulation of this theory was put forward by Smith and Ewart (14). Applied to the later phase of the process, when polymerizatioll is occurring in the polymer particles, the number of which has become constant, the treatment may be outlined as follows. On the average there are 1014 particles per cubic centimeter and in a typical experiment 1013 radicals are produced per cubic centimeter per second; if all of these enter the polymer particles a particle will acquire a radical once in about 10 seconds on the average. Once a radical has entered a particle it proceeds to grow by adding monomer units at a rate equal to the rate constant for the propagation process, k,, multiplied by the lnononler concentration [MI in the particles. If a radical enters a particle that already contains a radical it will at once combine with it, and from this it follows that at any time one-half of the polymer particles will contain one radical and the other half no radical. If N is the total number of polymer particles the rate of polymerization is therefore given by This relationship has been confirmed (15-19) for a number of systems, and the k, values derived are in reasonable agreement with those obtained in other ways. Relationships between the number, N, of particles and the concentrations of emulsifier and initiator have been derived by Smith and Ewart (14) and by Medvedev (20), whose model is a little different from that outlined above. The essential point as far as the present investigation is concerned is that the monomer concentration is sufficiently low (0.2 M) that all of the monomer is solubilized. The monomer concentration in the particles is therefore proportional to the overall monomer concentration. The experiments were all carried out at an emulsifier concentration of 17, and an initiator concentration of lop3 148; this ensures constancy of the number N of particles. Since this number remains constant throughout a run the kinetics will be first-order. THE THERhJAL METHOD FOR DETEKMINISG RATE CONSTANTS The principle of the method used has been described by Lovering and Laidler (9). It is sufficient here to note that the extent of reaction at time t is measured by the area of the e.m.f. vs. time curve up to that point, plus a contribution due to the loss of heat from the cell to the calorimeter block; this is determined by a separate measurement in which electrical heat is supplied to the cell. In this way the amount reacted can be determined at various times, and the rate constant calculated in the usual way. This \\as carried out at various times, covering the initial part of the reaction, up to 50% completion. A graphical method was employed for obtaining the first-order rate constants. RESULTS Fig. 1 shows a typical plot used for the determination of a rate constant; it relates to experiment 1 (cf. Table I) for methyl methacrylate. Table I gives the rate constants calculated on the basis of a number of completely different experiments, under identical experimental conditions, for the polymerization of methyl methacrylate. The values are seen to be reasonably constant. Table I summarizes also the averaged rate constants, and standard deviations, for all of the polymerizations studied. DISCUSSION Comparison with Preuious Results Rate constants previously derived for the polyinerizations of the monomers ernployed in the present work are derived from bulk polymerization studies; they are second-order

3 McCURDY.4ND LAIDLER: RATES OF POLYMERIZATION TIME (seconds) Fig. 1. A typical first-order plot, for the polymerization of methyl methacrylate. TABLE I Rate constants for the polymerization of methyl methacrylate and all compounds studied Polymerization of methyl methacrylate All polymerizations studied (T = 25" C) - Expt. NO. Rate constant X 103 (seccl) Monomer Rate constant X lo3 (sec-1) WIethacrylic acid Methyl methacrylate Ethyl methacrylate n-butyl methacrylate n-hexyl methacrylate Acrylic acid Methyl acrylate Ethyl acrylate n-butyl acrylate Hydroxyethyl methacrylate 2-Hydroxypropyl methacrylate rate constants, and relate to those of the present work through N, the concentration of particles. The values agree provided that N is 1015 to 1016 particles per cc, and this is the value of N obtained in a number of investigations of emulsion polymerization (15-19, 21). The previous kinetic studies of bulk polymerization are consistent with the results of the present work as far as general trends are concerned. Thus in the methacrylate series previous work shows the maximum in rate constant in going from methyl to butyl. Some previously obtained rate constants are: methyl methacrylate at 24' C: 310 liter mole-i sec-l, (22) n-propyl methacrylate at 30' C: 467 liter mole-i sec-i, (23) n-butyl methacrylate at 30' C: 362 liter mole-i sec-l. (24) For the acrylates the only previously reported values are: methyl acrylate at 30' C: 769 liter mole-' sec-l, (25) n-butyl acrylate at 25' C: 13 liter mole-i sec-l. (26) Our value (cf. Table I) for methyl acrylate is lower than that for n-butyl acrylate. There is evidence, however, that the previously reported value (25) for methyl acrylate is too high on account of autoacceleration (27). Also, the previous value for n-butyl acrylate (26) is lower than that for n-butyl methacrylate (24), which is contrary to expectation on steric grounds.

4 828 CANADIAN JOURNAL OF CHEMISTRY. VOL. 42, 1964 Interpretation of Results The propagation rate constants are seen from Table I to be consistently higher for the acrylates than for the corresponding methacrylates. As discussed in the preceding paper (I), with reference to heats of poly~nerization, there is considerably less steric hindrance to polymerization in the case of the acrylates than in the methacrylates, and this may well explain the difference in rates. In the acrylate series the rate constants increase from acrylic acid to methyl acrylate to ethyl acrylate, but then decrease on going to butyl acrylate. The behavior in the methacrylate series is similar: the apparent deviation for methacrylic acid and methyl methacrylate is within the experimental error. There is a decrease from ethyl to butyl to hexylmethacrylate. These trends can be explained in terms of inductive effects and steric effects. The increases in rates from methyl to ethyl are attributed to the greater electrondonating power of the ethyl group as compared with methyl. It would appear that the increased electron-donating power facilitates the opening of the double bond, and in this way increases the rate of addition of the monomer to the polymer radical. The steric difference between methyl and ethyl is probably unimportant. In the series ethyl: butyl: hexyl the inductive effects will be very similar, and the steric effects will now become predominant, leading to a progressive decrease in rate. This steric effect is envisaged as simply arising froin the physical size of the monomers; as this size is increased there is more interference between substituent groups, a bulky monomer having greater difficulty in approaching a polymer radical. Hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate both exhibit low rates of polymerization, and this is to be related to their low heats of polymerization (1). The monomers will be more solvated than the activated complexes, and the free energies of activation will therefore be higher than with the monomers not containing hydroxyl groups. - ACKNOWLEDGMENT The work was supported in part by the Defence Research Board under Grant One of us (K. G. McC.) is indebted to the National Research Council for a Scholarship. REFERENCES K. G. MCCURDY and K. J. LAIDLER. Can. J. Chem. This issue. H. HARTRIDGE and F. J. W. ROUGHTON. Proc. Roy. SOC. A, 104, 376 (1923). R. P. BELL and J. C. CLUNIE. Proc. Roy. Soc. (London), 212, 16 (1952). N. H. RAY. J. Chem. Soc (1960). P. A. H. WYATT. J. Chem. Soc (1960). W. J. ALBERTY and R. P. BELL. Trans. Faraday Soc. 57, 1942 (1961). P. BAUMGARTNER and P. DUHAUT. Bull. Soc. Chim. France (1960). C. H. LUECK. L. F. BESTE. and H. K. HALL. T. Phvs. Chem (1963).., E. G. LOVER~NG and K. J.'LAIDLER. Can. J. Chem: 40, 31 (1962). J. W. MCBAIN. Advances in colloid chemistry. Vol. I. Interscience Publishers Inc., N.Y. p W. D. HARKINS. J. Chem. Phys. 13, 381 (1945). W. D. HARKINS and R. S. STEARNS. J. Chem. Phys. 14, 215 (1946). W. D. HARKINS. 1. Am. Chem. Soc ( W. V. SMITH and K. H. EWART. T. ~hek. ~hvs. 16: 592 (1948). W. V. SMITH. f. Am. hem. ~oc.~70, 3695 (1948). ' W. V. SMITH. J. Am. Chem. Soc. 71, 4077 (1949). M. MORTON, P. P. SANATIELLO, and H. LANDFIELD. J. Polymer Sci. 8, 111 (1952). M. MORTON, P. P. SANATIELLO, and H. LANDFIELD. J. Polymer Sci. 8, 215 (1952). M. MORTON. P. P. SANATIELLO. and H. LANDFIELD. T. Polvmer Sci ( S. S. MEDVEDEV. ~nternational symposium on mac~omol~cular chemistry.' ~e&amon Press, N.Y p J. G. BRODNYAN, J. A. CALA, T. KONEN, and E. L. KELLEY. J. Colloid Sci. 18, 73 (1963).

5 MCCURDY AND LAIDLER: RATES OF POLYMERIZATION M. H. MACKAY and H. W. MELVILLE. Trans. Faraday Soc. 45, 323 (1949). 23. G. M. BURNETT, P. EVANS, and H. \V. MELVILLE. Trans. Faraday Soc. 49, 1105 (1953). 24. G. M. BURNETT, P. EVANS, and H. W. MELVILLE. Trans. Faraday Soc. 49, 1096 (1953). 25. M. S. MATHESON, E. E. AUER, E. B. BEVILACQUE, and E. J. HART. J. Am. Chem. Soc. 73,5395 (1951). 26. H. W. MELVILLE and A. F. BICKEL. Trans. Faraday Soc. 45, 1049 (1949). 27. C. H. BA~IFORD, IV. G. BARB, A. D. JENKINS, and P. F. ONYON. The kinetics of vinyl polymerization by radical mechanisms. Butterworth Scientific Publications, London p. 82.

THERMOCHEMICAL STUDIES OF SOME ACRYLATE,4ND METHACRYLATE POLYMERIZATIONS IN EMULSION SYSTEMS

THERMOCHEMICAL STUDIES OF SOME ACRYLATE,4ND METHACRYLATE POLYMERIZATIONS IN EMULSION SYSTEMS THERMOCHEMICAL STUDIES OF SOME ACRYLATE,4ND METHACRYLATE POLYMERIZATIONS IN EMULSION SYSTEMS K. G. AICCURDY AND K. J. LAIDLER The Department of Chemistry, University of Ottawa, Ottawa, Canada Received

More information

Kinetics of the thermal reactions of ethylene. Part 11. Ethylene-ethane mixtures

Kinetics of the thermal reactions of ethylene. Part 11. Ethylene-ethane mixtures Kinetics of the thermal reactions of ethylene. Part 11. Ethylene-ethane mixtures M. L. BOYD' AND M. H. BACK Chemistry Department, University of Ottawa, Ottawa, Canada Received November 21, 1967 Mixtures

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Molecular interaction studies of acrylic esters with alcohols

Molecular interaction studies of acrylic esters with alcohols Indian Journal of Pure & Applied Physics Vol. 43, December 2005, pp. 905-90 Molecular interaction studies of acrylic esters with alcohols P Sivagurunathan*, K Dharmalingam & K Ramachandran Department of

More information

Raman Spectra of Benzene, Ethyl Ben Title Suito on the Occasion of his Retire. Author(s) Takenaka, Tohru; Harada, Kaoru; Nak

Raman Spectra of Benzene, Ethyl Ben Title Suito on the Occasion of his Retire. Author(s) Takenaka, Tohru; Harada, Kaoru; Nak Raman Spectra of Benzene, Ethyl Ben Title Phthalate Solubilized in Aqueous So Agents (Commemoration Issue Dedicat Suito on the Occasion of his Retire Author(s) Takenaka, Tohru; Harada, Kaoru; Nak Citation

More information

C. R. S. Buono a, E. Bittencourt b

C. R. S. Buono a, E. Bittencourt b Substitution of Non-Biodegradable Surfactants Used in Emulsion Polymerizations - A Study of the Polymerization Process and Performance of Products Obtained C. R. S. Buono a, E. Bittencourt b Departamento

More information

THE EFFECT OF AGITATION ON THE RATE OF EMULSION POLYMERIZATION OF STYRENE*

THE EFFECT OF AGITATION ON THE RATE OF EMULSION POLYMERIZATION OF STYRENE* Literature Cited 1) Goldberg, A., W. P. Hohenstein and H. Mark: J. Polymer Sci., 2, 503 (1947) 2) Harkins, W. D.: J. Polymer Sci.y 5, 217 (1947), J. Am. Chem. Soc, 69, 1428 (1947) 3) Maron, S.H.: J. Colloid

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

Chapter 10 Radical Reactions

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Introduction Homolytic bond cleavage leads to the formation of radicals (also called free radicals) Radicals are highly reactive, short-lived species Single-barbed arrows are

More information

Kinetics of Emulsion Polymerization

Kinetics of Emulsion Polymerization 1 Kinetics of Emulsion Polymerization Β. M. E. VAN DER HOFF Research and Development Division, Polymer Corp., Ltd., Sarnia, Ontario, Canada Downloaded via 148.251.232.83 on April 5, 2019 at 01:37:45 (UTC).

More information

Molecular Weight and Chain Transfer

Molecular Weight and Chain Transfer 1 Molecular Weight and Chain Transfer Kinetic Chain Length ( ): 動力學鏈長 Average number of monomer polymerized per radical, which initiates a polymer chain. = R p /R i = R p /R t = k p [M][M.]/2k t [M.] 2

More information

Infrared spectra of some alkyl platinum compounds. Part I. Comparison with the spectra of chemisorbed hydrocarbons

Infrared spectra of some alkyl platinum compounds. Part I. Comparison with the spectra of chemisorbed hydrocarbons Infrared spectra of some alkyl platinum compounds. Part I. Comparison with the spectra of chemisorbed hydrocarbons B. A. MORROW Department of Chemistry, University of Ottawa, Ottawa 2, Canada Received

More information

Homework - Chapter 14 Chem 2320

Homework - Chapter 14 Chem 2320 omework - Chapter 14 Chem 2320 Name 1. Label each alcohol in the the following compounds as primary, secondary, tertiary, enol, or aryl. 2. Fill in the blanks in the following sentences. Enols are in equilibrium

More information

Chemical Engineering Seminar Series

Chemical Engineering Seminar Series Effect of Reaction Conditions on Copolymer Properties Loretta Idowu Keywords: copolymer composition distribution; radical polymerization kinetics; semi-batch starved feed; hydroxyl-functionality Non-functional

More information

On the Free-Radical Microemulsion Polymerization of Butyl Acrylate in the Presence of Poly(Oxyethylene) Macromonomer

On the Free-Radical Microemulsion Polymerization of Butyl Acrylate in the Presence of Poly(Oxyethylene) Macromonomer On the Free-Radical Microemulsion Polymerization of Butyl Acrylate in the Presence of Poly(Oxyethylene) Macromonomer I. CAPEK Polymer Institute, Slovak Academy of Sciences, SK-842 36 Bratislava The o/w

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

FTIR study of hydrogen bonding interactions between alkyl esters and hexanol, p-cresol in carbon tetrachloride

FTIR study of hydrogen bonding interactions between alkyl esters and hexanol, p-cresol in carbon tetrachloride Indian Journal of Pure & pplied Physics Vol. 46, January 2008, pp. 12-19 FTIR study of hydrogen bonding interactions between alkyl esters and hexanol, p-cresol in carbon tetrachloride F Liakath li Khan*,

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

GO-CATALYSIS IN FRIEDEL-CRAFTS REACTIONS

GO-CATALYSIS IN FRIEDEL-CRAFTS REACTIONS GO-CATALYSIS IN FRIEDEL-CRAFTS REACTIONS VI. POLYMERIZATION OF 2-BUTENE BY BORON FLUORIDE - METHANOL'. H. R. ALL COCK^ AND A. M. EASTHAM Division of Applied Chemistry, National Research Council, Ottawa,

More information

Title A Molecular Orbital Consideration o of quinones Author(s) Fueno, Takayuki; Furukawa, Junji Citation Bulletin of the Institute for Chemi University (1958), 36(4): 81-86 Issue Date 1958-07-31 URL http://hdl.handle.net/2433/75664

More information

Enthalpy and entropy of activation for benzyl chloride solvolysis in various alcohol-water solvent mixtures

Enthalpy and entropy of activation for benzyl chloride solvolysis in various alcohol-water solvent mixtures Enthalpy and entropy of activation for benzyl chloride solvolysis in various alcohol-water solvent mixtures H. S. GO LINK IN^ AND J. B. HYNE Departtnetlt of Clremistry, Vt2iversity of Calgcrry, Calgary,

More information

Engineering aspect of emulsion polymerization

Engineering aspect of emulsion polymerization Engineering aspect of emulsion polymerization Joong-In Kim Bayer Corp., Plastics, Technology Yonsei University Contents Free radical polymerization kinetics Emulsion polymerization Reactor configuration

More information

Title Heterogeneous Mixture of Metals and Initiator for Vinl Polymerization Author(s) Furukawa, Junji; Fueno, Takayuki Citation Bulletin of the Institute for Chemi University (1959), 37(4): 260-266 Issue

More information

Chapter 4. Results and Discussion. 4.1 Monomer Syntheses

Chapter 4. Results and Discussion. 4.1 Monomer Syntheses Chapter 4 Results and Discussion 4.1 Monomer Syntheses The syntheses of a family of novel, carbazole based methacrylate, dimethacrylate, and acrylate monomers, and subsequent purifications, were successful.

More information

OF TECHPU OLOGY 1 RECEIVEDECEVRER 3, 1923

OF TECHPU OLOGY 1 RECEIVEDECEVRER 3, 1923 March, 1924 PK~PARRTTON OF ALKYL CHLORIDES $53 onic ester, and benzyl cyanide. It also combines readily with p-toluenesulfinic acid. 2. With cyano-acetic ester no substance composed of one molecule of

More information

Ch 18 Ethers and Epoxides

Ch 18 Ethers and Epoxides Ch 18 Ethers and Epoxides Ethers (R-O-R ) are compounds with two organic groups attached to an sp 3 oxygen. Epoxides are cyclic ethers where the sp 3 O is a part of a 3-membered ring. Thiols (R-S-H ) and

More information

AS Demonstrate understanding of the properties of selected organic compounds. Collated Polymer questions

AS Demonstrate understanding of the properties of selected organic compounds. Collated Polymer questions AS 91165 Demonstrate understanding of the properties of selected organic compounds Collated Polymer questions (2017) (a) Polyvinyl chloride (polychloroethene) is often used to make artificial leather.

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE Renata Jovanović, Doctoral student, Department of Chemical Engineering, University of Ottawa, Ottawa, Canada, (jovanovi@genie.uottawa.ca)

More information

THE HEAT OF NEUTRALIZATION OF STRONG ACIDS AND BASES IN HIGHLY DILUTE AQUEOUS SOLUTIONS]

THE HEAT OF NEUTRALIZATION OF STRONG ACIDS AND BASES IN HIGHLY DILUTE AQUEOUS SOLUTIONS] THE HEAT OF NEUTRALIZATION OF STRONG ACIDS AND BASES IN HIGHLY DILUTE AQUEOUS SOLUTIONS] ABSTRACT Heats of neutralization of sulphuric and hydrochloric acids by sodium hydroxide have been determined, using

More information

THE REACTION OF ACTIVE NITROGEN WITH PROPANE' Can. J. Chem. Downloaded from by on 04/05/18

THE REACTION OF ACTIVE NITROGEN WITH PROPANE' Can. J. Chem. Downloaded from  by on 04/05/18 THE REACTION OF ACTIVE NITROGEN WITH PROPANE' ABSTRACT 'The reaction of nitrogen atoms with propane has been found to produce hydrogen cyanide as the main product, together with smaller amounts of acetylene,

More information

Ion-Molecule Reactions in Methyl Fluoride and Methyl Chloride

Ion-Molecule Reactions in Methyl Fluoride and Methyl Chloride Ion-Molecule Reactions in Methyl Fluoride and Methyl Chloride A. A. HEROD,' A. G. HARRISON: AND N. A. MCASKILL~ Department of Chemistry, University of Toronto, Toronto 181, Ontario Received January 22,

More information

Polymerization Modeling

Polymerization Modeling www.optience.com Polymerization Modeling Objective: Modeling Condensation Polymerization by using Functional Groups In this example, we develop a kinetic model for condensation polymerization that tracks

More information

Pulse Radiolysis of Acrylic Acid Ester and Acryamide Type Monomers in Dilute Aqueous and Cyclohexane Solutions

Pulse Radiolysis of Acrylic Acid Ester and Acryamide Type Monomers in Dilute Aqueous and Cyclohexane Solutions PhD Thesis-books Pulse Radiolysis of Acrylic Acid Ester and Acryamide Type Monomers in Dilute Aqueous and Cyclohexane Solutions By Katalin Dajka M. Sc. in Chemical Engineering Supervisor: Erzsébet Takács,

More information

Modification of Solid Polymer Surface O e.g. the of PMMA slab C OCH 3

Modification of Solid Polymer Surface O e.g. the of PMMA slab C OCH 3 10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 31: Living Free adical Approaches: Stable Free adical Polymerization, Atom Transfer adical Polymerization odification of Solid Polymer Surface e.g.

More information

INDUCTIVE AND MESOMERIC EFFECTS IN SUBSTITUTED FULVENE AND PYRIDINE DERIVATIVES

INDUCTIVE AND MESOMERIC EFFECTS IN SUBSTITUTED FULVENE AND PYRIDINE DERIVATIVES INDUCTIVE AND MESOMERIC EFFECTS IN SUBSTITUTED FULVENE AND PYRIDINE DERIVATIVES J. P. CARTIER XXD C. SANDORFY Afintvkal, Que. Dkpartelizent de Chimie, Cnioersitk de ~Wontrkal, Received May 21, 1963 ABSTRACT

More information

The C-X bond gets longerand weakergoing down the periodic table.

The C-X bond gets longerand weakergoing down the periodic table. Chapter 10: Organohalides Organic molecules containing halogen atoms (X) bonded to carbon are useful compounds in synthesis and on their own. 10.2 Structure of alkyl halides The C-X bond gets longerand

More information

SOLVENT EFFECTS ON P VALUES OF THE HAMMETT' EQUATION FOR THE HYDROLYSIS OF BENZYLIDENE BENZOYLHYDRAZONES

SOLVENT EFFECTS ON P VALUES OF THE HAMMETT' EQUATION FOR THE HYDROLYSIS OF BENZYLIDENE BENZOYLHYDRAZONES n-najah J. Res. Vol. 1( 1989) Number 6 Mohammed A. AL-Nud Short Communication SOLVENT EFFECTS ON P VALUES OF THE HAMMETT' EQUATION FOR THE HYDROLYSIS OF BENZYLIDENE BENZOYLHYDRAZONES Mohammed A. AL-Nuri*,

More information

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence

Chemistry 2.5 AS WORKBOOK. Working to Excellence Working to Excellence Chemistry 2.5 AS 91165 Demonstrate understanding of the properties of selected organic compounds WORKBOOK Working to Excellence Working to Excellence CONTENTS 1. Writing Excellence answers to Cis-Trans

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2010: 2 (1) 245-252 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4

More information

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H 10.569 Synthesis of Polymers Prof. Paula ammond Lecture 19: Metallocene Chemistry, Intro to ew Developments from Brookhart, thers Ionic Polymerization 1. Anionic 2. Cationic Anionic Polymerization - very

More information

Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators

Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators adical Initiation Production of radicals (from initiator) to initiate chain polymerization. A variety of initiator systems can be used to bring about the radical polymerization. 1) Thermal Decomposition

More information

Quiz 8 Introduction to Polymers

Quiz 8 Introduction to Polymers 100603 Quiz 8 Introduction to Polymers 1) a) Why is there no real termination for ionic polymerizations (i.e. no coupling or disproportionation)? b) Briefly outline how you would produce Kraton Rubber

More information

Figure 4.10 HPLC Chromatogram of the Carbazole-Phenoxy Based Methacrylate

Figure 4.10 HPLC Chromatogram of the Carbazole-Phenoxy Based Methacrylate The percent yield of the methacrylation was 85.2 %, with a purity of 98.2 % determined by HPLC (Figure 4.10). Elemental analysis gave excellent agreement to expected elemental ratios (Table 4.2). Disregarding

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides"

Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides" t Introduction" The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge"

More information

3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd

3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd 3. Organic Geochemisty Organic Chemistry is the chemistry... of Carbon -Morrison and Boyd Definitions, Nomenclature Organic Compound Solubility Octanol-Water Partition Coefficient Organic Compound Sorption

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

Organic Halogen Compounds

Organic Halogen Compounds 8 Organic alogen ompounds APTER SUMMARY 8.1 Introduction Although organic halogen compounds are rarely found in nature, they do have a variety of commercial applications including use as insecticides,

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Chapter 10 Free Radicals

Chapter 10 Free Radicals hapter 10 Free Radicals This is an example of a free radical reaction. A radical is a species that has a free unpaired electron. There are several examples of stable radicals, the most common of which

More information

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing Chem 263 ct. 6, 2009 lectrophilic Substitution of Substituted Benzenes Resonance ffect Inductive ffect C=C, π system Single bonds, σ Strong Weak e - donating Activate Activate ortho and para directing

More information

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION Conventional Centrifugal Methods Centrifugal sedimentation of particles suspended in a fluid is a well known method (1, 2)

More information

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions

PAPER No. : 5; Organic Chemistry-II MODULE No. : 13; Mixed S N 1 and S N 2 Reactions Subject Chemistry Paper No and Title Module No and Title Module Tag 5; Organic Chemistry-II 13; Mixed S N 1 and S N 2 Reactions CHE_P5_M13 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Nature

More information

Chemistry 1110 Exam 4 Study Guide

Chemistry 1110 Exam 4 Study Guide Chapter 10 Chemistry 1110 Exam 4 Study Guide 10.1 Know that unstable nuclei can undergo radioactive decay. Identify alpha particles, beta particles, and/or gamma rays based on physical properties such

More information

Figure 1. Principle of crosslinking emulsion copolymers by using hexaallylamino-cyclo-triphosphazene

Figure 1. Principle of crosslinking emulsion copolymers by using hexaallylamino-cyclo-triphosphazene COATING BINDERS BASED ON STRUCTURED SELF-CROSSLINKING LATEXES Rückerová A., Machotová J., Kalendová A., Puková K. University of Pardubice, Institute of Chemistry and Technology of Macromolecular Materials,

More information

DIELECTRIC RELAXATION STUDIES OF 1:1 COMPLEXES COMPLEXES OF ALKYL METHACRYLATE WITH PHENOLS DERIVATIVES

DIELECTRIC RELAXATION STUDIES OF 1:1 COMPLEXES COMPLEXES OF ALKYL METHACRYLATE WITH PHENOLS DERIVATIVES http://www.rasayanjournal.com Vol.3, No.4 (2010), 766-771 ISSN: 0974-1496 CODEN: RJCABP DIELECTRIC RELAXATION STUDIES OF 1:1 COMPLEXES OF ALKYL METHACRYLATE WITH PHENOLS DERIVATIVES F. Liakath Ali Khan

More information

Copper-Mediated Atom Transfer Radical Polymerisation (ATRP) of Acrylates in Protic Solution.

Copper-Mediated Atom Transfer Radical Polymerisation (ATRP) of Acrylates in Protic Solution. Copper-Mediated Atom Transfer Radical Polymerisation (ATRP) of Acrylates in Protic Solution. Laura. Pilon *, Steven P. Armes *, Paul Findlay, Steven Rannard. * School of Chemistry, Physics and Environmental

More information

Notes. Free radical graft polymerization of methyl methacrylate from polyvinyl alcohol using FeCl 3 /K 2 S 2 O 5 redox pair

Notes. Free radical graft polymerization of methyl methacrylate from polyvinyl alcohol using FeCl 3 /K 2 S 2 O 5 redox pair Indian Journal of Chemistry Vol. 46A, September 7, pp. 1414-1418 Notes Free radical graft polymerization of methyl methacrylate from polyvinyl alcohol using FeCl 3 /K 2 S 2 O 5 redox pair P Chowdhury,

More information

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization CHAPTER 4 Additional Ziegler-Natta polymerization is a method of vinyl polymerization. It's important because it allows one to make polymers of specific tacticity. Ziegler-Natta is especially useful, because

More information

Ultrasonic studies of N, N-Dimethylacetamide and N-Methylacetamide with Alkoxyethanols in Carbon tetrachloride at different temperatures

Ultrasonic studies of N, N-Dimethylacetamide and N-Methylacetamide with Alkoxyethanols in Carbon tetrachloride at different temperatures Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 2011, 3 (2):568-576 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

Exam 1 Chem 3045x Monday, October 1, 2001

Exam 1 Chem 3045x Monday, October 1, 2001 Exam 1 Chem 3045x Monday, October 1, 2001 Instructions: This is a closed book examination. Please print your name and social security number on the front page of the examination. Be sure to allot your

More information

HEATS OF HYDRATION AND ABSOLUTE HEATS OF FORMATION OF AQUEOUS IONS 1

HEATS OF HYDRATION AND ABSOLUTE HEATS OF FORMATION OF AQUEOUS IONS 1 HEATS OF HYDRATION AND ABSOLUTE HEATS OF FORMATION OF AQUEOUS IONS 1 R. THOMAS MYERS Department of Chemistry, Kent State University, Kent, Ohio 44@4O ABSTRACT Accurate calculations are made for the hydration

More information

THE POLARITY OF POLYMER RADICALS

THE POLARITY OF POLYMER RADICALS THE POLARITY OF POLYMER RADICALS A. D. JENKINS The School of Molecular Sciences, The University of Sussex, Brighton BNJ 9QJ, Sussex, UK ABSTRACT The main theories of radical reactivity are reviewed and

More information

Dynamics of the particle morphology during. the synthesis of waterborne polymer-inorganic. hybrids

Dynamics of the particle morphology during. the synthesis of waterborne polymer-inorganic. hybrids Supporting Information for: Dynamics of the particle morphology during the synthesis of waterborne polymer-inorganic hybrids Shaghayegh Hamzehlou; Miren Aguirre; Jose R. Leiza; José M. Asua* POLYMAT, Kimika

More information

R. C. TURNER AND G. J. ROSS Soil Research Institute, Canada Department of Agriculture, Ottawa, Canada Received October 15, 1969

R. C. TURNER AND G. J. ROSS Soil Research Institute, Canada Department of Agriculture, Ottawa, Canada Received October 15, 1969 Conditions in solution during the formation of gibbsite in dilute A1 salt solutions. 4. Effect of C1 concentration and temperature and a proposed mechanism for gibbsite formation1 R. C. TURNER AND G. J.

More information

Kinetic Study of PMMA Synthesis by Batch Emulsion Polymerization

Kinetic Study of PMMA Synthesis by Batch Emulsion Polymerization Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg.565-570 Kinetic Study

More information

University of Groningen. Rheokinetics Cioffi, Mario

University of Groningen. Rheokinetics Cioffi, Mario University of Groningen Rheokinetics Cioffi, Mario IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

More information

Thermodynamics of Micellization of Nonionic Surfactant Tween-40 in Presence of Additive Chloramine-T Using Clouding Phenomenon

Thermodynamics of Micellization of Nonionic Surfactant Tween-40 in Presence of Additive Chloramine-T Using Clouding Phenomenon http://www.e-journals.net ISSN: 973-4945; CDEN ECJHA E- Chemistry 21, 7(S1), S33-S334 Thermodynamics of Micellization of Nonionic Surfactant Tween-4 in Presence of Additive Chloramine-T Using Clouding

More information

Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur

Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 10 Radical Chain Polymerization (Contd.) (Refer Slide Time: 00:28) Welcome back, and we

More information

VINYL ACETATE-ETHYLENE (VAE) DISPERSIONS PROVIDE HIGH PERFORMANCE VERSATILE BINDERS FOR A VARIETY OF COATINGS APPLICATIONS

VINYL ACETATE-ETHYLENE (VAE) DISPERSIONS PROVIDE HIGH PERFORMANCE VERSATILE BINDERS FOR A VARIETY OF COATINGS APPLICATIONS VINYL ACETATE-ETYLENE (VAE) DISPERSIONS PROVIDE IG PERFORMANCE VERSATILE BINDERS FOR A VARIETY OF COATINGS APPLICATIONS Authors: Kevin Merlo, Ricardo Gouvea, Angelita Saul, and Markus Busold Wacker Chemical

More information

Theoretical evaluation of various thermodynamic properties of acrylates with a higher straight chain alknanol at K

Theoretical evaluation of various thermodynamic properties of acrylates with a higher straight chain alknanol at K Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2014, 5(4):66-73 ISSN: 0976-8610 CODEN (USA): AASRFC Theoretical evaluation of various thermodynamic properties

More information

Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution1

Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution1 Kinetics of the reaction of methyl iodide with sulfite and thiosulfate ions in aqueous solution1 R. A. HA STY^ AND S. L. SUTTER Pacific Northwest Laboratory, Battelle Memorial Institute, Richland, Waslrington

More information

Preparation and Properties of Two-Component and Double-Crosslinking Waterborne Polyurethane-Acrylic Dispersions

Preparation and Properties of Two-Component and Double-Crosslinking Waterborne Polyurethane-Acrylic Dispersions Open Journal of Organic Polymer Materials, 213, 3, 27-33 http://dx.doi.org/1.4236/ojopm.213.325 Published Online April 213 (http://www.scirp.org/journal/ojopm) Preparation and Properties of Two-Component

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

ANIONIC POLYMERIZATION OF ISOPRENE1

ANIONIC POLYMERIZATION OF ISOPRENE1 ANIONIC POLYMERIZATION OF ISOPRENE1 D. J. WORSFOLD AND S. BYWATER Applied Chemistry Division, Nafional Researclz Cozmcil, Ottawa, Canada Received April 8, 1964 ABSTRACT The polymerization of isoprene with

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Photopolymerization of Acrylic Monomers Initiated by Modified Silica with 4,4 -Azo-bis (4-cyanopentanoic acid) chloride.

Photopolymerization of Acrylic Monomers Initiated by Modified Silica with 4,4 -Azo-bis (4-cyanopentanoic acid) chloride. Photopolymerization of Acrylic Monomers Initiated by Modified Silica with 4,4 -Azo-bis (4-cyanopentanoic acid) chloride. Kinetic aspects Marcel Popa a), Monica Arnautu a), Marc J. M. Abadie b) and Victor

More information

EXAMINATION 2 Chemistry 3A

EXAMINATION 2 Chemistry 3A 1 EXAMINATIN 2 Chemistry 3A Name: KEY Print first name before second! Use capital letters! SID #: Peter Vollhardt April 11, 2017 GSI (if you are taking Chem 3AL): Please provide the following information

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Critical Micellization Concentration Determination using Surface Tension Phenomenon

Critical Micellization Concentration Determination using Surface Tension Phenomenon Critical Micellization Concentration Determination using Phenomenon 1. Introduction Surface-active agents (surfactants) were already known in ancient times, when their properties were used in everyday

More information

ORGANOMETALLIC COMPOUNDS

ORGANOMETALLIC COMPOUNDS CEM 242 RGNMETLLIC CMPUNDS CP 14 SSIGN 1. What is the product,, that would be obtained from the following reaction sequence? C 2 Mg C C 3 C C C CC 2 C CC CC 2 C 2 C CC C C CC C C C CC 2 I III D. I E. 2.

More information

Emulsion Polymerization and Emulsion Polymers

Emulsion Polymerization and Emulsion Polymers Inventor Nr i^f- Emulsion Polymerization and Emulsion Polymers Edited by Peter A. Lovell Manchester Materials Science Centre, University of Manchester and UMIST, Manchester, UK and Mohamed S. El-Aasser

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

High Frequency sonoatrp of 2-Hydroxyethyl Acrylate in an Aqueous Medium

High Frequency sonoatrp of 2-Hydroxyethyl Acrylate in an Aqueous Medium Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2018 High Frequency sonoatrp of 2-Hydroxyethyl Acrylate in an Aqueous Medium Joe Collins, Thomas

More information

ASC Fall Conference October 18, 2016

ASC Fall Conference October 18, 2016 ASC Fall Conference October 18, 2016 NonMigratory Surfactants in Emulsion Polymerization By : Dr. Steven Y. Chan Agenda Introduction Surfactants in Emulsion Polymerization NonMigratory Surfactants (NMS)

More information

Chapter 5. Ionic Polymerization. Anionic.

Chapter 5. Ionic Polymerization. Anionic. Chapter 5. Ionic Polymerization. Anionic. Anionic Polymerization Dr. Houston S. Brown Lecturer of Chemistry UH-Downtown brownhs@uhd.edu What you should know: What is anionic polymerization? What is MWD,

More information

Modeling and Parameter Estimation of Interpenetrating

Modeling and Parameter Estimation of Interpenetrating Modeling and Parameter Estimation of Interpenetrating Polymer Network Process EWO Spring Meeting March, 2009 Weijie Lin Advisors: Lorenz T. Biegler, Annette Jacobson Department of Chemical Engineering,

More information

EUROPEAN PATENT APPLICATION

EUROPEAN PATENT APPLICATION @ Publication number: 0136 1 0 0 A2 EUROPEAN PATENT APPLICATION Application number: 84305891.8 Int. CI.*: A 61 K 31/70, A 61 K 47/00 @ Date of filing : 29.08.84 ( ) Priority: 02.09.83 US 528976 @ Applicant:

More information

Kinetics of Self-Condensing Vinyl Hyperbranched Polymerization in Three-Dimensional Space

Kinetics of Self-Condensing Vinyl Hyperbranched Polymerization in Three-Dimensional Space Kinetics of Self-Condensing Vinyl Hyperbranched Polymerization in Three-Dimensional Space XUEHAO HE, JING TANG Department of Polymer Science and Engineering, School of Chemical Engineering and Technology,

More information

Elimination Reactions:

Elimination Reactions: Elimination Reactions: These are just reverse of addition reactions. These involve the removal of atoms or group of atoms from a molecule. Elimination reactions are generally endothermic and take place

More information

polymerization of n-butyl acrylate

polymerization of n-butyl acrylate SUPPORTING INFORMATION Intermolecular transfer to polymer in the radical polymerization of n-butyl acrylate Nicholas Ballard, 1 Shaghayegh Hamzehlou, 1 José M. Asua 1* 1 POLYMAT and Kimika Aplikatua Saila,

More information

Kinetics and Behavior of Copolymerization in Emulsion and Microemulsion Systems

Kinetics and Behavior of Copolymerization in Emulsion and Microemulsion Systems 5864 Langmuir 2000, 16, 5864-5870 Kinetics and Behavior of Copolymerization in Emulsion and Microemulsion Systems Naveen Kumar Pokhriyal, Paresh G. Sanghvi, D. O. Shah, and Surekha Devi*, Department of

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Gilbert Kirss Foster. Chapter 1. Properties of Gases The Air We Breathe

Gilbert Kirss Foster. Chapter 1. Properties of Gases The Air We Breathe Gilbert Kirss Foster Chapter 1 Properties of Gases The Air We Breathe Chapter Outline 1.1 States of Matter 1.2 Forms of Energy 1.3 Classes of Matter 1.4 Properties of Matter 1.5 Atomic Theory: The Scientific

More information

CATIONIC POLYMERIZATION OF a, 1-DISUBSTITUTED OLEFINS

CATIONIC POLYMERIZATION OF a, 1-DISUBSTITUTED OLEFINS CATIONIC POLYMERIZATION OF a, 1-DISUBSTITUTED OLEFINS A. MIzo'rE, T. HIGASHIMURA, AND S. OKAMURA Kyoto University, Kyoto, Japan INTRODUCTION It is well known that a,/3-disubstituted olefins cannot usually

More information

a) Use Chem3D to compare the bond lengths of the C1-C2 double bond with the C3-C4 single bond. How do you account for this difference?

a) Use Chem3D to compare the bond lengths of the C1-C2 double bond with the C3-C4 single bond. How do you account for this difference? Copyright 2002 Prentice-all, Inc. All rights reserved. Chapter 7 - Structure and Synthesis of Alkenes 1. In Chem3D, draw the structure of 1-pentene. a) Use Chem3D to compare the bond lengths of the C1-C2

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 Sept 29, 2016 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable (36 kcal/mole more) and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes,

More information