Midterm Exam I. CHEM 181: Introduction to Chemical Principles September 24, 2015 Key

Size: px
Start display at page:

Download "Midterm Exam I. CHEM 181: Introduction to Chemical Principles September 24, 2015 Key"

Transcription

1 Midterm Exam I CHEM 8: Introduction to Chemical Principles September 24, 205 Key. A Li 2+ ion in an unknown, highly excited electronic state, first emits a photon at a wavelength of 4.36 µm, and following that, emits a second photon at a wavelength of 0.25 nm. What is the initial state and final state of this Li 2+ ion? You can t use the Rydberg equation from your equation sheet as-is: ( λ = R ) n 2 n 2 2 The +3 nuclear charge of the lithium nucleus also has to be included, so: ( = R Z2 ) λ n 2 n 2 2 = ( m ) ( 3 2) ( ) n 2 n 2 2 ) = m ( n 2 n 2 2 n 2 n 2 2 = m λ For labeling, say we start at n a, go to n b, and end at n c. It s easier to solve the n b n c step first: n 2 c n 2 b = m m = n c (the final state) must be for this to work at all, so n 2 b = n 2 b = n 2 b = 82.4 n b 9

2 It s true that 82 8, but this is from round-off errors (the wavelength of the photon to more significant figures is nm.) Now that we ve got n b, we can solve for n a = m n 2 b n 2 a m = n 2 a = = n 2 a n a = 0 The initial state is n = 0, and we end up at n =. 2. Write down the ground-state electron configurations for the following atoms or ions. You can either include all electrons or use core/valence notation; e.g., sodium could be written as either Na: s 2 2s 2 2p 6 3s or Na: [Ne] 3s In cases where it is difficult to predict the exact electron configuration, you can write two configurations along with a brief (one sentence) explanation. (If there is only one reasonable configuration, do not include extras you will lose points for doing so.) (a) Cl: [Ne]3s 2 3p 5 (b) Ni + : [Ar]4s 3d 8 or [Ar]4s 0 3d 9 It s ok to miss the second of these but not the first (though my bet is that the second is what actually happens). (c) V : [Ar]4s 2 3d 4 or [Ar]4s 3d 5 I think the first is much better, because you know that if you ionize V, it s the 3d electron that leaves. We ve got the opposite of the behavior we 2

3 see for positive ions the effective nuclear charge is low for the number of electrons and it seems unlikely that V is isoelectronic with Cr. (d) Os 2+ : [Xe]6s 0 5d 6 or [Xe]6s 5d 5 (FYI: Ni + and V are atypical states found in relatively few compounds, though both can be produced in the laboratory.) 3. N 2 and N + 2 both have multiple stable excited states with electron configurations that are different from the ground-state configuration. Use the following information about energies and bond lengths to figure out these electron configurations. (All answers that are logical and self-consistent will be marked as correct. You can use the MO diagram for N 2 on the next page.) Starting points: σ 2pz is the highest-energy orbital with electrons in it, so it must be a σ 2pz electron that leaves to make N + 2, so its ground state must be (22400). The 0.8 aj state in N + 2 is significantly lower in energy than anything that N 2 does, so it must correspond to a configuration with no close analogue in N 2 : (223200). This also tells us that quantitatively, the π bonding orbitals are 0.8 aj higher than the σ 2pz. (This is a good approximation, though not exact, as orbital energies will be slightly different between N 2 and N + 2. The.77 aj state in N 2 keeps bond length the same, so we re looking for a configuration with the same bond order. This has to happen by moving a σ 2s anti-bonding electron into another anti-bonding orbital: (2420) or (2420). The.00 and.8 states in N 2 have reduced bond order (longer bonds), so will have one fewer bonding and one more anti-bonding electron. If we say the lower-energy of these has one fewer σ 2pz electron and one more π electron, then the higher-energy one would have the same π electron, but will have lost a π bonding electron instead this fits with the 0.8 aj spacing we d think these two levels would have. There are other self-consistent answers that will be marked as correct. actual, measured electron configurations are shown in the table. The 3

4 N 2 energy (aj) bond length (nm) σ 2s σ 2s π 2px, π 2py σ 2pz π 2p x, π 2p y σ 2p z N + 2 energy (aj) bond length (nm) σ 2s σ 2s π 2px, π 2py σ 2pz π 2p x, π 2p y σ 2p z

5 4. The following diagram shows the shapes and energies of the molecular orbitals for BeH 2, which can be described as combinations of the Be 2s and 2p orbitals with the H atoms s orbitals: H Be H a a nb Energy Be 2p Be 2s H s b b Do the following: (a) Label each orbital (b for bonding, a for antibonding, and nb for nonbonding). The two molecular orbitals with the same energy look exactly like beryllium 2p orbitals, and they must have the same energy as these orbitals (which allows us to locate the energy of Be 2p as well.) They are non-bonding the electrons do not care whether the Be is part of a BeH 2 molecular or not. (b) Place the appropriate number of electrons into the molecular orbitals (draw them on top of the horizontal lines used for energy levels.) 5

6 The molecule has six electrons total, but two of these are core s electrons on the beryllium, and not involved in molecular orbitals at all. This diagram needs to be filled with the four valence electrons (2 from Be, from each H). (c) On the same energy scale as the molecular orbitals, indicate (use horizontal lines) the energies of the 2s and 2p orbitals for atomic beryllium and the s orbital for atomic hydrogen. Explain below how you determined these energies: The Be 2p must be at the same energy as the non-bonding molecular orbitals. The 2s must be lower in energy than the 2p, but must be higher in energy than the lowest-energy bonding orbital, which involves constructive interference between (and thus a drop in energy from) Be 2s and H s. The s orbitals of the H atoms must be lower in energy than the first antibonding orbital (destructive between s and 2s) and higher than the second bonding orbital (constructive between s and 2p.) However, because H is more electronegative than Be, we expect the valence electron of H to be lower in energy than the valence electrons of Be that is, H s should be lower in energy than Be 2s. 6

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom.

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Name: Block: Date: Chemistry 11 Trends Activity Assignment Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Ionic Radius: the distance from the center

More information

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F " E.

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F  E. CHEMISTRY 110 EXAM 1 Sept. 24, 2012 FORM A 1. A microwave oven uses 2.45! 10 9 Hz electromagnetic waves to heat food. What is the wavelength of this radiation in mm? A. It is impossible to tell from the

More information

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom.

Periodic Trends. Atomic Radius: The distance from the center of the nucleus to the outer most electrons in an atom. Periodic Trends Study and learn the definitions listed below. Then use the definitions and the periodic table provided to help you answer the questions in the activity. By the end of the activity you should

More information

Unit 8: Atomic Theory. Quantum Mechanics

Unit 8: Atomic Theory. Quantum Mechanics Unit 8: Atomic Theory Quantum Mechanics 1 Unit 8: Atomic Theory 1. Historical Views of the Atom 2. The 'New' Look Atom 3. Electron Configurations 4. Electron Configurations & the Periodic Table 5. Quantum

More information

Electrons in Atoms. So why does potassium explode in water? Quantum Mechanics Periodic Trends Chemical Bonding

Electrons in Atoms. So why does potassium explode in water? Quantum Mechanics Periodic Trends Chemical Bonding Electrons in Atoms So why does potassium explode in water? Quantum Mechanics Periodic Trends Chemical Bonding 12.1 Development of Atomic Models Dalton s Thompson s Rutherford s Bohr s carbon Quantum Model

More information

Unit 8: Atomic Theory. Quantum Mechanics

Unit 8: Atomic Theory. Quantum Mechanics Unit 8: Atomic Theory Quantum Mechanics 1 Unit 8: Atomic Theory 1. Historical Views of the Atom 2. The 'New' Look Atom 3. Electron Configurations 4. Electron Configurations & the Periodic Table 5. Quantum

More information

Topic : Periodic Trends

Topic : Periodic Trends Topic 3.1-3.2: Periodic Trends Essential Ideas: 3.1: The arrangement of elements in the Periodic Table helps to predict their electron configurations 3.2: Elements show trends in their physical and chemical

More information

Question: How are electrons arranged in an atom?

Question: How are electrons arranged in an atom? Honors Chemistry: Coulomb s Law and periodic trends Question: How are electrons arranged in an atom? Coulomb s Law equation: 1. A) Define what each of the following variables in the equation represents.

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity Atomic Structure and Periodicity Atoms and isotopes: Isotopes-#p + same for all but mass number is different b/c of # n o Average atomic mass is weighted average of all the isotopes for an element Average

More information

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy?

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? Periodic Trends 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? 4. What periodic trends exist for ionization energy? 5. What

More information

Group Members: Your Name In Class Exercise #6. Photon A. Energy B

Group Members: Your Name In Class Exercise #6. Photon A. Energy B Group Members: Your Name In Class Exercise #6 Shell Structure of Atoms Part II Photoelectron Spectroscopy Photoelectron spectroscopy is closely related to the photoelectric effect. When high energy photons

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

Atoms with More than One Electron

Atoms with More than One Electron Fun with the Periodic Table Activity 6 Atoms with More than One Electron GOALS In this activity you will: View the spectra of various materials. Graphically analyze patterns in the amounts of energy required

More information

Summation of Periodic Trends

Summation of Periodic Trends Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A 1. What are the correct numbers of protons, neutrons and electrons in a 39 K + ion? p n e A. 20 19 18 B. 20 19 19 C. 19 20 18 D. 19 20 19 E. 20 19 20 2. Which

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

CHM 111 Unit 7 Sample Questions

CHM 111 Unit 7 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

Chem 6 Practice Exam 2

Chem 6 Practice Exam 2 These problems are from past Chem 6 exams. Each exam contained a page of universal constant values and common equations; yours will, too, along with a Periodic Table! The answers follow after all the questions.

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Electronic Structure and Bonding Review

Electronic Structure and Bonding Review Name: Band: Date: Electronic Structure and Bonding Review 1. For electrons: a. What is the relative charge? b. What is the relative mass? c. What is the symbol? d. Where are they located in the modern

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Chem 130 Key for First Exam

Chem 130 Key for First Exam Name Chem 130 Key for First Exam On the following pages you will find questions that cover various topics ranging from nomenclature to periodic properties, and from electromagnetic radiation to the quantum

More information

Periodic Table trends

Periodic Table trends 2017/2018 Periodic Table trends Mohamed Ahmed Abdelbari Atomic Radius The size of an atom is defined by the edge of its orbital. However, orbital boundaries are fuzzy and in fact are variable under different

More information

CHAPTER 9 COVALENT BONDING: ORBITALS 323

CHAPTER 9 COVALENT BONDING: ORBITALS 323 APTER 9 OVALET BODIG: ORBITALS 323 2 3 2 2 2 3 3 2 2 3 2 3 O * * 2 o; most of the carbons are not in the same plane since a majority of carbon atoms exhibit a tetrahedral structure (19.5 bond angles).

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the subshells below do not exist due to the constraints upon the azimuthal

More information

4 Diatomic molecules

4 Diatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 4 Diatomic molecules Answers to worked examples WE 4.1 The Lewis model (on p. 174 in Chemistry 3 ) Use the Lewis model to describe the bonding in (a)

More information

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy?

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy? Atomic Structure 1. For a hydrogen atom which electron transition requires the largest amount of energy? A. n = 4 to n = 10 B. n = 3 to n = 2 C. n = 3 to n = 4 D. n = 1 to n = 3 E. n = 2 to n = 4 2. Which

More information

What is the energy of a photon with wavelength 232 nm?

What is the energy of a photon with wavelength 232 nm? EMISTRY 110 EXAM 1 February 6, 2012 FRM A 1 ow many single covalent bonds must a sulfur atom form to have a complete octet in its valence shell? A. 3 B. 4. 1 D. 2 E. 0 2. What are the correct numbers of

More information

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed:

Name: Date: Blk: Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed: Name: Date: Blk: NOTES: PERIODIC TRENDS Examine your periodic table to answer these questions and fill-in-the-blanks. Use drawings to support your answers where needed: I. ATOMIC RADIUS (Size) Going from

More information

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section:

Chem Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: Chem 101 2016 Discussion #13 Chapter 10. Correlation diagrams for diatomic molecules. TF s name: Your name: Discussion Section: 1. Below is a plot of the first 10 ionization energies for a single atom

More information

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table

Mr. Dolgos Regents Chemistry PRACTICE PACKET. Unit 3: Periodic Table *STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 2 3 It s Elemental DIRECTIONS: Use the reading below to answer the questions that follow. We all know by now that

More information

Ionic Versus Covalent Bonding

Ionic Versus Covalent Bonding Ionic Versus Covalent Bonding Ionic compounds are formed when electrons are transferred from one atom to another The transfer of electrons forms ions Each ion is isoelectronic with a noble gas Electrostatic

More information

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2)

3. Write ground-state electron configurations for any atom or ion using only the Periodic Table. (Sections 8.3 & 9.2) Lecture 2: learning objectives, readings, topics, and resources: 1. Understand the significance of the quantum numbers, understand how they can be used to code for the electron energy levels within atoms

More information

Exam Electrons and Periodic Table

Exam Electrons and Periodic Table 1-20 multiple choice. Answer on scantron. 21-25 short response. Answer on exam paper. All questions are 4 points each. 1. Which term is defined as the region in an atom where an electron is most likely

More information

6.1.5 Define frequency and know the common units of frequency.

6.1.5 Define frequency and know the common units of frequency. CHM 111 Chapter 6 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Dr. Steven Pedersen March 4, Chemistry 3B. Midterm 1. Problem 2(a-d) (22 pts) Problem 2(e-h) (12 pts) Problem 4 (a-b) (16 pts)

Dr. Steven Pedersen March 4, Chemistry 3B. Midterm 1. Problem 2(a-d) (22 pts) Problem 2(e-h) (12 pts) Problem 4 (a-b) (16 pts) Dr. Steven Pedersen March 4, 2013 Chemistry 3B Midterm 1 Student name: ANSWER KEY Student signature: Problem 1 (21 pts) Problem 2(a-d) (22 pts) Problem 2(e-h) (12 pts) Problem 3 (15 pts) Problem 4 (a-b)

More information

Atomic Theory. Quantum Mechanics

Atomic Theory. Quantum Mechanics Atomic Theory Quantum Mechanics Quantum Mechanics The ol solar system model of the atom does have some practical uses It tells us that protons and neutrons are in the nucleus, and electrons are in orbitals

More information

(FIRST) IONIZATION ENERGY

(FIRST) IONIZATION ENERGY 181 (FIRST) IONIZATION ENERGY - The amount of energy required to remove a single electron from the outer shell of an atom. - Relates to reactivity for metals. The easier it is to remove an electron, the

More information

CH301 Fall 2012 Name: KEY VandenBout/LaBrake UNIT 2 READINESS ASSESSMENT QUIZ (RAQ) THIS QUIZ WILL BE PACED WITH CLICKER QUESTIONS

CH301 Fall 2012 Name: KEY VandenBout/LaBrake UNIT 2 READINESS ASSESSMENT QUIZ (RAQ) THIS QUIZ WILL BE PACED WITH CLICKER QUESTIONS CH301 Fall 2012 Name: KEY VandenBout/LaBrake UNIT 2 READINESS ASSESSMENT QUIZ (RAQ) THIS QUIZ WILL BE PACED WITH CLICKER QUESTIONS 1. A laser pulse shines for 10 s delivering a total energy of 4 mj of

More information

Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry

Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry Introduction Photoelectron Spectroscopy Evidence for Electronic Structure Guided-Inquiry Learning Activity for AP* Chemistry Catalog No. AP7710 Publication No. 7710AS The chemical properties of elements

More information

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons

Atomic Structure Atoms are very small ~ metres All atoms are made up of three sub-atomic particles: protons, neutrons and electrons IB Chemistry (unit ) ATOMIC THEORY Atomic Structure - Recap Questions Define the following words: Atom Element Molecule Compound Atomic Structure Atoms are very small ~ - metres All atoms are made up of

More information

1. What is the phenomenon that occurs when certain metals emit electrons when illuminated by particular wavelengths of light? a.

1. What is the phenomenon that occurs when certain metals emit electrons when illuminated by particular wavelengths of light? a. CHEMISTRY 123-07 Midterm #3 solution key December 02, 2010 Statistics: Average: 77 p (77%); Highest: 100 p (100%); Lowest: 33 p (33%) Number of students performing at or above average: 54 (52%) Number

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

The boundaries of an atom are fuzzy, and an atom s radius can vary under different conditions.

The boundaries of an atom are fuzzy, and an atom s radius can vary under different conditions. Atomic Radii The boundaries of an atom are fuzzy, and an atom s radius can vary under different conditions. To compare different atomic radii, they must be measured under specified conditions. Atomic radius

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Review 6: Modern Atomic Theory. Copyright Cengage Learning. All rights reserved. 11 1

Review 6: Modern Atomic Theory. Copyright Cengage Learning. All rights reserved. 11 1 Review 6: Modern Atomic Theory Copyright Cengage Learning. All rights reserved. 11 1 The concept of the nuclear atom left unanswered questions about 1. why the nucleus is so dense. 2. why the negative

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists:

2. For the following two compounds between oxygen and hydrogen: 3. Tell what discoveries were made by each of the following scientists: EXTRA HOMEWORK 1A 1. When Dalton proposed that matter was composed of atoms, why was his Atomic Theory accepted? 2. For the following two compounds between oxygen and hydrogen: Mass of O Mass of H Compound

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 180 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

CHEMISTRY 101 Hour Exam III. Andino/McCarren Section

CHEMISTRY 101 Hour Exam III. Andino/McCarren Section CHEMISTRY 101 Hour Exam III December 7, 2017 Andino/McCarren Name Signature Section "The ultimate measure of a man is not where he stands in moments of comfort and convenience, but where he stands at times

More information

No Brain Too Small CHEMISTRY AS91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

No Brain Too Small CHEMISTRY AS91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances COLLATED QUESTIONS Electron configuration of atoms and ions of the first 36 elements (using s,p,d notation), periodic trends in atomic radius, ionisation energy, and electronegativity, and comparison of

More information

CHEMISTRY Midterm #3 November 27, 2007

CHEMISTRY Midterm #3 November 27, 2007 Name: The total number of points in this exam is 100. CHEMISTRY 123-01 Midterm #3 November 27, 2007 PART I: MULTIPLE CHOICE (Each multiple choice question has a 2-point value). Mass of electron = 9.11

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Electron Arrangement - Part 2

Electron Arrangement - Part 2 Brad Collins Electron Arrangement - Part 2 Chapter 9 Some images Copyright The McGraw-Hill Companies, Inc. Review Energy Levels Multi-electron 4d 4d 4d 4d 4d n = 4 4s 4p 4p 4p 3d 3d 3d 3d 3d n=3, l = 2

More information

2008 Brooks/Cole 2. Frequency (Hz)

2008 Brooks/Cole 2. Frequency (Hz) Electromagnetic Radiation and Matter Oscillating electric and magnetic fields. Magnetic field Electric field Chapter 7: Electron Configurations and the Periodic Table Traveling wave moves through space

More information

The Shell Model This activity is modified from Chemistry: A Guided Inquiry (3/e) by R.S. Moog and J.J. Farrell, Wiley, 2006.

The Shell Model This activity is modified from Chemistry: A Guided Inquiry (3/e) by R.S. Moog and J.J. Farrell, Wiley, 2006. The Shell Model This activity is modified from Chemistry: A Guided Inquiry (3/e) by R.S. Moog and J.J. Farrell, Wiley, 2006. The first ionization energy (IE 1 ) is the minimum energy required to remove

More information

Quarter 1 Section 1.2

Quarter 1 Section 1.2 Quarter 1 Section 1.2 Opening Activity: Use your periodic table 1. How many protons are in an atom of Carbon? 2. How many electrons are in an atom of Carbon? 3. How many neutrons are in an atom of Carbon?

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN.

2 e. 14 e. # e # orbitals. 10 e 5. sublevel. shape of orbital. Orbital Shapes. Notes Orbital Notation; e Config; NGN. How to build an atom: The bigger (more massive) the atom, the more protons (and neutrons) The bigger the atom, the more electrons Electrons fill lower energy levels first "Aufbau" Principle ("To build

More information

Unit 5. The Periodic Table

Unit 5. The Periodic Table Unit 5 The Periodic Table I. Development of Periodic Table Periodic law: when elements are arranged in order of increasing atomic number, their physical and chemical properties show a periodic pattern.

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 3.1: What is the basic theme of organisation in the periodic table? Answer 1.1: The basic theme of organisation of elements in the periodic table is to classify the elements in periods and

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

CHEM1901/ J-5 June 2013

CHEM1901/ J-5 June 2013 CHEM1901/3 2013-J-5 June 2013 Oxygen exists in the troposphere as a diatomic molecule. 4 (a) Using arrows to indicate relative electron spin, fill the left-most valence orbital energy diagram for O 2,

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

VOCABULARY define the following terms:

VOCABULARY define the following terms: VOCABULARY define the following terms: Unit 1 Study Guide Honors Chem 1) Electron configuration- 2) Effective nuclear charge 3) Isotope 4) Ion 5) Anion 6) Cation - 7) Isoelectronic - 8) Halogens 9) Electronegativity

More information

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that?

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that? Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

Fall 2008 CH301--The TA s gift to you Answer Key for practice exam 1

Fall 2008 CH301--The TA s gift to you Answer Key for practice exam 1 Fall 2008 C301--The TA s gift to you Answer Key for practice exam 1 1.What is the energy (E) of a photon that has a wavelength (λ) of 70 nm? A. 2.84x10-18 J Correct B. 6.51x10-19 J C. 7.52x10-19 J D 1.28x10-18

More information

PRACTICE EXAM 3 ANSWER KEY

PRACTICE EXAM 3 ANSWER KEY PRACTICE EXAM 3 ANSWER KEY Part 3: Memorized Material I highly suggest that you bring pencil and big block eraser for Part 3 of the Exam. You may use your calculator for Part 3 of Exam 3. You may use the

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Unit 7. Atomic Structure

Unit 7. Atomic Structure Unit 7. Atomic Structure Upon successful completion of this unit, the students should be able to: 7.1 List the eight regions of the electromagnetic spectrum in the designated order and perform calculations

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE C10 04/19/2013 13:34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is

More information

CHEMISTRY 15 EXAM III-Version A (White)

CHEMISTRY 15 EXAM III-Version A (White) CHEMISTRY 15 EXAM IIIVersion A (White) Dr. M. RichardsBabb June 18, 2001 An optical scoring machine will grade this examination. The machine is not programmed to accept the correct one of two sensed answers

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

A. General (10 points) 2 Points Each

A. General (10 points) 2 Points Each Chem 104A - Midterm II Total Exam Score closed text, closed notes, no calculators There are 100 total points. General advice - if you are stumped by one problem, move on to finish other problems and come

More information

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission

Goals for Today. Clarify some Rydberg Concepts Absorption vs. emission Note: Due to recent changes the exam 2 material for these slides ends at Ionization Energy Exceptions. You can omit Lewis Structures through General Formal Charge Rules. CH301 Unit 2 QUANTUM NUMBERS AND

More information

Topics in the June 2006 Exam Paper for CHEM1901

Topics in the June 2006 Exam Paper for CHEM1901 June 006 Topics in the June 006 Exam Paper for CHEM1901 Click on the links for resources on each topic. 006-J-: 006-J-3: 006-J-4: 006-J-5: 006-J-6: 006-J-7: 006-J-8: 006-J-9: 006-J-10: 006-J-11: 006-J-1:

More information

Objectives: Learn how to show Electron configuration using:

Objectives: Learn how to show Electron configuration using: 4 WAYS to SHOW the Electron Configuration(Electron arrangement) Objectives: Learn how to show Electron configuration using: 1. Using Aufbau Energy Diagrams 2. Orbital Diagrams 3. Long hand Electron configuration

More information

CDO AP Chemistry Unit 5

CDO AP Chemistry Unit 5 1. a. Calculate the wavelength of electromagnetic radiation that has a frequency of 5.56 MHz. b. Calculate the frequency of electromagnetic radiation that has a wavelength equal to 667 nm. 2. Electromagnetic

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

Atomic Theory and Periodic Trends Practice AP Chemistry Questions

Atomic Theory and Periodic Trends Practice AP Chemistry Questions AP Chemistry/1516 Atomic Theory and Periodic Trends Practice AP Chemistry Questions 1. 2007 B, question #2 Answer the following problems about gases. (b) A major line in the emission spectrum of neon corresponds

More information

Regents Chemistry PRACTICE PACKET

Regents Chemistry PRACTICE PACKET *KEY* *KEY* Regents Chemistry PRACTICE PACKET Unit 3: Periodic Table 1 Copyright 2015 Tim Dolgos 2 Copyright 2015 Tim Dolgos 3 Copyright 2015 Tim Dolgos It s Elemental DIRECTIONS: Use the reading below

More information

Atoms with More than One Electron

Atoms with More than One Electron Activity 6 Atoms with More than One Electron GOALS In this activity you will: View the spectra of various materials. Graphically analyze patterns in the amounts of energy required to remove electrons from

More information

Topic 3: Periodic Trends and Atomic Spectroscopy

Topic 3: Periodic Trends and Atomic Spectroscopy Topic 3: Periodic Trends and Atomic Spectroscopy Introduction Valence Electrons are those in the outer most shell of an element and are responsible for the bonding characteristics of that element. Core

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

Section 7 iclicker questions

Section 7 iclicker questions Reading assignment: 7.1-7.5 As you read ask yourself: What is meant by the expression effective nuclear charge? How can you use this concept to explain the trends in atomic radius in the periodic table?

More information

Electronic configurations, Auf-bau principle, Pauli principle, Hunds rule 1. Which of the following statements in relation to the hydrogen atom is correct? 1) 3s and 3p orbitals are of lower energy than

More information

4 Periodic Trends. 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) Periodic Trends > Types of Periodic Trends

4 Periodic Trends. 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) Periodic Trends > Types of Periodic Trends Periodic Trends > Types of Periodic Trends 4 Periodic Trends 1.Atomic Radii (AR) 2.Ionization Energy (IE) 3.Ionic Radii (IR) 4.Electronegativity (EN) 1 of 31 Periodic Trends > Trends in Atomic Size The

More information

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions CHEMICAL BONDS - A CHEMICAL BOND is a strong attractive force between the atoms in a compound. 3 TYPES OF CHEMICAL BOND Ionic bonds attractive forces between oppositely charged ions sodium chloride Covalent

More information

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n.

The orbitals in an atom are arranged in shells and subshells. orbital 3s 3p 3d. Shell: all orbitals with the same value of n. Shells and Subshells The orbitals in an atom are arranged in shells and subshells. n=3 orbital 3s 3p 3d Shell: all orbitals with the same value of n n=3 3s 3p 3d Subshell: all orbitals with the same value

More information

2.Ionization Energies

2.Ionization Energies 2.Ionization Energies Ionization energy, IE, is the energy required to remove one electron from an atom or ion; an endothermic process that is, A A + + 1 e - H = +ve The energy, in kj mol -1, required

More information

Electrons in the outermost s and p orbitals. These are the electrons most often involved in bonding.

Electrons in the outermost s and p orbitals. These are the electrons most often involved in bonding. Electrons in the outermost s and p orbitals. These are the electrons most often involved in bonding. The organization of electrons in an atom or ion, from the lowest energy orbital ( s ) to the highest

More information

POGIL 6 Key Periodic Table Trends (Part 2)

POGIL 6 Key Periodic Table Trends (Part 2) Honors Chem Block Name POGIL 6 Key Periodic Table Trends (Part 2) is a measure of the ability of an atom s nucleus to attract electrons from a different atom within a covalent bond. A higher electronegativity

More information

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity Periodic Table Trends Atomic Radius Ionic Radius Ionization Energy Electronegativity 1. Atomic Radius Atomic Radius - distance from nucleus to outermost atom Measured by dividing the distance between 2

More information