Study of Tricyclic Cascade Networks using Dynamic Optimization

Size: px
Start display at page:

Download "Study of Tricyclic Cascade Networks using Dynamic Optimization"

Transcription

1 Study of Tricyclic Cascade Networks using Dynamic Optimization

2 Systems Biology interdisciplinary field that focuses on the systematic study of complex interactions in biological systems Signal transduction pathways o enable cells to integrate external and internal signals and to respond to them, o are present in major developmental changes in organism (embryo development, but also in cancer, asthma, diabetes ) H. Kestler, C. Wawra, B. Kracher and M. Kuhl: Network modeling of signal transduction: establishing the global view. Bioessays. 30:

3 Basic module Protein Inactive - X Active X* Enzymes S* and P X phosphorylation/dephosphorylation in MAPK cascades methylation/demethylation in bacterial chemotaxis

4

5

6 Direct Approach: Inverse Approach: Both direct and inverse approaches work synergistically! Dynamic optimization very well suited for studying biochemical networks it allows dealing with large-scale, nonlinear dynamic models can handle a great variety of objective functions and constraints.

7 balance equations, conservation equations kinetic expressions

8 balance equations, conservation equations kinetic expressions Kinetic parameters: a X,, a X *, d X, d X *, k X

9 Concentration ratios Saturation parameters Activity coefficient

10 Inverse Approach:

11 max. activity Concentration kinase activity Input stimulus 0 Time max. activity max. activity 90% Concentration upstream kinase kinase activity Concentration kinase activity upstream kinase 10% Time Time

12 Steady-state kinase activity % Typical graded response Ultrasensitive response 10% α 0.1 X α 0.9 X Input stimulus Go from a typical graded response to a switch-like response

13 Optimal ultrasensitivity for fixed values of ratios between total concentrations of enzymes and substrate: Ultrasensitivity [S]/[X] = 0.01

14 Optimal ultrasensitivity for fixed values of ratios between total concentrations of enzymes and substrate: Ultrasensitivity Ultrasensitivity Ultrasensitivity [S]/[X] = 0.01 [S]/[X] = 0.1 [S]/[X] = 1

15 Ultrasensitivity Saturation parameter K X Saturation parameter K* X Concentration ratio [P X ]/[X] Concentration ratio [P X ]/[X] Concentration ratio [P X ]/[X] Concentration ratio [S]/[X] Concentration ratio [S]/[X] Concentration ratio [S]/[X] Steady-state kinase activity 1 Ultrasensitivity can be achieved for small values of concentration ratios The closer to saturation, the more ultrasensitive the monocyclic cascade. 0 Input stimulus

16 Kinetic parameters: a X,, a * X, d X, d * X, k X, a Y, a * Y, d Y, d * Y, k Y, k * Y

17 Concentration ratios ρ S / X,ρ P X / X,ρ X /Y,ρ P Y /Y Saturation parameters K X = K Y = d X + a X d Y + a Y k X k Y K * X = K * Y = d * X +1 * a X d * Y + k * Y * a Y Activity coefficients α X = k X ρ S / X ρ P X / X k Y * k Y α Y = ρ X /Y ρ P Y /Y

18 Maximal values of ultrasensitivity objective measure, with corresponding values of saturation parameters for activation reaction of each level in a signaling cascade model: Concentration ratio [S]/[X] Ultrasensitivity Saturation parameter K X Saturation parameter K Y Concentration ratio [S]/[X] Concentration ratio [S]/[X] Concentration ratio [X]/[Y] Concentration ratio [X]/[Y] Concentration ratio [X]/[Y]

19 saturated unsaturated Maximum ultrasensitivity when the first kinase is saturated, but not the second kinase An optimal multicycle cascade does not correspond to a series of optimal monocyclic cascades

20 Kinetic parameters: a X,, a * X, d X, d * X, k X, a Y, a * Y, d Y, d * Y, k Y, k * Y, a Z, a * Z, d Z, d * Z, k Z, k * Z

21 Concentration ratios ρ S / X,ρ P X / X,ρ X /Y,ρ P Y /Y,ρ Y / Z,ρ P Z / Z Activity coefficients α X = k X ρ S / X ρ P X / X k Y * k Y α Y = ρ X /Y ρ P Y /Y Saturation parameters K X = K Y = K Z = k Z * k Z α Z = ρ Y / Z ρ P Y / Z d X + a X d Y + k X k Y a Y d Z + a Z k Z K * X = K * Y = K * Z = d * X +1 * a X d * Y + k * Y * a Y d * Z + * a Z k Z *

22 Optimal ultrasensitivity for various combinations of saturation parameters: K X = 0.1 K Y =10 K Z =10 K X = 0.1 K Y =10 K Z =1 K X = 0.1 K Y =1 K Z =10 K X =1 K Y =10 K Z =10 K X =1 K Y =10 K Z =1 K X =1 K Y =1 K Z =10

23 Concentration ratio [X]/[Y] Ultrasensitivity Optimal ultrasensitivity for fixed values of ratios between total concentrations of enzymes and substrate Concentration ratio [Y]/[Z]

24 Concentration ratio [X]/[Y] Ultrasensitivity Optimal ultrasensitivity for fixed values of ratios between total concentrations of enzymes and substrate Concentration ratio [Y]/[Z] Saturation parameter K X Saturation parameter K Y Saturation parameter K Z Concentration ratio [X]/[Y] Concentration ratio [Y]/[Z] Concentration ratio [Y]/[Z] Concentration ratio [Y]/[Z]

25 saturated unsaturated unsaturated Optimal ultrasensitivity is achieved if the first kinase is saturated by its target kinase, but not the subsequent two kinases.

26 Ultrasensitivity K X K Y K Z Monocyclic ~ 3 ~ 0.1 Bicyclic ~ 5.5 ~ 0.1 ~ 200 Tricyclic ~9.8 ~ 0.1 ~ 350 ~ 150

27 max. activity max. activity max. activity Concentration kinase activity Input stimulus 90% Concentration kinase activity upstream kinase Concentration upstream kinase kinase activity 10% 0 Time Time Time Amplification in signaling cycles - a measure of response strength - measure of how fast a signal is transduced through a cycle and time needed to reach 90% of the maximum substrate activation time needed for the substrate activity to decrease to within 10% of the ground state

28 d X k X Γ Γ a X Γ d * X * a X Γ Γ

29 Optimal multicycle cascades may not correspond to multiple levels of an optimal single level cascade The larger the number of levels in the cascade, the more robust that cascade - variation in concentration regimes Fast signal propagation can be achieved with different sets of kinetic parameters

30

Supporting Information. Methods. Equations for four regimes

Supporting Information. Methods. Equations for four regimes Supporting Information A Methods All analytical expressions were obtained starting from quation 3, the tqssa approximation of the cycle, the derivation of which is discussed in Appendix C. The full mass

More information

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks Sitabhra Sinha IMSc Chennai Intra-cellular biochemical networks Metabolic networks Nodes:

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

56:198:582 Biological Networks Lecture 11

56:198:582 Biological Networks Lecture 11 56:198:582 Biological Networks Lecture 11 Network Motifs in Signal Transduction Networks Signal transduction networks Signal transduction networks are composed of interactions between signaling proteins.

More information

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016 Bioinformatics 3 V18 Kinetic Motifs Fri, Jan 8, 2016 Modelling of Signalling Pathways Curr. Op. Cell Biol. 15 (2003) 221 1) How do the magnitudes of signal output and signal duration depend on the kinetic

More information

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Bioinformatics 3! V20 Kinetic Motifs Mon, Jan 13, 2014 Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014" Modelling of Signalling Pathways" Curr. Op. Cell Biol. 15 (2003) 221" 1) How do the magnitudes of signal output and signal duration depend on the

More information

Supplement to: How Robust are Switches in Intracellular Signaling Cascades?

Supplement to: How Robust are Switches in Intracellular Signaling Cascades? Supplement to: How Robust are Switches in Intracellular Signaling Cascades? Nils Blüthgen and Hanspeter Herzel Institute for Theoretical Biology, Invalidenstrasse 43, D-10115 Berlin, Germany (Dated: January

More information

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION I. Aksan 1, M. Sen 2, M. K. Araz 3, and M. L. Kurnaz 3 1 School of Biological Sciences, University of Manchester,

More information

Types of biological networks. I. Intra-cellurar networks

Types of biological networks. I. Intra-cellurar networks Types of biological networks I. Intra-cellurar networks 1 Some intra-cellular networks: 1. Metabolic networks 2. Transcriptional regulation networks 3. Cell signalling networks 4. Protein-protein interaction

More information

Problem Set # 3

Problem Set # 3 20.320 Problem Set # 3 October 1 st, 2010 Due on October 8 th, 2010 at 11:59am. No extensions, no electronic submissions. General Instructions: 1. You are expected to state all your assumptions and provide

More information

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases Bernd Binder and Reinhart Heinrich Theoretical Biophysics, Institute of Biology, Math.-Nat.

More information

Bacterial chemotaxis and the question of high gain in signal transduction. Réka Albert Department of Physics

Bacterial chemotaxis and the question of high gain in signal transduction. Réka Albert Department of Physics Bacterial chemotaxis and the question of high gain in signal transduction Réka Albert Department of Physics E. coli lives in the gut and takes up nutrients through its pores E. coli moves by rotating its

More information

COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall COURSE TITLE: Computational Systems Biology: Modeling Biological Responses

COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall COURSE TITLE: Computational Systems Biology: Modeling Biological Responses DEPARTMENT: Environmental Health COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall 2017 CREDIT HOURS: 2 COURSE TITLE: Computational Systems Biology: Modeling Biological Responses COURSE LOCATION: TBD PREREQUISITE:

More information

State Machine Modeling of MAPK Signaling Pathways

State Machine Modeling of MAPK Signaling Pathways State Machine Modeling of MAPK Signaling Pathways Youcef Derbal Ryerson University yderbal@ryerson.ca Abstract Mitogen activated protein kinase (MAPK) signaling pathways are frequently deregulated in human

More information

arxiv:physics/ v3 [physics.bio-ph] 16 Sep 2003

arxiv:physics/ v3 [physics.bio-ph] 16 Sep 2003 Accepted for publication in Biophysical Chemistry Special Issue for Walter Kauzmann arxiv:physics/0207049v3 [physics.bio-ph] 16 Sep 2003 Thermodynamic and Kinetic Analysis of Sensitivity Amplification

More information

Mechanism underlying the bio-effects of an electromagnetic field based on the Huang-Ferrell model

Mechanism underlying the bio-effects of an electromagnetic field based on the Huang-Ferrell model Mechanism underlying the bio-effects of an electromagnetic field based on the Huang-Ferrell model D.Y. Geng, G. Hu, L. Wang, N. Jia and F.X. Wang Province-Ministry Joint Key Laboratory of Electromagnetic

More information

No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism

No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism Luna Bozeman 1 and Adriana Morales 2 1 Department of Mathematical Sciences Clemson

More information

56:198:582 Biological Networks Lecture 10

56:198:582 Biological Networks Lecture 10 56:198:582 Biological Networks Lecture 10 Temporal Programs and the Global Structure The single-input module (SIM) network motif The network motifs we have studied so far all had a defined number of nodes.

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

56:198:582 Biological Networks Lecture 9

56:198:582 Biological Networks Lecture 9 56:198:582 Biological Networks Lecture 9 The Feed-Forward Loop Network Motif Subgraphs in random networks We have discussed the simplest network motif, self-regulation, a pattern with one node We now consider

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

Ch 4: Cellular Metabolism, Part 1

Ch 4: Cellular Metabolism, Part 1 Developed by John Gallagher, MS, DVM Ch 4: Cellular Metabolism, Part 1 Energy as it relates to Biology Energy for synthesis and movement Energy transformation Enzymes and how they speed reactions Metabolism

More information

BIOREPS Problem Set #4 Adaptation and cooperation

BIOREPS Problem Set #4 Adaptation and cooperation BIOREPS Problem Set #4 Adaptation and cooperation 1 Background Adaptation is one of the most distinctive features of our physical senses. The thermoreceptors in our skin react sharply to the change in

More information

Design Principles of a Bacterial Signalling Network

Design Principles of a Bacterial Signalling Network Design Principles of a Bacterial Signalling Network Why is chemotaxis more complicated than needed? Jens Timmer Freiburg Institute for Advanced Studies Center for Systems Biology Center for Data Analysis

More information

Building a cellular switch: more lessons from a good egg

Building a cellular switch: more lessons from a good egg Building a cellular switch: more lessons from a good egg James E. Ferrell, Jr. Summary Xenopus oocytes mature in response to the steroid hormone progesterone. At the level of a population of oocytes, the

More information

Bioinformatics Modelling dynamic behaviour: Modularisation

Bioinformatics Modelling dynamic behaviour: Modularisation Bioinformatics Modelling dynamic behaviour: David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow Lecture outline Modelling Enzymatic

More information

Robust Network Topologies for Generating Switch-Like Cellular Responses

Robust Network Topologies for Generating Switch-Like Cellular Responses University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 6-22-2011 Robust Network Topologies for Generating Switch-Like Cellular Responses Najaf A. Shah University

More information

Operating Regimes of Signaling Cycles: Statics, Dynamics, and Noise Filtering

Operating Regimes of Signaling Cycles: Statics, Dynamics, and Noise Filtering Operating Regimes of Signaling Cycles: Statics, Dynamics, and Noise Filtering Carlos Gomez-Uribe, 1,2 George C. Verghese, 2 and Leonid A. Mirny 1 1 Harvard-MIT Division of Health Sciences and Technology,

More information

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO-

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO- 2018/9 - BIO-4001A BIODIVERSITY Autumn Semester, Level 4 module (Maximum 150 Students) Organiser: Dr Harriet Jones Timetable Slot:DD This module explores life on Earth. You will be introduced to the major

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Principles of Synthetic Biology: Midterm Exam

Principles of Synthetic Biology: Midterm Exam Principles of Synthetic Biology: Midterm Exam October 28, 2010 1 Conceptual Simple Circuits 1.1 Consider the plots in figure 1. Identify all critical points with an x. Put a circle around the x for each

More information

Chapter 4 Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels

Chapter 4 Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels Chapter 4 Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels Elisenda Feliu, Michael Knudsen, and Carsten Wiuf Abstract We study signaling cascades with an arbitrary number of

More information

Petri net models. tokens placed on places define the state of the Petri net

Petri net models. tokens placed on places define the state of the Petri net Petri nets Petri net models Named after Carl Adam Petri who, in the early sixties, proposed a graphical and mathematical formalism suitable for the modeling and analysis of concurrent, asynchronous distributed

More information

Introduction to Mathematical Modeling

Introduction to Mathematical Modeling Introduction to Mathematical Modeling - Systems Theory in the Toolbox for Systems Biology The 5 th International Course in Yeast Systems Biology 2011 June 6, 2011, PhD, Assoc Prof Head of Department Systems

More information

From molecules to behavior: E. coli s memory, computation and chemotaxis

From molecules to behavior: E. coli s memory, computation and chemotaxis From molecules to behavior: E. coli s memory, computation and chemotaxis Yuhai Tu Physical Sciences & Computational Biology Center IBM T. J. Watson Research Center Acknowledgements: IBM Research Bernardo

More information

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction

Lecture 8: Temporal programs and the global structure of transcription networks. Chap 5 of Alon. 5.1 Introduction Lecture 8: Temporal programs and the global structure of transcription networks Chap 5 of Alon 5. Introduction We will see in this chapter that sensory transcription networks are largely made of just four

More information

Structural Properties of Generative Form by Hormonal Proliferation Algorithm

Structural Properties of Generative Form by Hormonal Proliferation Algorithm Original Paper Forma, 15, 103 107, 2000 Structural Properties of Generative Form by Hormonal Proliferation Algorithm Yasuo YONEZAWA 1 and Keisuke OHTOMO 2 Division of System Engineering, Graduate School

More information

Biomolecular Feedback Systems

Biomolecular Feedback Systems Biomolecular Feedback Systems Domitilla Del Vecchio MIT Richard M. Murray Caltech Version.b, September 4, 24 c 24 by Princeton University Press All rights reserved. This is the electronic edition of Biomolecular

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

Biomolecular Feedback Systems

Biomolecular Feedback Systems Biomolecular Feedback Systems Domitilla Del Vecchio MIT Richard M. Murray Caltech Classroom Copy v.6c, July, 22 c California Institute of Technology All rights reserved. This manuscript is for review purposes

More information

Proceedings of the FOSBE 2007 Stuttgart, Germany, September 9-12, 2007

Proceedings of the FOSBE 2007 Stuttgart, Germany, September 9-12, 2007 Proceedings of the FOSBE 2007 Stuttgart, Germany, September 9-12, 2007 A FEEDBACK APPROACH TO BIFURCATION ANALYSIS IN BIOCHEMICAL NETWORKS WITH MANY PARAMETERS Steffen Waldherr 1 and Frank Allgöwer Institute

More information

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells

Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Analog Electronics Mimic Genetic Biochemical Reactions in Living Cells Dr. Ramez Daniel Laboratory of Synthetic Biology & Bioelectronics (LSB 2 ) Biomedical Engineering, Technion May 9, 2016 Cytomorphic

More information

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 M. Elowitz and R. M. Murray Winter 2013 CALIFORNIA INSTITUTE OF TECHNOLOGY Biology and Biological Engineering (BBE) BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 1. (Shaping pulses; based

More information

Computing Algebraic Functions with Biochemical Reaction Networks

Computing Algebraic Functions with Biochemical Reaction Networks Computing Algebraic Functions with Biochemical Reaction Networks H. J. Buisman** Technische Universiteit Eindhoven H. M. M. ten Eikelder** Technische Universiteit Eindhoven P. A. J. Hilbers** Technische

More information

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules Why Do Cells Communicate? Regulation Cells need to control cellular processes In multicellular organism, cells signaling pathways coordinate the activities within individual cells that support the function

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

A model of excitation and adaptation in bacterial chemotaxis

A model of excitation and adaptation in bacterial chemotaxis Proc. Natl. Acad. Sci. USA Vol. 94, pp. 7263 7268, July 1997 Biochemistry A model of excitation and adaptation in bacterial chemotaxis PETER A. SPIRO*, JOHN S. PARKINSON, AND HANS G. OTHMER* Departments

More information

Stochastic simulations

Stochastic simulations Stochastic simulations Application to molecular networks Literature overview Noise in genetic networks Origins How to measure and distinguish between the two types of noise (intrinsic vs extrinsic)? What

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Cybergenetics: Control theory for living cells

Cybergenetics: Control theory for living cells Department of Biosystems Science and Engineering, ETH-Zürich Cybergenetics: Control theory for living cells Corentin Briat Joint work with Ankit Gupta and Mustafa Khammash Introduction Overview Cybergenetics:

More information

Analysis and Simulation of Biological Systems

Analysis and Simulation of Biological Systems Analysis and Simulation of Biological Systems Dr. Carlo Cosentino School of Computer and Biomedical Engineering Department of Experimental and Clinical Medicine Università degli Studi Magna Graecia Catanzaro,

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

six lectures on systems biology

six lectures on systems biology six lectures on systems biology jeremy gunawardena department of systems biology harvard medical school lecture 3 5 april 2011 part 2 seminar room, department of genetics a rather provisional syllabus

More information

return in class, or Rm B

return in class, or Rm B Last lectures: Genetic Switches and Oscillators PS #2 due today bf before 3PM return in class, or Rm. 68 371B Naturally occurring: lambda lysis-lysogeny decision lactose operon in E. coli Engineered: genetic

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

A mechanistic study of evolvability using the mitogen-activated protein kinase cascade

A mechanistic study of evolvability using the mitogen-activated protein kinase cascade EVOLUTION & DEVELOPMENT 5:3, 81 94 (003) A mechanistic study of evolvability using the mitogen-activated protein kinase cascade H. F. Nijhout,* A. M. Berg, and W. T. Gibson Department of Biology, Duke

More information

Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible

Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible CHAOS VOLUME 11, NUMBER 1 MARCH 2001 Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible James E. Ferrell, Jr. a) and Wen Xiong Department

More information

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Junping Shi College of William and Mary, USA Molecular biology and Biochemical kinetics Molecular biology is one of

More information

1 Periodic stimulations of the Incoherent Feedforward Loop network

1 Periodic stimulations of the Incoherent Feedforward Loop network 1 Periodic stimulations of the Incoherent Feedforward Loop network In this Additional file, we give more details about the mathematical analysis of the periodic activation of the IFFL network by a train

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

Dynamic receptor team formation can explain the high signal transduction gain in E. coli

Dynamic receptor team formation can explain the high signal transduction gain in E. coli Dynamic receptor team formation can explain the high signal transduction gain in E coli Réka Albert, Yu-wen Chiu and Hans G Othmer School of Mathematics, University of Minnesota, Minneapolis, MN 55455

More information

Chapter 3. Chemistry of Life

Chapter 3. Chemistry of Life Chapter 3 Chemistry of Life Content Objectives Write these down! I will be able to identify: Where living things get energy. How chemical reactions occur. The functions of lipids. The importance of enzymes

More information

Modeling Cellular Networks

Modeling Cellular Networks 06_4774 12/7/06 3:02 PM Page 151 CHAPTER 6 Modeling Cellular Networks Tae Jun Lee, Dennis Tu, Chee Meng Tan, and Lingchong You 6.1 Introduction Systems-level understanding of cellular dynamics is important

More information

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY. Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY Nael H El-Farra, Adiwinata Gani & Panagiotis D Christofides Department of Chemical Engineering University of California, Los Angeles 2003 AIChE

More information

Design principles for elementary gene circuits: Elements, methods, and examples

Design principles for elementary gene circuits: Elements, methods, and examples CHAOS VOLUME 11, NUMBER 1 MARCH 2001 Design principles for elementary gene circuits: Elements, methods, and examples Michael A. Savageau a) Department of Microbiology and Immunology, University of Michigan

More information

Supplementary Figure 1. Generation of spatially symmetric traveling waves. (a) Infusing flows and the positioning of a stationary standing wave.

Supplementary Figure 1. Generation of spatially symmetric traveling waves. (a) Infusing flows and the positioning of a stationary standing wave. Supplementary Figure 1. Generation of spatially symmetric traveling waves. (a) Infusing flows and the positioning of a stationary standing wave. The relative differences between the side flows shifts the

More information

Adaptive Modularization of the MAPK Signaling Pathway Using the Multiagent Paradigm

Adaptive Modularization of the MAPK Signaling Pathway Using the Multiagent Paradigm Adaptive Modularization of the MAPK Signaling Pathway Using the Multiagent Paradigm Abbas Sarraf Shirazi 1, Sebastian von Mammen 1, and Christian Jacob 1,2 1 Dept. of Computer Science, Faculty of Science

More information

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004

UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING. CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004 UNIVERSITY OF CALIFORNIA SANTA BARBARA DEPARTMENT OF CHEMICAL ENGINEERING CHE 154: Engineering Approaches to Systems Biology Spring Quarter 2004 Lecture: Tue/Thu 9:30-10:45am Engr-II Room 3301 Instructor

More information

Prokaryotic Gene Expression (Learning Objectives)

Prokaryotic Gene Expression (Learning Objectives) Prokaryotic Gene Expression (Learning Objectives) 1. Learn how bacteria respond to changes of metabolites in their environment: short-term and longer-term. 2. Compare and contrast transcriptional control

More information

Feedback Control Architecture of the R. sphaeroides Chemotaxis Network

Feedback Control Architecture of the R. sphaeroides Chemotaxis Network 211 5th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 211 Feedback Control Architecture of the R. sphaeroides Chemotaxis Network Abdullah

More information

Systems biology 9 Signal Transduction

Systems biology 9 Signal Transduction Humbol- Sommersemester 2 Systems biology 9 Signal Transuction Ea Klipp Humbol- Institut für Biologie Theoretische Biophysi Moeling of Signal Transuction Humbol- Before: Metabolismus - Mass transfer Now:

More information

Correspondence of regular and generalized mass action systems

Correspondence of regular and generalized mass action systems Correspondence of regular and generalized mass action systems Van Vleck Visiting Assistant Professor University of Wisconsin-Madison Joint Mathematics Meetings (San Antonio, TX) Saturday, January 10, 2014

More information

Domain 6: Communication

Domain 6: Communication Domain 6: Communication 6.1: Cell communication processes share common features that reflect a shared evolutionary history. (EK3.D.1) 1. Introduction to Communication Communication requires the generation,

More information

Lecture 11: Enzyme Kinetics, Part I

Lecture 11: Enzyme Kinetics, Part I Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 11: Enzyme Kinetics, Part I 13 February 2018 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Back to

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

Multistability in the lactose utilization network of Escherichia coli

Multistability in the lactose utilization network of Escherichia coli Multistability in the lactose utilization network of Escherichia coli Lauren Nakonechny, Katherine Smith, Michael Volk, Robert Wallace Mentor: J. Ruby Abrams Agenda Motivation Intro to multistability Purpose

More information

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline Chemistry 1506 Dr. Hunter s Class Section 10 Notes - Page 1/14 Chemistry 1506: Allied Health Chemistry 2 Section 10: Enzymes Biochemical Catalysts. Outline SECTION 10.1 INTRODUCTION...2 SECTION SECTION

More information

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved

Using Evolutionary Approaches To Study Biological Pathways. Pathways Have Evolved Pathways Have Evolved Using Evolutionary Approaches To Study Biological Pathways Orkun S. Soyer The Microsoft Research - University of Trento Centre for Computational and Systems Biology Protein-protein

More information

SPATIO-TEMPORAL MODELLING IN BIOLOGY

SPATIO-TEMPORAL MODELLING IN BIOLOGY SPATIO-TEMPORAL MODELLING IN BIOLOGY Prof Dagmar Iber, PhD DPhil ((Vorname Nachname)) 04/10/16 1 Challenge: Integration across scales Butcher et al (2004) Nat Biotech, 22, 1253-1259 INTERDISCIPLINARY WORK

More information

Signal Transduction. Dr. Chaidir, Apt

Signal Transduction. Dr. Chaidir, Apt Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for

More information

A Structured Approach Part IV. Model Checking in Systems and Synthetic Biology

A Structured Approach Part IV. Model Checking in Systems and Synthetic Biology A Structured Approach Part IV Model Checking in Systems and Synthetic Biology Robin Donaldson Bioinformatics Research Centre University of Glasgow, Glasgow, UK Model Checking - ISMB08 1 Outline Introduction

More information

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE

From cell biology to Petri nets. Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE From cell biology to Petri nets Rainer Breitling, Groningen, NL David Gilbert, London, UK Monika Heiner, Cottbus, DE Biology = Concentrations Breitling / 2 The simplest chemical reaction A B irreversible,

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

5A Effects of receptor clustering and rebinding on intracellular signaling

5A Effects of receptor clustering and rebinding on intracellular signaling 5A Effects of receptor clustering and rebinding on intracellular signaling In the analysis of bacterial chemotaxis, we showed how receptor clustering can amplify a biochemical signal through cooperative

More information

Boolean Modeling of Biochemical Networks

Boolean Modeling of Biochemical Networks 16 The Open Bioinformatics Journal, 2011, 5, 16-25 Boolean Modeling of Biochemical Networks Tomá Helikar 1, Naomi Kochi 2, John Konvalina 3 and Jim A. Rogers*,1,3 Open Access 1 Department of Pathology

More information

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis David Gilbert drg@brc.dcs.gla.ac.uk Bioinformatics Research Centre, University of Glasgow and Monika Heiner

More information

The energy speed accuracy trade-off in sensory adaptation

The energy speed accuracy trade-off in sensory adaptation SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS2276 The energy speed accuracy trade-off in sensory adaptation 1 The effective potential H(m) In the main text, we introduced a set of F a and F m functions to

More information

Computational Systems Biology Exam

Computational Systems Biology Exam Computational Systems Biology Exam Dr. Jürgen Pahle Aleksandr Andreychenko, M.Sc. 31 July, 2012 Name Matriculation Number Do not open this exam booklet before we ask you to. Do read this page carefully.

More information

Input-output relations in biological systems: measurement, information and the Hill equation

Input-output relations in biological systems: measurement, information and the Hill equation Frank REVIEW Input-output relations in biological systems: measurement, information and the Hill equation Steven A Frank processing of the component subsystems and the aggregate architecture of the components

More information

Chemistry in Biology Section 1 Atoms, Elements, and Compounds

Chemistry in Biology Section 1 Atoms, Elements, and Compounds Name Chemistry in Biology Section 1 Atoms, Elements, and Compounds Date Main Idea Details Scan the headings and boldfaced words in Section 1 of the chapter. Predict two things that you think might be discussed.

More information

Seminar in Bioinformatics, Winter Network Motifs. An Introduction to Systems Biology Uri Alon Chapters 5-6. Meirav Zehavi

Seminar in Bioinformatics, Winter Network Motifs. An Introduction to Systems Biology Uri Alon Chapters 5-6. Meirav Zehavi Seminar in Bioinformatics, Winter 2010 Network Motifs An Introduction to Systems Biology Uri Alon Chapters 5-6 Meirav Zehavi Contents Network Motifs in - Sensory Transcription Networks - SIM - Multi-Output

More information

What is it? Where is it? How strong is it? Perceived quantity. Intensity Coding in Sensory Systems. What must sensory systems encode?

What is it? Where is it? How strong is it? Perceived quantity. Intensity Coding in Sensory Systems. What must sensory systems encode? Sensory Neurophysiology Neural response Intensity Coding in Sensory Systems Behavioral Neuroscience Psychophysics Percept What must sensory systems encode? What is it? Where is it? How strong is it? Perceived

More information

arxiv: v4 [q-bio.mn] 5 Dec 2017

arxiv: v4 [q-bio.mn] 5 Dec 2017 Describing Function-based Approximations of Biomolecular Systems Abhishek Dey 1, Shaunak Sen 2 Department of Electrical Engineering Indian Institute of Technology Delhi Hauz Khas, New Delhi 110016, INDIA

More information