When used in accordance with instructions, radioactive materials can be used safely in the environment.

Size: px
Start display at page:

Download "When used in accordance with instructions, radioactive materials can be used safely in the environment."

Transcription

1 Published on UC Davis Safety Services ( Hydroprobe Safety Manual Introduction Units of Radiation Measurement Property of Neutrons Radiation Protection Standards Health Risks Associated with Radiation Exposure Methods to Minimize Exposure Dosimetry Soil Moisture and Density Gauges Attachments Introduction When used in accordance with instructions, radioactive materials can be used safely in the environment. The general public is restricted from unnecessary radiation exposure during hydroprobe use, storage, and transportation by virtue of the operating procedures, locked storage, transportation limitations, and legal restrictions imposed by State and Federal regulations. Operator protection is obtained through training, good gauge design, and following radiological safe work practices (i.e., time, distance, and shielding). Types of Radiation Various elements, both naturally occurring (Radium) and reactor produced (Cesium and Americium) are unstable and are slowly decaying to a more stable state. The act of decay produces emissions of energy upon disintegration of the atoms. These emissions are either electromagnetic radiation (gamma rays) or are actual particles (alpha, beta). Other emissions are produced from various radioactive materials; however, we are concerned with only the alpha and gamma radiations and resultant neutrons for purposes of the nuclear soil gauging. These emissions are detected by appropriate detectors (Geiger Mueller tubes) for gamma rays and (Boron Tri-fluoride or Helium tubes) for neutron measurements. The resultant signals are 1

2 displayed electronically as an index of soil density and moisture. All sources are supplied in a sealed stainless steel capsule, doubly encapsulated, and further welded into a stainless steel source rod or located permanently in the gauge housing. Sources are manufactured by a number of manufacturers' specifications that have been approved by the State of California, Department of Health Services, Radiologic Health Branch. Sources should never be removed from their mountings and no attempt should ever be made to repair them yourself. Only the manufacturer should perform these source manipulations. Soil Source Gauges The most common soil gauge sources are: 1. Cesium-137 for gamma emission 2. Americium-241/Beryllium for neutron emission 3. Radium-226/Beryllium for combined gamma and neutron emissions Gamma Radiation Gamma radiation is high energy electromagnetic energy capable of penetrating several inches of most material. It is useful for the total mass measurement of heavy materials and is used to determine the total density of soil. Gamma radiation is emitted in several energy levels by a sealed Radium source or in a single energy level by a Cesium source. The Cesium level is 0.66 million electron volts (MeV) and requires less shielding that the multi-level output of the Radium source. In addition, the fixed spectrum emission is superior for soil density determination purposes. Gamma sources are relatively easy to shield with dense material like lead, depleted uranium, tungsten, etc. Neutron Radiation Neutron radiation consists of small, non-charged particles emitted from the source at an average energy level of 5 MeV. This is known as fast neutron emission. Neutron detectors see only slow, or thermal neutrons; therefore, the fast neutrons must slow down or they will be ignored by the detectors. Neutrons slow down by colliding with other objects (especially light elements like hydrogen) much like a rifle bullet ricocheting from rock to rock. A simple analogy is that of a golf ball colliding with a bowling ball. The golf ball would rebound with little loss of energy. However, two golf balls colliding would produce a strong loss of energy in each of them, or a transfer of energy from one to the other. This is what happens when a fast neutron hits a hydrogen atom. The neutron is markedly slowed down. After a few collisions with hydrogen atoms, a fast neutron is reduced to the slow 2

3 or thermal energy that the moisture detectors in the soil gauge can detect. Neutron emission occurs when an alpha particle emitter (Americium, Plutonium, or Radium) is mixed with Beryllium powder in a tightly compressed pellet. The alpha particles strike the Beryllium atoms to produce fast neutrons of an average energy of 5 MeV. The suffix Be is attached to an alpha source name to identify the type of neutron source (RaBe, AmBe, PuBe). Neutron sources are more difficult to shield. Use of hydrogenous moderators may provide shielding but reduces the measuring capacity of the gauge. It is impossible to moderate the neutrons with heavy plastic shielding and still expect the ground moisture to then moderate more neutrons for measurement. Neutron shielding is further complicated in that the thermal neutrons are captured by the moderating material with a resultant emission of gamma radiation of fairly high energy. Protection Standards Radiation protection standards apply to radiation workers or the general population. Standards for the general population are of importance since they serve as a basis for many of the considerations applicable to the siting of nuclear facilities and the design and implementation of environmental surveillance programs. Occupational Dose Limit The occupational dose limit for radiation workers is 5000 millirem/year to the whole body. General Population Dose Limit The dose limit for individual members of the public is 100 millirem/year. Prenatal Radiation Dose Limit The embryo/fetus is more sensitive to radiation than an adult due to the rapidly dividing cells. Therefore, the dose limit is 500 millirem for the entire gestation period and no more than 50 millirem in any one month for females who have declared their pregnancy Units of Radiation Measurement Activity (Unit: Curie) The Curie (Ci) is defined as the activity of that quantity of radioactive material in which the number of disintegrations per second is 3.7E10 (a number nearly the same as the number of disintegrations per second from 1 gram of radium). Since a Curie is a large amount of radioactivity sub-units of a Curie, a millicurie (mci, 1E-3 Curie) or microcurie (µci, 1E-6 Curie), are commonly used to express the amount of activity. Exposure ( Unit: Roentgen) The Roentgen (R) is defined as 2.58E-4 coulomb/kg air. This unit is special in that it is defined only for X or gamma radiation in air. 3

4 Absorbed Dose (Unit: rad) The rad is the special unit of absorbed energy. It is defined as that amount of ionizing radiation that deposits 100 ergs/gram of material. For most applications, it can be assumed that 1 Roentgen = 1 rad. Dose Equivalent (Unit: rem) The rem is the unit of dose equivalent. The dose equivalent accounts for the difference in biological effectiveness of different types of radiation. It is the product of the absorbed dose (rad) times the quality factor (QF) of the radiation. The QF for x, gamma, and beta radiation is 1, for alpha radiation 20, and varies with energy from 2-11 for neutrons. Property of Neutrons The neutron is a very common particle, since it is a basic constituent of the nucleus along with the proton. It is almost identical to the proton in mass and size, but carries no charge. Normally, it remains locked in the nucleus along with the proton. The number of neutrons and protons is a characteristic number for any given nuclide and is known as the mass number. Sources of Neutons There are no significant naturally occurring neutron emitters. Radionuclides that emit neutrons can be produced artificially, but all, except Californium-252, have half-lives that are too short to be useful. Aside from the spontaneous fission of Cf-252, the only way to produce to neutron sources is through nuclear reactions, that is, the bombardment of beryllium with alpha particles. Suitable alpha particle sources are Polonium-210, Radium-226, Plutonium-239, and Americium-241. Neutron Interactions with Matter The neutron carries no charge and has a mass only slightly larger than that of the proton. Because the neutron is not charged, it does not lose its energy by ionization. A neutron travels through the medium without interaction until it collides with an atomic nucleus. The maximum energy transfer that can result occurs when neutrons collide with the nuclei of hydrogen atoms (protons) that are of almost equal mass. Collisions between neutrons and light elements found in tissue at neutron energies of a few MeV and lower are elastic; that is, the kinetic energy of the colliding bodies is conserved during the collision. In heavier elements, some of the kinetic energy of the neutron may be transferred to the internal energy of the nucleus. In this case, referred to as an inelastic collision, the kinetic energy that can be imparted to the atom will be reduced. The excited nucleus will release the energy of excitation in the form of a gamma photon or other particle. Inelastic collisions have significance in the attenuation of neutrons but do not play an important role in the production of damage in living matter. Attenuation of Neutrons The total reduction in the number of neutrons remaining in a neutron beam following the penetration of a given thickness of matter is called attenuation. The half-value layer (HVL) is 4

5 the amount of the specific absorber necessary to reduce the beam intensity by one-half of its original value. HVL's are absorber specific since they are dependent on the density of the material. The attenuation of neutrons with energies less than a few MeV is most effectively accomplished with hydrogen. Example: Calculate the attenuation due to hydrogen in a water shield, 1.5 m thick, for 8 MeV neutrons, if the HVL for hydrogen in water is 9.25 cm. The number of HVLs contributed by the hydrogen in the shield is 150/9.25 = The attenuation is (1/2) or 1.3E-05. Radiation Protection Standards Introduction Radiation protection standards apply to radiation workers or the general population. Standards for the general population are of importance since they serve as a basis for many of the considerations applicable to the siting of nuclear facilities and the design and implementation of environmental surveillance programs. Occupational Dose Limit The occupational dose limit for radiation workers is 5000 millirem/year to the whole body. General Population Dose Limit The dose limit for individual members of the public is 100 millirem/year. Prenatal Radiation Dose Limit The embryo/fetus is more sensitive to radiation than an adult due to the rapidly dividing cells. Therefore, the dose limit is 500 millirem for the entire gestation period and no more than 50 millirem in any one month for females who have declared their pregnancy Health Risks Associated With Radiation Exposure There are no measurable biological effects below acute exposures of rem. The main effect of radiation exposure is cancer. To put this into perspective, one in five adults will normally die from cancer from all possible causes. Thus, in any group of 10,000 workers, it is estimated that 2,000 workers will die from cancer without exposure to occupational radiation. If this group of 10,000 workers were each exposed to 1 rem of ionizing radiation, it is estimated that 4 will die from cancer due to this exposure. This means a 1 rem dose may increase an individual worker s changes of dying from cancer from 20 percent to percent. 5

6 Methods to Minimize Exposure Factors in Maintaining ALARA The ALARA concept in radiation protection is to keep your radiation exposure as low as reasonably achievable. You can limit your exposure to radiation by using the three methods of (1) time, (2) distance, and (3) shielding. Time Reducing the time of exposure is a very practical method of radiation protection. The shorter the time exposed to a radiation field, the lower the total exposure. Distance Distance is a very effective shielding measure and often the least expensive means of radiation protection. As one moves away from the source of radiation the amount of radiation at a given distance from the source is inversely proportional to the square of the distance (inverse square law). For example, a source of radiation that reads 100 mr/hr at 1 foot will read 1 mr/hr at 10 feet. Shielding Shielding is also a practical means of radiation protection. For alpha and beta radiation, very little shielding is required to absorb the emissions completely, while gamma, x-ray, and neutron radiation can be reduced to acceptable levels. Alphas are stopped by a sheet of paper or the dead layer of skin. Betas are stopped by one-inch wood or one-quarter inch plexiglass. X-rays and gamma rays are attenuated by concrete, steel, or lead. Neutrons are attenuated by hydrogen rich materials. In general, as the density and/or thickness of a shielding material increases, the absorption of radiation emissions by the material also increases. Usually, the higher the atomic number of the shielding material, the higher its density. Dosimetry Dosimeters are devices that quantify the amount of radiation to which a person has been exposed. Thermoluminescent Dosimeters (Whole Body Exposure Monitors) Thermoluminescent dosimeters, containing lithium fluoride chip and powder cartridges, are used as personnel monitors. Exposure of these materials to ionizing radiation results in the trapping of electrons in energy levels above those occupied normally. When the dosimeter is heated, these electrons are liberated from the traps. As the electrons return to their normal levels, visible light is released. The amount of light released is measured and is proportional to the exposure of the dosimeter to radiation. These materials are x, beta, gamma, and neutron sensitive and exposure is reported as being either deep and/or shallow energy penetration. 6

7 The dosimetry reporting company, an independent contractor, will report exposures for each individual in deep and/or shallow dose for the whole body. Precautions on Use of Dosimetry The lithium fluoride chips and powder are highly sensitive to heat and moisture. When not in use, store your dosimetry in an area free of ionizing radiation. If you lose, contaminate, get your badge wet or leave it in the sun for an extended period of time, please notify EH&S. Distribution and Use of Dosimetry Dosimetry is issued by EH&S based on procedures used and the type and amount of radioactivity. Please call EH&S at for your dosimetry needs. Badges may be exchanged weekly, monthly, or quarterly, depending upon the type and amount of material used and experimental design. EH&S documents the dosimetry readings for the State of California, Department of Public Health, Radiologic Health Branch. Dosimetry Records All dosimetry records are on file at EH&S. Upon your request, EH&S will supply you with your dosimetry history. If at any time your exposure exceeds the campus guidelines or is unusually high, an EH&S staff member will notify you of the incident. Soil Moisture and Density Gauges Soil Density Gauge (Surface Gauges) Normal operation of the surface gauge requires the operator to stand within two feet of the gauge for a period of approximately 10 seconds per test. There is little reason to be closer than that distance nor to work longer than this period to obtain the results. It may take longer than 10 seconds to prepare the site; however, the nuclear gauge should be away from the site at this time. A busy day can result in 30 tests being taken. A busy work week would include 5 days of this extensive testing. If we multiply this all together: 30 tests/day x 10 second/test = 300 seconds or 5 minutes/day of exposure at 2 feet. 5 days x 5 minutes = 25 minutes or approximately 0.5 hour. The average exposure level at two feet from the gauge is 0.5 mrem/hour. 0.5 hour x 0.5 mrem/hour = 0.25 mrem accumulated in a busy work week. Neutron Soil Moisture Gauges (Depth Probes) The radiation from depth probes can be higher because of the work requirement of the depth probe. Unlike the surface gauges, the depth probes are carried around by the operator to a greater extent. The sources are the same size, and the shielding is equal, or even better, but the immediate vicinity work requirement is higher. 7

8 Depth probes are designed to be carried with a strap or handle. The source area is carried near the lower extremities or ankles. Density depth probes are used primarily for research and the duty cycle is not high. The use of such a gauge would be infrequent during a total year's time, and radiation accumulation will be low compared to other gauges uses. The major depth probe used will be the hydroprobe for irrigation management. This unit will be used routinely, almost daily, throughout the growing season that may be all year long in some areas. The gamma output from the hydroprobe is almost negligible. The Americium-241/Be source has a low energy gamma output that is not used for moisture measurement and that is shielded out internally with a small lead sheath. Gamma radiation on the surface of the hydroprobe is approximately 1 mrem/hour which reduces to less than 0.05 mrem/hour at two feet from the gauge. Thermal neutron output is approximately 0.2 mrem/hour on the surface. The fast neutron output is approximately 4 mrem/hr on the surface. The total gamma and neutron radiation at mid-trunk on an individual, with the hydroprobe carried at the side by its handle, is approximately, 0.3 mrem/hour. The anticipated duty cycle in close proximity to the gauge is approximately 2 hours/day during a full work day. The operator will be driving part of the time, performing some paperwork functions part of the time, and trudging through the fields part of the time. Multiplying the work day out: 2 hrs/day x 5 days x 0.3 mrem/hr = 3.0 mrem accumulation in a week It is important that the gauge be carried in its appropriate carrying location in the back of the vehicle at maximum practical distance from the operator, and that all use of the gauge be performed at quickly as possible. The gauge is at its safest when the probe is in the ground in the process of taking readings. No measurable radiation is detected at the gauge electronics in this operation. Survey Instruments A conventional survey meter will read only the gamma or beta output of the device. Only special neutron meters will read the neutron output. Possession of a survey meter is not required for gauge use. However, should you have a survey meter, EH&S will calibrate it for you and be sure you are familiar with proper use techniques. 8

9 Leak Tests All radioactive sources must be tested for contamination periodically. The sources are doubly encapsulated in stainless steel and the likelihood of a leaking source is very remote. However, they still must be leak tested every six months, in accordance with regulations. This is accomplished by a swipe test performed once by EH&S and once by the authorized employee (radiation user). Perform the swipe test as follows, using a cloth swipe: Surface Gauge 1. Stand gauge on end; leave shutter closed. 2. Swipe the cleanout ring. Do not swipe the source rod. 3. Return the swipe to the EH&S in the envelope provided. Please include: the date, RUA number, source isotope, serial number, and the name of the person performing the test. 4. A certificate will be returned for your records. Depth Gauges 1. Lay the probe on its side. If the source is leaking, contamination will be inside the shield tube. 2. Swipe the inside of the shield tube. 3. Return the swipe to the EH&S in the envelope provided. Please include: the date, RUA number, source isotope, serial number, and the name of the person performing the leak test. 4. A certificate will be returned for your records. Storage and Posting The gauges should be stored in their shipping cases in a locked area with key access only by the licensed operators. EH&S recommends that permanent storage be ten feet from the nearest point of full-time work requirements. Post a permanent "CAUTION - RADIOACTIVE MATERIAL" sign on the storage area door. These are available from EH&S. Use Attachment 3 [1], Permanent Storage Location for Nuclear Gauges form, to establish a storage location. Send the copy of the completed form to EH&S. Attachments Attachment 1: Americium-241/Beryllium Neutron Sources [2] Attachment 2: Cross Section of a Generalized Hydroprobe [3] Attachment 3: Permanent Storage Location for Nuclear Gauges [1] Attachment 4: UC Davis Bill of Lading [4] Attachment 5: Emergency Response Information [5] Attachment 6: Nuclear Gauge Shipment Log [6] 9

10 Contact Radiological Safety FAX: More information [7] Related content 1. Recertification Exams/Quizzes 2. Analytical X-Ray Safety Manual 3. Diagnostic X-ray Safety Manual 4. Radiation Safety - Forms, Manuals, Plans & Attachments 5. Radiation Safety Manual Forms 6. Safe Handling of Radioisotopes 7. Transportation of Gauges The Regents of the University of California, Davis campus. All rights reserved. Source URL (modified on 12/30/15 11:25am): Links [1] [2] [3] [4] [5] [6] [7] 10

RADIATION SAFETY TRAINING SEALED SOURCES

RADIATION SAFETY TRAINING SEALED SOURCES RADIATION SAFETY TRAINING SEALED SOURCES PLEASE REFER TO THE RADIATION SAFETY HANDBOOK, PARTICULARLY THE SEALED SOURCES CHAPTER, AS A SUPPLEMENT TO THIS PACKET. Sealed source use at CU State and federal

More information

APPENDIX A RADIATION OVERVIEW

APPENDIX A RADIATION OVERVIEW Former NAVWPNSTA Concord, Inland Area APPENDIX A RADIATION OVERVIEW Draft ECSD-3211-0005-0004 08/2009 This page intentionally left blank. Draft ECSD-3211-0005-0004 08/2009 APPENDIX A RADIATION OVERVIEW

More information

Radiation Terminology

Radiation Terminology Radiation Terminology This section discusses the terms and concepts which are necessary for a meaningful discussion of radiation, its sources, and its risks. USNRC Technical Training Center 5-1 0703 Energy

More information

Radiation Fundamentals. Radiation Safety Training Module 1

Radiation Fundamentals. Radiation Safety Training Module 1 Radiation Fundamentals Module 1 Radioactivity Radioactivity is the process of unstable (or radioactive) atoms becoming stable. This is done by emitting radiation. This process over a period of time is

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

Glossary of Terms* BIOASSAY: Assay and measurement procedures used to determine the amount of radioactive material in a biological system.

Glossary of Terms* BIOASSAY: Assay and measurement procedures used to determine the amount of radioactive material in a biological system. Glossary of Terms* *With permission from the Manual of Policies and Procedures for Radiation Protection, for the University of Minnesota, Department of Environmental Health and Safety, Radiation Protection

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity

PS-21 First Spring Institute say : Teaching Physical Science. Radioactivity PS-21 First Spring Institute say 2012-2013: Teaching Physical Science Radioactivity What Is Radioactivity? Radioactivity is the release of tiny, highenergy particles or gamma rays from the nucleus of an

More information

Radiation Glossary. Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases.

Radiation Glossary. Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear

More information

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear Radioactive Decay Radioactivity is the spontaneous disintegration of atomic nuclei. This phenomenon was first reported in 1896 by the French physicist Henri Becquerel. Marie Curie and her husband Pierre

More information

Radiation Protection Fundamentals and Biological Effects: Session 1

Radiation Protection Fundamentals and Biological Effects: Session 1 Radiation Protection Fundamentals and Biological Effects: Session 1 Reading assignment: LLE Radiological Controls Manual (LLEINST 6610): Part 1 UR Radiation Safety Training Manual and Resource Book: Parts

More information

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects

Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Radiation Safety Training Session 1: Radiation Protection Fundamentals and Biological Effects Reading Assignment: LLE Radiological Controls Manual (LLEINST 6610) Part 1 UR Radiation Safety Training Manual

More information

R A D I A T I O N P R O T E C T I O N a n d t h e N R C

R A D I A T I O N P R O T E C T I O N a n d t h e N R C R A D I A T I O N P R O T E C T I O N and the NRC Radiation is all around us. It is naturally present in our environment and has been since before the birth of this planet. Radiation occurs in nature,

More information

Chapter 21

Chapter 21 Chapter 21 http://youtu.be/kwasz59f8ga Nuclear reactions involve the nucleus The nucleus opens, and protons and neutrons are rearranged. The opening of the nucleus releases a tremendous amount of energy

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018

Radiation Safety Talk. UC Santa Cruz Physics 133 Winter 2018 Radiation Safety Talk UC Santa Cruz Physics 133 Winter 2018 Outline Types of radiation Sources of radiation Dose limits and risks ALARA principle Safety procedures Types of radiation Radiation is energy

More information

Radiation Safety Basic Terms

Radiation Safety Basic Terms Radiation Safety Basic Terms Radiation Radiation is energy in transit in the form of high speed particles and electromagnetic waves. We encounter electromagnetic waves every day. They make up our visible

More information

Nuclear Reaction and Radiation Detectors

Nuclear Reaction and Radiation Detectors King Saud University College of Applied Studies and Community Service Department of Natural Sciences Nuclear Reaction and Radiation Detectors General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa

More information

Radiation Awareness Training. Stephen Price Office of Research Safety

Radiation Awareness Training. Stephen Price Office of Research Safety Radiation Awareness Training Stephen Price Office of Research Safety Purpose This training is intended for Clemson University Faculty, Staff or Students who do not work directly with radioactive materials

More information

WHAT IS IONIZING RADIATION

WHAT IS IONIZING RADIATION WHAT IS IONIZING RADIATION Margarita Saraví National Atomic Energy Commission - Argentina Workshop on Ionizing Radiation SIM Buenos Aires 10 November 2011 What is ionizing radiation? What is ionizing radiation?

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6 Balancing Nuclear Reactions mass number (A) atomic number (Z) 12 6 C In an ordinary

More information

Chapter 18. Nuclear Chemistry

Chapter 18. Nuclear Chemistry Chapter 18 Nuclear Chemistry The energy of the sun comes from nuclear reactions. Solar flares are an indication of fusion reactions occurring at a temperature of millions of degrees. Introduction to General,

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu

Number of protons. 2. What is the nuclear symbol for a radioactive isotope of copper with a mass number of 60? A) Cu Chapter 5 Nuclear Chemistry Practice Problems 1. Fill in the missing information in the chart: Medical Use Atomic Mass symbol number Heart imaging 201 Tl 81 Number of protons Number of neutrons Abdominal

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Atomic Structure Summary

Atomic Structure Summary Atomic Structure Summary All atoms have: a positively charged nucleus and negatively charged electrons around it Atomic nucleus consists of: positively charged protons and neutrons that have no electric

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Welcome to the 2015 Radiation Safety Refresher Training session for sealed source users. As a radiological worker, training concerning the safety

Welcome to the 2015 Radiation Safety Refresher Training session for sealed source users. As a radiological worker, training concerning the safety Welcome to the 2015 Radiation Safety Refresher Training session for sealed source users. As a radiological worker, training concerning the safety aspects related to using radioactive materials must be

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Introduction to Ionizing Radiation

Introduction to Ionizing Radiation Introduction to Ionizing Radiation Bob Curtis OSHA Salt Lake Technical Center Supplement to Lecture Outline V. 10.02 Basic Model of a Neutral Atom Electrons(-) orbiting nucleus of protons(+) and neutrons.

More information

Unit 2 Exam - Atomic Structure and Nuclear

Unit 2 Exam - Atomic Structure and Nuclear 1. The atomic number of an atom is always equal to the total number of. neutrons in the nucleus. protons in the nucleus 5. The mass number of an atom is equal to the number of. neutrons, only. protons,

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

Regents review Nuclear Chemistry

Regents review Nuclear Chemistry 2011-2012 1. Given the nuclear equation: 14 7N + X 16 8O + 2 1H What is particle X? A) an alpha particle B) a beta particle C) a deuteron D) a triton 2. The nucleus of a radium-226 atom is unstable, which

More information

RADIOCHEMICAL METHODS OF ANALYSIS

RADIOCHEMICAL METHODS OF ANALYSIS RADIOCHEMICAL METHODS OF ANALYSIS 1 Early Pioneers in Radioactivity Rutherfo rd: Discoverer Alpha and Beta rays 1897 Roentge n: Discoverer of X- rays 1895 The Curies: Discoverers of Radium and Polonium

More information

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides

U (superscript is mass number, subscript atomic number) - radionuclides nuclei that are radioactive - radioisotopes atoms containing radionuclides Chapter : Nuclear Chemistry. Radioactivity nucleons neutron and proton all atoms of a given element have the same number of protons, atomic number isotopes atoms with the same atomic number but different

More information

RPR 29 CYCLOTRON RADIOCHEMISTRY LABORATORY

RPR 29 CYCLOTRON RADIOCHEMISTRY LABORATORY RPR 29 CYCLOTRON RADIOCHEMISTRY LABORATORY PURPOSE This procedure provides instructions for developing, maintaining, and documenting, radiation safety procedures conducted at the Cyclotron Radiochemistry

More information

6 Neutrons and Neutron Interactions

6 Neutrons and Neutron Interactions 6 Neutrons and Neutron Interactions A nuclear reactor will not operate without neutrons. Neutrons induce the fission reaction, which produces the heat in CANDU reactors, and fission creates more neutrons.

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

Industrial Hygiene: Assessment and Control of the Occupational Environment

Industrial Hygiene: Assessment and Control of the Occupational Environment Industrial Hygiene: Assessment and Control of the Occupational Environment Main Topics Air Pollution Control Analytical Methods Ergonomics Gas and Vapour Sampling General Practice Heat and Cold Stress

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Radiation Safety Protection for Callahan Eye Hospital (OHS_RS502)

Radiation Safety Protection for Callahan Eye Hospital (OHS_RS502) Introduction Welcome to the Radiation Safety Protection for Callahan Eye Hospital Training Course (OHS_RS502). This training is designed and required for anyone working with or around Radioactive Materials

More information

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION Chapter NP-3 Nuclear Physics Decay Modes and Decay Rates TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 RADIOACTIVE DECAY 1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA

More information

Lecture 1 Bioradiation

Lecture 1 Bioradiation 1 1 Radiation definition: Radiation, when broadly defined, includes the entire spectrum of electromagnetic waves : radiowaves, microwaves, infrared, visible light, ultraviolet, and x-rays and particles.

More information

Section 3: Nuclear Radiation Today

Section 3: Nuclear Radiation Today : Nuclear Radiation Today Preview Key Ideas Bellringer Where is Radiation? Beneficial Uses of Nuclear Radiation Risks of Nuclear Radiation Nuclear Power Key Ideas Where are we exposed to radiation? What

More information

1. What would be the dose rate of two curies of 60Co with combined energies of 2500 kev given off 100% of the time?

1. What would be the dose rate of two curies of 60Co with combined energies of 2500 kev given off 100% of the time? 1.11 WORKSHEET #1 1. What would be the dose rate of two curies of 60Co with combined energies of 500 kev given off 100% of the time?. What would be the dose rate of 450 mci of 137Cs (gamma yield is 90%)?

More information

3 Radioactivity - Spontaneous Nuclear Processes

3 Radioactivity - Spontaneous Nuclear Processes 3 Radioactivity - Spontaneous Nuclear Processes Becquerel was the first to detect radioactivity. In 1896 he was carrying out experiments with fluorescent salts (which contained uranium) and found that

More information

BASIC OF RADIATION; ORIGIN AND UNITS

BASIC OF RADIATION; ORIGIN AND UNITS INAYA MEDICAL COLLEGE (IMC) RAD 243 - LECTURE 2 BASIC OF RADIATION; ORIGIN AND UNITS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam

More information

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today

Chapter 10. Table of Contents. Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion. Section 3 Nuclear Radiation Today Nuclear Chemistry Table of Contents Section 1 What Is Radioactivity? Section 2 Nuclear Fission and Fusion Section 3 Nuclear Radiation Today Section 1 What Is Radioactivity? Bellringer Before studying about

More information

Chapter Four (Interaction of Radiation with Matter)

Chapter Four (Interaction of Radiation with Matter) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Four (Interaction of Radiation with Matter) Different types of radiation interact

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM Radiation: It is defined as the process by which energy is emitted from a source and propagated through the surrounding

More information

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM

INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 1 RADIATION PHYSICS DR. MOHAMMED MOSTAFA EMAM LECTURES & CLASS ACTIVITIES https://inayacollegedrmohammedemam.wordpress.com/ Password: drmohammedemam 16-02-2015

More information

RADIATION SAFETY GUIDELINES FOR NON-USERS

RADIATION SAFETY GUIDELINES FOR NON-USERS RADIATION SAFETY GUIDELINES FOR NON-USERS This is a Read and Sign Awareness Training document. You should read and sign this document if you: 1. DO NOT work directly with radioactive materials, but 2.

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

CHEMISTRY 170. Radioisotopes

CHEMISTRY 170. Radioisotopes CHEMISTRY 170 Radioisotopes Positron Emission Tomography or PET scans use the radioisotope 18 F to create an image of the brain. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Radioisotopes Introduction

More information

11 Gamma Ray Energy and Absorption

11 Gamma Ray Energy and Absorption 11 Gamma Ray Energy and Absorption Before starting this laboratory, we must review the physiological effects and the proper use of the radioactive samples you will be using during the experiment. Physiological

More information

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether.

What happens during nuclear decay? During nuclear decay, atoms of one element can change into atoms of a different element altogether. When Henri Becquerel placed uranium salts on a photographic plate and then developed the plate, he found a foggy image. The image was caused by rays that had not been observed before. For his discovery

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay Name Date _ Class _ Nuclear Chemistry Section.1 Nuclear Radiation In your textbook, read about the terms used to describe nuclear changes. Use each of the terms below just once to complete the passage.

More information

Notes: Unit 13 Nuclear Chemistry

Notes: Unit 13 Nuclear Chemistry Name: Regents Chemistry: Notes: Unit 13 Nuclear Chemistry Name: KEY IDEAS: Stability of isotopes is based in the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are

More information

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose Introduction to Radiological Sciences Neutron Detectors Neutron counting Theory of operation Slow neutrons Fast neutrons Types of detectors Source calibration Survey for Dose 2 Neutrons, what are they?

More information

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy

More information

Nuclear Chemistry Unit

Nuclear Chemistry Unit Nuclear Chemistry Unit January 28th HW Due Thurs. 1/30 Read pages 284 291 Define: Radioactivity Nuclear Radiation Alpha Particle Beta Particle Gamma Ray Half-Life Answer: -Questions 1-3 -Write the symbols

More information

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay

It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay It s better to have a half-life than no life! Radioactive Decay Alpha, Beta, and Gamma Decay What does it mean to be radioactive? Some atoms have nuclei that are unstable. These atoms spontaneously decompose

More information

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age NUCLEAR CHEMISTRY CHANGING THE NUCLEUS OF AN ATOM LAST TOPIC OF THE YEAR!! Name: 1 P age Why do unstable isotopes undergo nuclear reactions? Do Now: Draw Bohr models of three different isotopes of carbon

More information

RADIATION SAFETY. Working Safely with Radiation

RADIATION SAFETY. Working Safely with Radiation RADIATION SAFETY Working Safely with Radiation 12 NOV 2015 Dr. Raed Felimban Department of Transfusion Medicine King Abdul-Aziz University E-mail: felimbanr@yahoo.com KING ABDULAZIZ UNIVERSITY How most

More information

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics

Radiological Preparedness & Emergency Response. Session II. Objectives. Basic Radiation Physics Radiological Preparedness & Emergency Response Session II Basic Radiation Physics Objectives Discuss the difference between ionizing and non-ionizing radiation. Describe radioactive decay. Discuss the

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life Spring 2010 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity

More information

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay

Chapter 20: Phenomena. Chapter 20: The Nucleus: A Chemist s View. Nuclear Decay. Nuclear Decay. Nuclear Decay. Nuclear Decay Chapter 20: Phenomena Phenomena: Below is a list of stable isotopes of different elements. Examine the data and see what patterns you can identify. The mass of a electron is 0.00055 u, the mass of a proton

More information

Mitigation of External Radiation Exposures

Mitigation of External Radiation Exposures Mitigation of External Radiation Exposures The three (3) major principles to assist with maintaining doses ALARA are :- 1) Time Minimizing the time of exposure directly reduces radiation dose. 2) Distance

More information

HALF LIFE. NJSP HMRU June 10, Student Handout CBRNE AWARENESS Module 4 1. Objectives. Student will

HALF LIFE. NJSP HMRU June 10, Student Handout CBRNE AWARENESS Module 4 1. Objectives. Student will June 10, 2004 Radiological/Nuclear Overview 1 Student will demonstrate a knowledge of self protection techniques identify types of radiation and their associated hazards demonstrate a knowledge of terminology

More information

VAMC BASIC RADIATION SAFETY TRAINING. Non-Medical Use of Radioactive Materials in Basic Sciences March 2011

VAMC BASIC RADIATION SAFETY TRAINING. Non-Medical Use of Radioactive Materials in Basic Sciences March 2011 VAMC BASIC RADIATION SAFETY TRAINING Non-Medical Use of Radioactive Materials in Basic Sciences March 2011 The University of Iowa Radiation Safety Program 1 Course Credit To Obtain Credit for This Course:

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Nuclear Chemistry AP Chemistry Lecture Outline

Nuclear Chemistry AP Chemistry Lecture Outline Nuclear Chemistry AP Chemistry Lecture Outline Name: involve changes with electrons. involve changes in atomic nuclei. Spontaneously-changing nuclei emit and are said to be. Radioactivity nucleons: mass

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

Introduction. Principle of Operation

Introduction. Principle of Operation Introduction Ionizing radiation that is associated with radioactivity cannot be directly detected by our senses. Ionization is the process whereby the radiation has sufficient energy to strip electrons

More information

Dosimetry. Sanja Dolanski Babić May, 2018.

Dosimetry. Sanja Dolanski Babić May, 2018. Dosimetry Sanja Dolanski Babić May, 2018. What s the difference between radiation and radioactivity? Radiation - the process of emitting energy as waves or particles, and the radiated energy Radioactivity

More information

CHEMISTRY 130 General Chemistry I. Radioisotopes

CHEMISTRY 130 General Chemistry I. Radioisotopes CHEMISTRY 130 General Chemistry I Radioisotopes Positron Emission Tomography or PET scans use the radioisotope 18 F to create an image of the brain. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Radioisotopes

More information

Radiation Safety. PIXE PAN 2008 Ed Stech University of Notre Dame

Radiation Safety. PIXE PAN 2008 Ed Stech University of Notre Dame Radiation Safety PIXE PAN 2008 Ed Stech University of Notre Dame Outline Radiation Overview Radiation Safety in during PIXE PAN Other Safety Issues Ionizing Radiation 4 Types Alpha Beta Photon (Gamma and

More information

Name Date Class NUCLEAR CHEMISTRY

Name Date Class NUCLEAR CHEMISTRY 25 NUCLEAR CHEMISTRY SECTION 25.1 NUCLEAR RADIATION (pages 799 802) This section describes the nature of radioactivity and the process of radioactive decay. It characterizes alpha, beta, and gamma radiation

More information

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive?

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive? Unit 6 Nuclear Radiation Parent Guide What is radioactivity and why are things radioactive? The nucleus of an atom is comprised of subatomic particles called protons and neutrons. Protons have a positive

More information

Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP

Nuclear Chemistry. Technology Strategies for Success PO Box 1485 East Northport, NY (631) NYS-PREP Nuclear Chemistry Technology Strategies for Success PO Box 1485 East Northport, NY 11725 (631)734-0115 1-888-NYS-PREP techstrategies@gmail.com Nuclear Chemistry Table of Contents 1.0 Nuclear Chemistry...3

More information

1ST SEM MT CHAP 22 REVIEW

1ST SEM MT CHAP 22 REVIEW 1ST SEM MT CHAP 22 REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. (CAPITAL LETTERS ONLY PLEASE) 1. Mass defect is the difference between the mass

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Radiation Protection Training Manual & Study Guide. Jump to the Table of Contents

Radiation Protection Training Manual & Study Guide. Jump to the Table of Contents Radiation Protection Training Manual & Study Guide Jump to the Table of Contents December 1986 Revised 1994 Radiation Safety Office Radiation Protection Training Course Course Outline Time Lecture Topic

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

notes Radiological Basics Transportation Emergency Preparedness Program

notes Radiological Basics Transportation Emergency Preparedness Program INTRODUCTION The reliance upon, and use of, radioactive material in agriculture, industry, and medicine continues to increase. As the manufacture, use, and disposal of radioactive material has increased,

More information

A Nuclear Power Plant

A Nuclear Power Plant A Nuclear Power Plant Fallout from Chernobyl The question that all countries asked in 1986, and continue to ask to this day: Could it happen here? Radioactivity Np Pu+ 239 239 0 93 94 1 Beta decay the

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons.

Isotopes. An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atom of the same element (same number of protons) that varies in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons.

Isotopes. An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Nuclear Chemistry Isotopes An isotope is an atoms of the same element (same number of protons) that vary in the number of neutrons. Most elements have several isotopes Some are unstable and emit radiation

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Radiation Response and Removals: Getting Down to the Nitty Gritty. 15 th Annual OSC Readiness Training Program

Radiation Response and Removals: Getting Down to the Nitty Gritty. 15 th Annual OSC Readiness Training Program Radiation Response and Removals: Getting Down to the Nitty Gritty 15 th Annual OSC Readiness Training Program www.oscreadiness.org 0 Radiation Fundamentals Tony Honnellio Health Physicist U.S. EPA, Region

More information

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics 28 NUCLEAR CHEMISTRY Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Analyzing Radiation. Pre-Lab Exercise Type of Radiation Alpha Particle Beta Particle Gamma Ray. Mass (amu) 4 1/2000 0

Analyzing Radiation. Pre-Lab Exercise Type of Radiation Alpha Particle Beta Particle Gamma Ray. Mass (amu) 4 1/2000 0 Analyzing Radiation Introduction Radiation has always been a natural part of our environment. Radiation on earth comes from many natural sources; the origin of all types of naturally occurring radiation

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information