Absolute Quantification of Cytochrome P450 and Uridine-Diphosphate Glucuronosyl Transferase Isoforms by Proteomics-based Approach

Size: px
Start display at page:

Download "Absolute Quantification of Cytochrome P450 and Uridine-Diphosphate Glucuronosyl Transferase Isoforms by Proteomics-based Approach"

Transcription

1 CHINESE JOURNAL OF ANALYTICAL CHEMISTRY Volume 42, Issue 1, January 2014 Online English edition of the Chinese language journal Cite this article as: Chin J Anal Chem, 2014, 42(1), RESEARCH PAPER Absolute Quantification of Cytochrome P450 and Uridine-Diphosphate Glucuronosyl Transferase Isoforms by Proteomics-based Approach LIU Xi-Dong 1, ZHU Jun 2, CONG Yu-Ting 1, HU Liang-Hai 1, *, YE Ming-Liang 2, GU Jing-Kai 1, ZOU Han-Fa 2 1 School of Life Sciences, Jilin University, Changchun , China 2 Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian , China Abstract: A strategy for the absolute quantitation of metabolic enzymes in rat liver microsomes was developed based on shotgun-based proteomics approach. Rat liver microsomes were digested with trypsin, and drug metabolizing enzymes were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) using standard curves based on custom synthesized specific peptides for each enzyme. The assays for cytochrome P450 (CYP450) and uridine diphosphoglucuronosyl transferase (UGT) showed good linearity (r > 0.995) with lower limits of quantitation of 10 nm. A synthetic isotope labeled specific peptide was then used as internal standard to determine UGT1A1 by stable isotope dilution method. The labeled peptide behaved similarly to the unlabeled peptide in LC-MS/MS and the assay was linear in matrix solution. The UGT1A1 concentration was detected by the labeled peptide method to be 18.2 pmol mg 1 protein compared with 17.3 pmol mg 1 protein obtained by the standard curve method. Although the consistent results were achieved by the two methods, the stable isotope dilution method was more convenient and more suitable for high throughput determinations in complex systems. Key Words: Liquid chromatograhpy-mass spectrometry; Cytochrome P450; Uridine-diphosphate glucuronosyl transferase; Multiple reaction monitoring; Liver microsome 1 Introduction Drugs can be metabolized and eliminated from the body via the production of active and inactive metabolites, and the formation of metabolized drugs has a significant influence on the therapeutic effect and safety of a drug [1,2]. Among the drug metabolizing enzymes (DMEs), cytochrome P450 (CYP or P450) and uridine diphosphoglucuronosyl transferase (UGT) are the most important and responsible for the metabolism of most drugs. Therefore, the quantitative analysis of DMEs and UGT is an important aspect of drug metabolism research, which provides a useful contribution to drug development, drug-drug interaction studies and preclinical research. Previously, DMEs were commonly determined using reverse transcription polymerase chain reaction (RT-PCR) [3,4], 2-D electrophoresis [5], western blotting [6,7] and chemical probes [8,9]. However, these methods have a number of disadvantages including the fact that the amount of mrna does not necessarily reflect the protein level and high amino acid homology results in cross reactivity and associated poor specificity. With the development and application of massspectrometric techniques in proteomics [10,11], the quantitative analysis of peptides and proteins in complex systems has been realized, which provides a theoretical and experimental basis for the quantitation of DMEs. In this study, specific peptides produced by trypsinization of DME proteins were identified, Received 29 July 2013; accepted 22 October 2013 * Corresponding author. lianghaihu@jlu.edu.cn This work was supported by the National Natural Science Foundation of China (No ), the Program for New Century Excellent Talents in University of China (No.NCET ), and the Open Project from State Key Laboratory of Proteomics, China. Copyright 2014, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Published by Elsevier Limited. All rights reserved. DOI: /S (13)

2 custom synthesized and used to identify the presence of the proteins in a sample of rat liver microsomes by comparison of their fragmentation patterns in liquid chromatography tandem mass spectrometry (LC-MS/MS). They were then used as external standards to carry out the simultaneous quantitative analysis of CYP450 and UGT in rat liver microsomes. Subsequently, a specific peptide of UGT1A1 was isotope labeled and used as an internal standard (IS) to determine UGT1A1 in the same sample by the isotope dilution method. Compared with previous methods, direct LC-MS/MS is less time consuming, more accurate, more sensitive, and allows high throughput analysis. It will provide an important tool for future research on drug metabolism enzymes. 2 Experimental 2.1 Instruments and reagents LC-MS/MS was carried out on an Agilent 1100 Series HPLC system (Agilent Technologies, USA) with an SIL-20AC autosampler (Shimadzu, Japan). The HPLC system was coupled to an API 4000 mass spectrometer (AB SCIEX, USA) equipped with electrospray ionization (ESI) source operated in the positive ion mode and Analyst Software. Chromatography was performed on a peptide C18 column (50 mm 2.1 mm, 2.1 m, AB SCIEX, USA) maintained at 40 C. The CYP450 and UGT specific peptides GNPESSFNDANLR, YIDFVPIPLPR, VHEEIEQVIGR, FADIVPTNIPHMTSR, IILNELAQR, LLDVWTYELPR and SVFDQDPFLLR and the UGT1A1 isotope labeled peptide SVFDQDPFLLR* (C 13, N 15 ) were custom synthesized by Shanghai Chutai Biological Technology Co., Ltd. Acetonitrile was chromatographically pure (Sigma-Aldrich, USA), formic acid was analytically pure (Beijing Chemical Works) and water was produced using a Milli-Q ultrapure water system. 2.2 Methods LC-MS/MS conditions Gradient elution was carried out by using acetonitrile: 0.1% formic acid (2:98, V/V) as solvent A and acetonitrile:0.1% formic acid (98:2, V/V) as solvent B with the following program: 0 1 min, 95% A; 1 9 min, 95% 60% A; 9 11 min, 60% A; min, 60% 95% A; min, 95% A. The injection volume was 5 L and the flow rate was 0.5 ml min 1. The electrospray (ESI) voltage and heater gas temperature of the ESI source were set at 5000 V and 450 C respectively. Nitrogen was used as nebulizer gas (45 Psi), auxiliary gas (40 Psi) and curtain gas (20 Psi). MRM transitions, collision energies (CEs) and declustering potentials (DPs) are given in Table Preparation of specific peptide calibration standards Stock solutions of specific peptides (5 g L 1 ) were prepared separately in water and diluted with 0.1% formic acid solution to give standard solutions with concentrations of 100 pmol L 1 and 100 fmol L 1. Finally, a series of mixed standard solutions of the seven peptides were prepared in 5 ml volumetric flasks Preparation of rat liver microsomes A rat was sacrificed by decapitation and exsanguinated before its liver was removed, weighed and cooled in an ice-water bath. The liver was washed repeatedly with normal saline at 4 C and cut into 2 mm 3 pieces. After added a volume (ml) of 50 mm Tris-HCl buffer solution (150 mm NaCl, 5 mm EDTA, 1% NP 40 and protease inhibitor cocktail, ph 7.4) equal to 3 times the liver weight, the liver was homogenized by a homogenizer. Then the homogenate was centrifuged at 9000 g for 20 min at 4 C and the supernatant filtered through 4 tier gauzes. The filtrate was retained as the S9 component. The S9 fraction was centrifuged at g for 3 h at 4 C to obtain a pellet of liver microsomes which was suspended in Tris-HCl buffer and stored at 80 C before analysis Preparation of isotope labeled specific peptide calibration standards Aliquots (75 L) of rat liver microsomes were added to 2 tubes. Then three incubations were carried out sequentially as Table 1 Amino acid sequences and MRM analytical parameters of specific peptides for determination of drug metabolizing enzyme isoforms Isoforms Sequence Position Molecular weight Q1 Mass (amu) Q3 Mass (amu) DP (Volt) CE (ev) CYP2D3 GNPESSFNDANLR CYP2C70 YIDFVPIPLPR CYP2A1 VHEEIEQVIGR CYP2D26 FADIVPTNIPHMTSR UGT2B1 IILNELAQR UGT2B2 LLDVWTYELPR UGT1A1 SVFDQDPFLLR UGT1A1 SVFDQDPFLLR*

3 follows: (1) Incubated at 37 C for 1 h after added 425 L buffer solution I (50 mm NH 4 HCO 3, 8 M urea) and 20 L 300 mm dithiothreitol solution; (2) Incubated at 25 C for 40 min after added 60 L 300 mm freshly prepared iodoacetamide solution; (3) Incubated at 37 C for 6 h after added 2000 L buffer solution II (50 mm NH 4 HCO 3 ) and 12.5 L 0.5 g L 1 trypsin solution. The reaction was terminated by adding 100 L of 10% TFA solution. The impurity in the sample was removed by solid phase extraction (SPE) and the peptide in the sample was eluted by 1 ml acetonitrile-water-tfa solution (80:20:0.1, V/V). Finally, the treated sample above was centrifuged, freeze-dried, and diluted by a 500 L of 0.1% formic acid solution to obtain the peptide matrix labeled M. A stock solution of isotope labeled synthetic peptide (SVFDQDPFLLR*) (5 g L 1 ) in water was diluted with a 0.1% formic acid solution to give a concentration of 100 mm. Then the diluted solution above was further diluted with solution M to give a series of calibration standards of isotope labeled specific peptide Enzymolysis and determination of DMDs in rat liver microsomes Preparation of liver microsomes sample followed the steps described in Section Firstly, an aliquot of rat liver microsomes (15 L) was mixed with 85 L of buffer solution I (50 mm NH 4 HCO M Urea) and 4 L of 300 mm dithiothreitol solution in a 1.5 ml Eppendorff tube. Then the mixture was incubated at 37 C for 1 h. Secondly, 12 L freshly prepared 300 mm iodoacetamide solution was added and then the tube was incubated at 25 C for 40 min. Thirdly, 400 L buffer solution II (50 mm NH 4 HCO 3 ) and 2.5 L 0.5 g L 1 trypsin solution were added and then the tube was incubated at 37 C for 6 h. The reaction was terminated by adding 20 L of 10% TFA solution. The product was subjected to SPE as described above. Finally, the sample was diluted with 90 L of 0.1% formic acid solution and 10 L of 100 μm isotope labeled peptide solution and analyzed by LC-MS/MS. 3 Results and discussion 3.1 Selection of specific peptides and LC-MS/MS conditions First, specific peptides representative of DMD enzymes were selected through analysis of the amino acid sequence of CYP450 and UGT. In parallel, a sample of liver microsomes was examined by high resolution mass spectrometry-ltq- Orbitrap [12] and the presence of the specific peptides were confirmed by real sample analysis and application of peptide selection principles [13]. For example, as shown in Figs.1A and 1B [12], the specific peptides of UGT1A1 and SVFDQDPFLLR* were identified by the MS and MS/MS spectra. Due to the difference in fragmentation patterns generated by different types of instruments [14], the synthetic peptides were used to optimize MRM parameters. For example, the double charged precursor ion at m/z of SVFDQDPFLLR was selected in the Q1 MS scan mode (Fig.1C) after which the high intensity fragment ion at m/z was selected by adjustment of the collision energy (Fig.1D). Finally, this MRM transition was selected for the quantitative analysis of target peptides. Since the specific peptides maintain a double or triple charge during the ionization process, formic acid was also added to the mobile phase to provide the protons. A short 50 mm column was used to shorten the analysis time and a gradient elution was employed to avoid interference from target peptides. Chromatograms of the synthetic peptides selected are shown in Fig.2. Fig.1 MS spectra (A) and MS/MS spectra (B) of UGT1A1 specific peptide in a rat liver microsome sample as determined using LTQ-Orbitrap; MS spectra (C) and MS/MS spectra (D) of the same peptide determined using LC-MS/MS

4 pmol mg 1 protein. As shown in Fig.5, the results of the two methods of analysis are in close agreement. However, isotope-dilution analysis is more suitable for high throughput quantitation of DMEs and has the potential for wider application in DME research. Fig.2 HPLC-MRM chromatograms of specific peptides of CYP450s and UGTs in rat liver microsomes 3.2 Preparation of standard curves for specific peptides Linearity of each peptide was established by weighted (1/x 2 ) least squares linear regression [15] of their respective calibration curves. As shown in Table 2, the correlation coefficients were all > and the lower limit of quantitation (LLOQ) was 2 nm. Fig.3 HPLC-MRM chromatogram of 300 nm mixed standard solution of unlabeled and labeled UGT1A1 specific peptide 3.3 Investigation of isotope labeled peptide as internal standard Standard curves can be used for the absolute quantitation of specific peptides but are not suitable for the simultaneous quantitation of peptides in a complex matrix. However, this can be done using isotope dilution analysis. In this study, C 13 and N 15 labeled arginine were used to synthesize a target peptide specific to UGT1A1, and by the method, due to the same physicochemical properties as the unlabeled peptide, the potential matrix effects could be eliminated. As shown in Fig.3, the stable isotope labeled peptide and unlabeled peptide in 0.1% formic acid solution exhibited a consistent chromatographic retention and peak areas, indicating the stable isotope labeled peptide was suitable for use as an IS. Fig.4 Standard curve for stable isotope labeled UGT1A1 specific peptide 3.4 Determination of DMEs in rat liver microsomes By using calibration curves of specific target peptides, the concentrations in liver microsomes of CYP2D3, CYP2C70, CYP2A1, CYP2D26, UGT2B1, UGT2B2 and UGT1A1 were found to be 11.77, 15.80, 26.82, 18.30, 11.47, and pmol mg 1 protein, respectively (Fig.5). The concentration of UGT1A1 determined by isotope-dilution analysis was Fig.5 Concentrations of seven drug metabolizing enzymes a rat liver sample Table 2 Linear ranges and standard curve equations for specific peptides Peptide sequence Linear range (nm) Standard curve equation Correlation coefficient GNPESSFNDANLR y = 820x YIDFVPIPLPR y = 904x VHEEIEQVIGR y = 1190x FADIVPTNIPHMTSR y = 1170x IILNELAQR y = 509x LLDVWTYELPR y = 222x SVFDQDPFLLR y = 835x

5 References [1] Baillie T. Toxicol. Appl. Pharm., 2002, 182(3): [2] Lu A Y H. Drug Metab. Dispos., 1988, 26(12): [3] Caron E, Rioux N, Nicolas O, Lebel-Talbot H, Hamelin B A. J. Biochem. Mol. Toxicol., 2006, 19(6): [4] Rodríguez-Antona C, Jover R, Gómez-Lechón M J, Castell J V. Arch. Biochem. Biophys., 2000, 376(1): [5] Rabilloud T, Chevallet M, Luche S, Lelong C. Proteomics, 2008, 8(19): [6] Rasmussen M K, Ekstrand B, Zamaratskaia G. Toxicol In Vitro, 2011, 25(1): [7] Serron S C, Dwivedi N, Backes W L. Toxicol. Appl. Pharm., 2000, 164(3): [8] Rhodes S P, Otten J N, Hingorani G P, Hartley D P, Franklin R B. J. Pharmacol. Toxicol., 2011, 63(3): [9] Yuan R, Madani S, Wei X-X, Reynolds K, Huang S M. Drug Metab. Dispos., 2002, 30 (12): [10] Elliott M H, Smith D S, Parker C E, Borchers C. J. Mass Spectrom., 2009, 44: [11] Cao D, Zhang Y J, Qian X H. J. Chin. Mass Spectrom. Soc., 2008, 29(3): [12] Liu J, Wang F J, Zhang Z B, Zou H F. Chinese J. Anal. Chem., 2013, 41(1): [13] Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T. Pharm Res., 2008, 25(6): [14] Erik L, de Graaf E L, Altelaar A F M, van Breukelen B, Mohammed S, Heck A J R, J. Proteome Res., 2011, 10(9): [15] Zhong D F. Chin. J. Pharm. Anal., 1996, 16(5):

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry Application Note Food Authors Jianqiu Mi, Zhengxiang Zhang, Zhixu Zhang,

More information

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode Application Note Authors Siji Joseph Agilent Technologies India Pvt. Ltd.

More information

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry Jon Hao, Rong Ye, and Mason Tao Poochon Scientific, Frederick, Maryland 21701 Abstract Background:

More information

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software Supplementary Methods Software Interpretation of Tandem mass spectra Tandem mass spectra were extracted from the Xcalibur data system format (.RAW) and charge state assignment was performed using in house

More information

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS Application Note Clinical Research Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS Authors Yanan Yang 1, Victor Mandragon 2, and Peter Stone 1 1

More information

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS Christopher Borton AB SCIEX Golden, Colorado verview Described here is the analysis of

More information

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS Application Note: 56 Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS Yang Shi, Catherine Lafontaine, Matthew Berube, John Fink, François Espourteille Thermo

More information

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System Application Note Authors Mohamed Youssef and Vaughn P. Miller Agilent

More information

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish. 1 Supporting Information 2 3 Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish. 4 5 John Moreman, Okhyun

More information

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS Application Note Food Testing and Agriculture Author Chen-Hao (Andy) Zhai and Rong-jie Fu Agilent Technologies (Shanghai)

More information

Methods for proteome analysis of obesity (Adipose tissue)

Methods for proteome analysis of obesity (Adipose tissue) Methods for proteome analysis of obesity (Adipose tissue) I. Sample preparation and liquid chromatography-tandem mass spectrometric analysis Instruments, softwares, and materials AB SCIEX Triple TOF 5600

More information

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 129 Infi nity LC, and 646 Triple Quadrupole LC/MS Application Note Clinical Research Authors Linda Côté and Christophe

More information

Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System

Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System Claire Bramwell-German, Elliott Jones and Daniel Lebre AB SCIEX, Foster City, California

More information

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS Application Note EPA Method 535 EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS API 3200 LC/MS/MS System Overview Described here is the

More information

MS-based proteomics to investigate proteins and their modifications

MS-based proteomics to investigate proteins and their modifications MS-based proteomics to investigate proteins and their modifications Francis Impens VIB Proteomics Core October th 217 Overview Mass spectrometry-based proteomics: general workflow Identification of protein

More information

Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software

Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software Application ote Drug discovery and development: Metabolite Identifi cation Authors Yuqin Dai,

More information

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System Application Note Authors Kevin McCann, Sameer Nene, Doug McIntyre, Edmond Neo, Dennis Nagtalon, and

More information

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS UCT Part Numbers: CSFASETG203 - CLEAN SCREEN FASt ETG, 200mg / 3mL tube SLETG100ID21-3UM - Selectra ETG HPLC column, 100 x 2.1

More information

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry Shijun Lua, Buu N. Trana, Jamie L. Nelsenb, Kenneth M. Aldousa. Journal of Chromatography

More information

Assay Robustness Improvement for Drug Urinalysis Using FAIMS and H-SRM on a Triple- Quadrupole Mass Spectrometer

Assay Robustness Improvement for Drug Urinalysis Using FAIMS and H-SRM on a Triple- Quadrupole Mass Spectrometer 38 Current Trends in Mass Spectrometry November 6 Assay Robustness Improvement for Drug Urinalysis Using FAIMS and H-SRM on a Triple- Quadrupole Mass Spectrometer This article demonstrates the improved

More information

Supporting Information

Supporting Information Supporting Information Theoretical Approach for Determination of True Quantitative Values of Proteins in Pure Membrane Fraction. During the preparation of membrane fractions, some contamination with other

More information

Rapid method development to study plasma stability of diverse pharmaceutical compounds using Rapid Resolution LC and triple quadrupole MS

Rapid method development to study plasma stability of diverse pharmaceutical compounds using Rapid Resolution LC and triple quadrupole MS Rapid method development to study plasma stability of diverse pharmaceutical compounds using Rapid Resolution LC and triple quadrupole MS Application Note Drug Discovery Authors Srividya Kailasam Agilent

More information

Strategies for the Analysis of Therapeutic Peptides in Biofluids by LC-MS/MS. Lee Goodwin

Strategies for the Analysis of Therapeutic Peptides in Biofluids by LC-MS/MS. Lee Goodwin Strategies for the Analysis of Therapeutic Peptides in Biofluids by LC-MS/MS Lee Goodwin Sample Preparation Chromatography Detection General Strategies Examples New Approaches Summary Outline ABUNDANCE

More information

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 *

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 * Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 * 1 Department of Chemistry, Pomona College, Claremont, California

More information

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS UCT Part Numbers: CSFASETG203 - CLEAN SCREEN FASt ETG, 200mg / 3mL tube SLETG100ID21-3UM - Selectra ETG HPLC column, 100 x 2.1

More information

A High Sensitivity Dual Solid Phase Extraction LC-MS/MS Assay for the Determination of the Therapeutic Peptide Desmopressin in Human Plasma

A High Sensitivity Dual Solid Phase Extraction LC-MS/MS Assay for the Determination of the Therapeutic Peptide Desmopressin in Human Plasma White Paper A High Sensitivity Dual Solid Phase Extraction LC-MS/MS Assay for the Determination of the Therapeutic Peptide Desmopressin in Human Plasma Lars Neudert, MSc, Senior Scientist Method Development

More information

Supporting Information

Supporting Information Supporting Information Discovery of Hydrocarbon-Stapled Short α-helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors Chao Wang,, Shuai Xia,, Peiyu Zhang,

More information

Application Note. Author. Abstract. Xinlei Yang Agilent Technologies Co. Ltd Shanghai, China

Application Note. Author. Abstract. Xinlei Yang Agilent Technologies Co. Ltd Shanghai, China Rapid Deteration of Eight Related Aromatic Acids in the p-phthalic Acid Mother Liquid Using an Agilent 126 Infinity LC System and an Agilent Poroshell 12 SB-C18 Column Application Note Author Xinlei Yang

More information

16 Malachite green 17 Leucomalachite green

16 Malachite green 17 Leucomalachite green 16 17 Leucomalachite green hydrochloride Leucomalachite green N N N + Cl - N N-[4-[[4-(dimethylamino)-phenyl] phenylmethylene]-2,5-cyclohexadien-1-ylidene ]-N-methylmethanaminium chloride C 23 H 25 ClN

More information

Supporting Information. Experimental details

Supporting Information. Experimental details Electronic Supporting Information Experimental details Chemicals and reagents Pseudoboehmite (78.4 wt% Al 2 O 3 ), phosphoric acid (85 wt%), triethylamine (TEA, 99%), tetrabutyl titanate (IV) (99%) and

More information

Application Note. Edgar Naegele. Abstract

Application Note. Edgar Naegele. Abstract Fast identification of main drug metabolites by quadrupole time-of-flight LC/MS Measuring accurate MS and MS/MS data with the Agilent 651 Q-TOF LC/MS and identification of main meta-bolites by comparison

More information

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method Xiang He and Marta Kozak ThermoFisher Scientific, San Jose, CA,

More information

Quantitative analysis of small molecules in biological samples. Jeevan Prasain, Ph.D. Department of Pharmacology & Toxicology, UAB.

Quantitative analysis of small molecules in biological samples. Jeevan Prasain, Ph.D. Department of Pharmacology & Toxicology, UAB. Quantitative analysis of small molecules in biological samples 100 Jeevan Prasain, Ph.D. Department of Pharmacology & Toxicology, UAB % 0 300 500 700 900 1100 1300 1500 1700 m/z Class Overview Introduction

More information

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching s by Removal of Isobaric Interferences Differential Mobility Used as a Tool to Address Selectivity Challenges Adrian M. Taylor

More information

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry Application Note Doping Control Authors Prof. Maria Kristina Parr Freie Universität Berlin Institute

More information

Accurate Mass Measurement for Intact Proteins using ESI-oa-TOF. Application Note. Donghui Yi and Christine Miller Agilent Technologies

Accurate Mass Measurement for Intact Proteins using ESI-oa-TOF. Application Note. Donghui Yi and Christine Miller Agilent Technologies Accurate Mass Measurement for Intact Proteins using ESI-oa-TOF Application Note Donghui Yi and Christine Miller Jon D. Williams, GlaxoSmithKline Introduction Mass spectrometry (MS) has become a core technology

More information

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION Quantitation by High Resolution Mass Spectrometry: Using Target Enhancement and Tof-MRM to Achieve Femtogram-level On-column Sensitivity for Quantitation of Drugs in Human Plasma Yun W. Alelyunas, Mark

More information

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery Metabolite Stability Screening and Hotspot Metabolite Identification by Combining High-Resolution, Accurate-Mass Nonselective and Selective Fragmentation Tim Stratton, Caroline Ding, Yingying Huang, Dan

More information

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System Bertram ieland 1 and Stephen Lock 2 1 AB SCIEX ieuwerkerk aan den Ijssel, The etherlands;

More information

Tracking down protein-protein interaction via FRET-system using site-specific thiol-labeling

Tracking down protein-protein interaction via FRET-system using site-specific thiol-labeling Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Tracking down protein-protein interaction via FRET-system using site-specific

More information

Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides

Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides Abstract Here we describe a two-step QC procedure for synthetic peptides. In the first step, the

More information

VMA, HVA, 5-HIAA Urine LC-MS/MS Analysis Kit User Manual

VMA, HVA, 5-HIAA Urine LC-MS/MS Analysis Kit User Manual Page 1 / 11 VMA, HVA, 5-HIAA Urine LC-MS/MS Analysis Kit User Manual ZV-3030-0200-20 200 2-8 C Page 2 / 11 Table of Contents 1. INTENDED USE... 3 2. SUMMARY AND EXPLANATION... 3 3. TEST PRINCIPLE... 3

More information

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry Supporting Information for: Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid Chromatography-Tandem Mass Spectrometry Ramin Vismeh a,b, Fachuang Lu c,d, Shishir

More information

Development of high speed CYP cocktail inhibition assay using UHPLC-MS/MS

Development of high speed CYP cocktail inhibition assay using UHPLC-MS/MS PO-CON E Development of high speed CYP cocktail inhibition assay using ASMS 213 W2-4 Ichiro Hirano 1, Miho Kawashima 1, Natsuyo Asano 1, Kiyomi Arakawa 1, Yoshihiro Hayakawa 1 1 Shimadzu Corporation. 1,

More information

Tomorrow s quantitation with the TSQ Fortis mass spectrometer: quantitation of phenylephrine hydrochloride for QA/QC laboratories

Tomorrow s quantitation with the TSQ Fortis mass spectrometer: quantitation of phenylephrine hydrochloride for QA/QC laboratories APPLICATION NOTE 65200 Tomorrow s quantitation with the TSQ Fortis mass spectrometer: quantitation of phenylephrine hydrochloride for QA/QC laboratories Authors Neloni Wijeratne, Claudia Martins, Mary

More information

A Rapid Approach to the Confirmation of Drug Metabolites in Preclinical and Clinical Bioanalysis Studies

A Rapid Approach to the Confirmation of Drug Metabolites in Preclinical and Clinical Bioanalysis Studies A Rapid Approach to the Confirmation of Drug Metabolites in Preclinical and Clinical Bioanalysis Studies APPLICATION BENEFITS Regulatory guidelines and recommendations place a greater emphasis on the detection

More information

Clinical Toxicology. Biomass Component Extraction: The uneaten cooked plant specimen was prepared for

Clinical Toxicology. Biomass Component Extraction: The uneaten cooked plant specimen was prepared for Clinical Toxicology Page of 0 Materials and Methods Biomass Component Extraction: The uneaten cooked plant specimen was prepared for chemical analysis as follows. The sample was frozen, diced, pulverized

More information

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer Application ote: 54 Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap rbitrap Hybrid Mass Spectrometer Kate Comstock, Yingying Huang; Thermo Fisher Scientific,

More information

A rapid and highly selective colorimetric method for direct detection of tryptophan in proteins via DMSO acceleration

A rapid and highly selective colorimetric method for direct detection of tryptophan in proteins via DMSO acceleration A rapid and highly selective colorimetric method for direct detection of tryptophan in proteins via DMSO acceleration Yanyan Huang, Shaoxiang Xiong, Guoquan Liu, Rui Zhao Beijing National Laboratory for

More information

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput Yi Zhang 1, Zhiqi Hao 1, Markus Kellmann 2 and Andreas FR. Huhmer

More information

A Sensitive and Reproducible Signature Peptide MRM Based Quantitation Method for Pegylated Interferon α-2b in Serum

A Sensitive and Reproducible Signature Peptide MRM Based Quantitation Method for Pegylated Interferon α-2b in Serum A Sensitive and Reproducible Signature Peptide MRM Based Quantitation Method for Pegylated Interferon α-2b in Serum SCIEX QTRAP 6500 LC-MS/MS System Faraz Rashid 1,Dipankar Malakar 1, Anoop Kumar 1,Manoj

More information

Determination of Hormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell HPH Column (EPA 539)

Determination of Hormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell HPH Column (EPA 539) Determination of ormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell P Column (EPA 539) Application Note Environmental Authors Rong-jie Fu and Chen-ao (Andy) Zhai Agilent Technologies

More information

Translational Biomarker Core

Translational Biomarker Core Translational Biomarker Core Instrumentation Thermo Scientific TSQ Quantum Triple Quadrupole Mass Spectrometers. There are two TSQ Quantum Ultra AM instruments available in the TBC. The TSQ Quantum Ultra

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

Supporting Information. Detection and Occurrence of Chlorinated By-products of Bisphenol A, Nonylphenol and

Supporting Information. Detection and Occurrence of Chlorinated By-products of Bisphenol A, Nonylphenol and 1 2 3 Supporting Information Detection and Occurrence of Chlorinated By-products of Bisphenol A, Nonylphenol and Estrogens in Drinking Water of China: Comparison to the Parent Compounds 4 5 6 7 8 1 Laboratory

More information

Bioanalytical Chem: 4590: LC-MSMS of analgesics LC-MS Experiment Liquid Chromatography Mass Spectrometry (LC/MS)

Bioanalytical Chem: 4590: LC-MSMS of analgesics LC-MS Experiment Liquid Chromatography Mass Spectrometry (LC/MS) Liquid Chromatography Mass Spectrometry (LC/MS) Prelab Questions: Questions to be answered before doing the experiment. The answers are due at the beginning of each experiment without exception (the questions

More information

Aminoglycosides in Milk Using Agilent Bond Elut Plexa SPE, Agilent Poroshell 120, and LC/Tandem MS

Aminoglycosides in Milk Using Agilent Bond Elut Plexa SPE, Agilent Poroshell 120, and LC/Tandem MS Aminoglycosides in Milk Using Agilent Bond Elut Plexa SPE, Agilent Poroshell 120, and LC/Tandem MS Application ote Food Testing & Agriculture Author Andy Zhai Agilent Technologies, Inc. Shanghai Co. Ltd.

More information

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION Andrew J. Aubin and Tanya L. Jenkins Waters Corporation, Milford, MA, USA INTRODUCTION Benzocaine (4-Aminobenzoic

More information

Specifically colorimetric recognition of calcium, strontium, barium. ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles

Specifically colorimetric recognition of calcium, strontium, barium. ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles Electronic Supporting Information (ESI) for Specifically colorimetric recognition of calcium, strontium, barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable

More information

Quantitative Analysis of Water-Soluble B-Vitamins in Cereal Using Rapid Resolution LC/MS/MS. Application. Authors. Abstract.

Quantitative Analysis of Water-Soluble B-Vitamins in Cereal Using Rapid Resolution LC/MS/MS. Application. Authors. Abstract. Quantitative Analysis of Water-Soluble B-Vitamins in Cereal Using Rapid Resolution LC/MS/MS Application Food Analysis Authors Sheher Mohsin Agilent Technologies, Inc. Schaumburg, Il USA Michael Zumwalt

More information

Measuring Drug-to-Antibody Ratio (DAR) for Antibody-Drug Conjugates (ADCs) with UHPLC/Q-TOF

Measuring Drug-to-Antibody Ratio (DAR) for Antibody-Drug Conjugates (ADCs) with UHPLC/Q-TOF Measuring Drug-to-Antibody Ratio (DAR) for Antibody-Drug Conjugates (ADCs) with UHPLC/Q-TOF Application Note Biopharma Author Shuai Zuo Tao Bo Suresh Babu C.V. Agilent Technologies, Inc. Abstract In this

More information

Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS

Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS Jonathan P. Williams, Jeffery M. Brown, Stephane Houel, Ying Qing Yu, and Weibin Chen Waters Corporation,

More information

Supporting Information

Supporting Information 1 Supporting Information 2 3 Discovery and implications of C 2 and C 3 perfluoroalkyl sulfonates in aqueous film forming foams (AFFF) and groundwater 4 Krista A. Barzen-Hanson a and Jennifer A. Field b*

More information

6 x 5 Ways to Ensure Your LC-MS/MS is Healthy

6 x 5 Ways to Ensure Your LC-MS/MS is Healthy 6 x 5 Ways to Ensure Your LC-MS/MS is Healthy (Also known as - Tracking Performance with the 6 x 5 LC-MS/MS Peptide Reference Mixture) Mike Rosenblatt, Ph.D. Group Leader Mass Spec Reagents 215. We monitor

More information

Extraction of Aflatoxins and Ochratoxin from Dried Chili Using ISOLUTE. Myco Prior to LC-MS/MS Analysis

Extraction of Aflatoxins and Ochratoxin from Dried Chili Using ISOLUTE. Myco Prior to LC-MS/MS Analysis Application Note AN785 Extraction of Aflatoxins and chratoxin From Dried Chili Using ISLUTE Myco prior to LC-MS/MS Analysis Page Extraction of Aflatoxins and chratoxin from Dried Chili Using ISLUTE Myco

More information

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring High-Throughput Protein Quantitation Using Multiple Reaction Monitoring Application Note Authors Ning Tang, Christine Miller, Joe Roark, Norton Kitagawa and Keith Waddell Agilent Technologies, Inc. Santa

More information

Highly sensitive and rapid analysis of synthetic dyes in sea food by LC/MS/MS

Highly sensitive and rapid analysis of synthetic dyes in sea food by LC/MS/MS PO-CON1745E Highly sensitive and rapid analysis of synthetic dyes in sea food by LC/MS/MS ASMS 2017 MP 189 Shailendra Rane 1, Ashutosh Shelar 1, Shailesh Damale 1, Rashi Kochhar 1, Purshottam Sutar 1,

More information

Effective desalting and concentration of in-gel digest samples with Vivapure C18 Micro spin columns prior to MALDI-TOF analysis.

Effective desalting and concentration of in-gel digest samples with Vivapure C18 Micro spin columns prior to MALDI-TOF analysis. Introduction The identification of proteins plays an important role in today s pharmaceutical and proteomics research. Commonly used methods for separating proteins from complex samples are 1D or 2D gels.

More information

Analysis of Synthetic Cannabinoids and Metabolites: Adding New Compounds to an Existing LC-MS/MS Method

Analysis of Synthetic Cannabinoids and Metabolites: Adding New Compounds to an Existing LC-MS/MS Method Analysis of Synthetic Cannabinoids and Metabolites: Adding New Compounds to an Existing LC-MS/MS Method By Sharon Lupo and Frances Carroll Abstract The analysis of synthetic cannabinoids and their metabolites

More information

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS Kate Comstock, Tim Stratton, Hongxia (Jessica) Wang, and Yingying Huang

More information

materials analysis Solutions for Your Analytical Business Markets and Applications Programs

materials analysis Solutions for Your Analytical Business Markets and Applications Programs materials analysis DETERMINATION OF DIISOCYANATES IN PLASTICS USED IN TEXTILE PRODUCTS USING THE AGILENT 6410B LC/MS/MS Solutions for Your Analytical Business Markets and Applications Programs Author Dr.

More information

Improved Automated Sample Preparation for the Analysis of 25-OH-Vitamin D3 by LC/MS/MS

Improved Automated Sample Preparation for the Analysis of 25-OH-Vitamin D3 by LC/MS/MS Improved Sample Preparation for the Analysis of 25-OH-Vitamin D3 by LC/MS/MS Abstract In this work, we demonstrate an improved automated sample preparation for liquid chromatography-tandem mass spectrometry

More information

Fast Protein and Peptide Separations Using Monolithic Nanocolumns and Capillary Columns

Fast Protein and Peptide Separations Using Monolithic Nanocolumns and Capillary Columns Application Note 3 Fast Protein and Peptide Separations Using Monolithic Nanocolumns and Capillary Columns INTRODUCTION Polymeric monolithic stationary phases offer an alternative to the classical microparticulate

More information

Volume 6, Issue 2, January February 2011; Article-015

Volume 6, Issue 2, January February 2011; Article-015 Research Article DEVELOPMENT AND VALIDATION OF A RP-HPLC METHOD FOR THE DETERMINATION OF DAPOXETINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATION USING AN EXPERIMENTAL DESIGN Pratik Mehta*, Ujjwal Sahoo,

More information

Analysis of Low-Calorie Sweeteners by Liquid Chromatography-Tandem Mass Spectrometry

Analysis of Low-Calorie Sweeteners by Liquid Chromatography-Tandem Mass Spectrometry Analysis of Low-Calorie Sweeteners by Liquid Chromatography-Tandem Mass Spectrometry Application Note Food safety Authors Ismael Flores and Carlos Sepulveda Agrolab México Km 7 Carretera Pachuca-Actopan

More information

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS Application Note Traditional Chinese Medicine Author Rongjie Fu Agilent Technologies

More information

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma LC-MS/MS Method for the Determination of Diclofenac in Human Plasma J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20569 Key Words SPE, SOLA, Accucore RP-MS, diclofenac, Core

More information

Determination of urea in ultrapure water by IC-MS/MS

Determination of urea in ultrapure water by IC-MS/MS APPLICATION NOTE 72482 Determination of urea in ultrapure water by IC-MS/MS Authors Soon Fatt Lee, 1 Fiona Teh Hui Boon, 1 Chris Cheah Hun Teong, 1 and Jeff Rohrer 2 ¹Thermo Fisher Scientific, Singapore

More information

Protocol for 2D-E. Protein Extraction

Protocol for 2D-E. Protein Extraction Protocol for 2D-E Protein Extraction Reagent 1 inside the ReadyPrep TM Sequential Extraction kit (in powder form) 50ml of deionized water is used to dissolve all the Reagent 1. The solution is known as

More information

Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note

Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note Environmental Author Chin-Kai Meng Agilent Technologies 85 Centerville Road Wilmington, DE 988-6 USA Abstract Chlorinated

More information

Analysis of a Verapamil Microsomal Incubation using Metabolite ID and Mass Frontier TM

Analysis of a Verapamil Microsomal Incubation using Metabolite ID and Mass Frontier TM Application Note: 320 Analysis of a Verapamil Microsomal Incubation using Metabolite ID and Mass Frontier TM Key Words Metabolism Study Structure Elucidation Metabolite ID Mass Frontier Chromatography

More information

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer Reiko Kiyonami, Mary Blackburn, Andreas FR Hühme: Thermo Fisher

More information

Taking Full Advantage of UHPLC with Agilent 6460A Triple Quadrupole MS. Outline

Taking Full Advantage of UHPLC with Agilent 6460A Triple Quadrupole MS. Outline Taking Full Advantage of UHPLC with Agilent 0A Triple Quadrupole MS Dr. Anabel Fandino R&D Application Scientist LC/MS Division Agilent Technologies Santa Clara, CA utline Ultra High Definition LC/MS using

More information

Electronic Supplementary Information For. Facile fabrication of glycopolymer-based iron oxide nanoparticles

Electronic Supplementary Information For. Facile fabrication of glycopolymer-based iron oxide nanoparticles Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information For Facile fabrication of glycopolymer-based iron

More information

Computational Methods for Mass Spectrometry Proteomics

Computational Methods for Mass Spectrometry Proteomics Computational Methods for Mass Spectrometry Proteomics Eidhammer, Ingvar ISBN-13: 9780470512975 Table of Contents Preface. Acknowledgements. 1 Protein, Proteome, and Proteomics. 1.1 Primary goals for studying

More information

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS Application Note Forensic Toxicology Authors Martin Josefsson, and Markus Roman National Board of Forensic Medicine Linköping,

More information

Appendix II- Bioanalytical Method Development and Validation

Appendix II- Bioanalytical Method Development and Validation A2. Bioanalytical method development 1. Optimization of chromatographic conditions Method development and optimization of chromatographic parameters is of utmost important for validating a method in biological

More information

Convenient Synthesis of Nucleoside 5 -Triphosphates for RNA Transcription. Supplemental Materials

Convenient Synthesis of Nucleoside 5 -Triphosphates for RNA Transcription. Supplemental Materials Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2010 Convenient Synthesis of ucleoside 5 -Triphosphates for RA Transcription Julianne Caton-Williams,

More information

Psychoactive Drugs Urine LC-MS/MS Analysis Kit User Manual

Psychoactive Drugs Urine LC-MS/MS Analysis Kit User Manual Page 1 / 18 Psychoactive Drugs Urine LC-MS/MS Analysis Kit User Manual ZV-2001-0200-20 200 2-8 C Page 2 / 18 Table of Contents 1. INTENDED USE... 3 2. SUMMARY AND EXPLANATION... 3 3. TEST PRINCIPLE...

More information

Fumonisin. Fumonisin B 1 Fumonisin B 2. Fumonisin B 3. CAS No.:

Fumonisin. Fumonisin B 1 Fumonisin B 2. Fumonisin B 3. CAS No.: Fumonisin Fumonisin B 1 Fumonisin B 2 Fumonisin B 3 Fumonisin B 1 Fumonisin B 2 H H H H H H H H NH 2 H H NH 2 H C 34 H 59 N 15 MW: 721.8 CAS No.: 116355-83-0 H C 34 H 59 N 14 MW: 705.8 CAS No.: 116355-84-1

More information

Supplementary Materials. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV) Complex for. Formation of Disulfide Bonds in Peptides

Supplementary Materials. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV) Complex for. Formation of Disulfide Bonds in Peptides Supplementary Materials Synthesis of Reusable Silica Nanosphere-Supported Pt(IV) Complex for Formation of Disulfide Bonds in Peptides Xiaonan Hou, Xiaowei Zhao, Yamei Zhang, Aiying Han, Shuying Huo*, and

More information

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis Tim Stratton 1, Yingying Huang 1, Katianna Pihakari 1, Ian Acworth 2, and Michael Weber 2 1 Thermo Fisher Scientific,

More information

Low-level Determination of 4-Hydrazino Benzoic Acid in Drug Substance by High Performance Liquid Chromatography/Mass Spectrometry

Low-level Determination of 4-Hydrazino Benzoic Acid in Drug Substance by High Performance Liquid Chromatography/Mass Spectrometry ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2010, 7(2), 403-408 Low-level Determination of 4-Hydrazino Benzoic Acid in Drug Substance by High Performance Liquid Chromatography/Mass

More information

Dual Use of a Chemical Auxiliary: Molecularly Imprinted Polymers for the Selective Recovery of Products from Biocatalytic Reaction Mixtures

Dual Use of a Chemical Auxiliary: Molecularly Imprinted Polymers for the Selective Recovery of Products from Biocatalytic Reaction Mixtures SUPPORTING INFORMATION Dual Use of a Chemical Auxiliary: Molecularly Imprinted Polymers for the Selective Recovery of Products from Biocatalytic Reaction Mixtures Aaron T. Larsen, Tiffany Lai, Vanja Polic,

More information

Separation of Large and Small Peptides by Supercritical Fluid Chromatography and Detection by Mass Spectrometry

Separation of Large and Small Peptides by Supercritical Fluid Chromatography and Detection by Mass Spectrometry Separation of Large and Small Peptides by Supercritical Fluid Chromatography and Detection by Mass Spectrometry Application Note Biologics and Biosimilars Author Edgar Naegele Agilent Technologies, Inc.

More information

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors Trace-Level Analysis of Melamine in Milk Products on Agilent 789A/5975C GC/MSD Using a ew Agilent J&W DB-5ms Ultra Inert Column and SampliQ SCX Cartridges Application ote Gas Chromatography/Mass Spectrometry/Food

More information

Analytical Method Development and Validation of Lafutidine in Tablet dosage form by RP-HPLC

Analytical Method Development and Validation of Lafutidine in Tablet dosage form by RP-HPLC International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.3, pp 1403-1407, July-Sept 2011 Analytical Method Development and Validation of Lafutidine in Tablet dosage form

More information

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 643 LC/MS/MS Application Note Forensic Toxicology Authors Jason Hudson, Ph.D., James Hutchings, Ph.D., and Rebecca Wagner,

More information

Photochemical synthesis of 3-azabicyclo[3.2.0]heptanes: advanced building blocks for drug discovery

Photochemical synthesis of 3-azabicyclo[3.2.0]heptanes: advanced building blocks for drug discovery Photochemical synthesis of 3-azabicyclo[3.2.0]heptanes: advanced building blocks for drug discovery Aleksandr V. Denisenko, a,b Tetiana Druzhenko, c Yevhen Skalenko, a Maryna Samoilenko, b Oleksandr O.

More information

Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets

Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets Contact: Oliver el-atma Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Germany (OMCL

More information