Storage & Transport of highly volatile Gases made safer & cheaper by the use of Kinetic Trapping"

Size: px
Start display at page:

Download "Storage & Transport of highly volatile Gases made safer & cheaper by the use of Kinetic Trapping""

Transcription

1 Pressemitteilung Universität Augsburg Klaus P. Prem Forschungsergebnisse Chemie, Energie, Physik / Astronomie, Werkstoffwissenschaften überregional Storage & Transport of highly volatile Gases made safer & cheaper by the use of Kinetic Trapping" Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/new prospects for gas-powered vehicles Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or hydrogen-powered vehicles. The storage materials known to date have insufficient cohesive force and/or loading capacity. No convincing methods, moreover, have yet been found for loading and re-releasing the gas in normal conditions, without the need for the costly generation of high temperatures or pressure. A report, however, has now been published in the Journal of the American Chemical Society (J. Am. Chem. Soc.) on an innovative method by which gas molecules can be reliably trapped in nanoscopic cavities in a porous compound. The report has been produced by a group of researchers working with Professor Dirk Volkmer at the Chair of Solid State and Materials Chemistry, University of Augsburg. They refer to the procedure they have developed, which is fundamentally different from traditional gas absorption methods, as kinetic trapping. The new host material MFU-4, on which this procedure is based, is characterised by high loading and storage capacity. Porous gas storage materials Over the past decades, porous gas storage materials were investigated and developed with a view to finding the strongest possible interactions between absorbed gas molecules and the host material, explains Volkmer. This, he continues, has led to a multiplicity of new frameworks, which can bind volatile gas molecules potential energy sources such as hydrogen and methane, but also toxic gases such as carbon monoxide or hydrogen sulphide. Low loading capacity in normal conditions due to insufficient cohesion However, the loading capacity of these host materials, reflected, inter alia, in the weight ratio between the host material and the absorbed gas, tends to be very low, especially if the absorption takes place under normal conditions, i.e. at room temperature and atmospheric pressure. Under these conditions, the gas molecules find very few places within traditional gas storage materials to which they can bind themselves sufficiently strongly. According to Volkmer, Under normal conditions, to prevent a gas molecule detaching itself immediately again from the surface of the host material, you need binding interactions with energy levels of around 30 kilojoules per mole, i.e. at kj/mol levels which only generate very weak chemical bonds. Traditional gas storage materials: not suitable for mobile applications Although these required levels of around 30 kj/mol seem low compared to the binding energy levels required for proper chemical binding between, for example, the carbon atoms in an organic molecule they are far higher than 10 kj/mol, which is currently all that can be achieved between small, highly volatile gas molecules and current porous Seite 1

2 storage materials. This is not sufficient to compress hydrogen at room temperature and to bind it reliably to the carrier, explains Volkmer. Neither are these storage materials, therefore, suited to mobile applications, which would be extremely useful - for hydrogen or methane-powered vehicles, for example. Despite numerous international research programmes aiming to develop sufficiently stable loadable carrier materials, the targets set by the US Department of Energy for technically feasible hydrogen storage systems have still not been met. Problem: insufficient storage capacity despite high binding energy levels On the issue of sufficient binding energy, reports Volkmer, we ourselves thought we d had a breakthrough four years ago, when, in the journal Angewandte Chemie ( Applied Chemistry ), we reported the successful development of a material which could bind hydrogen molecules up to 32 kj/mol, thus setting a world record for porous materials." (Angew. Chem. Int. Ed. 2014, 53, ; DOI: /anie ). This material, however, has far too low a loading capacity: there are too few places in its internal cavities to which the volatile hydrogen molecules can bind themselves sufficiently strongly, i.e. at the above-mentioned 32 kj/mol. "This is annoying, says Volkmer. Totally new carrier material He is all the more pleased, therefore, that four years later, he and his team have published a report in the "Journal of the American Chemical Society" on a framework which they have already shown to be highly effective in binding and storing a volatile and rare gas xenon - in normal conditions. Using their new porous carrier compound MFU-4, they have been able to compress xenon to less than one percent of its original volume. The gas, moreover, remains stable in this state for many days after it has been successfully loaded. Density at room temperature only otherwise achievable at 108 C At room temperature, we were able to achieve a proportion of xenon, by weight, of up to 44.5%, reports Dr Hana Bunzen, who performed many of the experimental gas absorption studies in Volkmer s department. This corresponds to a density of the locked-in xenon of around 1.8 g/cm3, i.e. a value which is very close to the value of liquid xenon, i.e. when the gas is chilled to a temperature of below 108 C. Juxtaposition of "Nano gas bottles" This high level of compression at room temperature is made possible by the unique structure of the storage material: it is made up of nano-sized cavities, linked to each other by very narrow channels. In order to achieve its high binding capacity, the diameter of these channels must be slightly narrower than the diameter of the gas molecules to be absorbed. The material, therefore, is like a series of miniature gas bottles lined up beside each other, linked together by nano-valves. Each individual void in the compound, explains Volkmer, can only store up to 15 xenon atoms; however, since an almost infinite number of these small cavities can be linked together in a chain, unprecedented levels of gas storage density can be attained. High temperatures and pressure only required for loading and unloading On loading, to enable the gas molecules to push their way through the nano-valves into the cavities, they must receive an input of activation energy, in the form of high temperatures and/or pressures. Once, however, its molecules have forced their way through the valves and are trapped in the voids, the gas can be safely and reliably stored, and transported, in a highly compressed state, without further energy costs and without the use of awkward and heavy gas cylinder, which have been required and generally used up to now. Seite 2

3 Dr German Sastre, a researcher from Valencia also working on the Augsburg study, has confirmed, using theoretical models, that provision of activation energy is also needed for the process of managed release of the gas atoms. Does this mean that even with kinetic trapping, expensive high temperatures and pressures are still needed? "The key advantage of MFU-4", explains Volkmer, "is that - unlike with other frameworks the energy required for unloading is not needed to break up the binding interactions between the gas molecules and the porous carrier. As the term activation energy suggests, it is only needed to give the gas atoms the momentum they require to push through the nano-valves into the material, and then back out again, not for the binding of the highly compressed gas molecules within the host. Electrical fields instead of high temperatures and pressure This once again opens up the prospect of doing without expensive high temperature or pressure environments, not only for the stable storage of gas in the material, but even for loading and unloading. Last year, Volkmer and his team, together with colleagues from the Institute of Physical Chemistry and Electrochemistry of Leibniz University, Hannover (Prof Jürgen Caro) demonstrated in the magazine "Science" that porous frameworks alter their mechanical properties in electrical fields (Science 2017, 358, DOI: /science.aal2456). This means that the activation energy required only for managed loading and unloading of the host material could possibly be obtained from electrical impulses. May even be suitable for highly volatile hydrogen Now that the new storage technology has been shown to work well for xenon, Volkmer is confident that kinetic trapping will make it possible to reliably and reversibly store and transport other highly volatile gases at room temperature and at maximum loading density. He is thinking, for example, of methane, the kinetic diameter of which is 380 picometres, only slightly smaller than that of xenon (396 picometres). Another real possibility, he believes, is hydrogen, which has a far smaller molecular diameter only 289 picometres and is therefore extremely volatile and known to be particularly difficult to compress and transport. Volkmer is sure that kinetic trapping in hydrogen tanks, designed for purpose, could also be of great interest to the automotive industry. wissenschaftliche Ansprechpartner: Prof. Dr. Dirk Volkmer Chair of Solid State and Materials Chemistry University of Augsburg D Augsburg Telephone: +49(0) dirk.volkmer@physik.uni-augsburg.de Originalpublikation: H. Bunzen, F. Kolbe, A. Kalytta-Mewes, G. Sastre, E. Brunner, and D. Volkmer, J. Achieving Large Volumetric Gas Storage Capacity in Metal Organic Frameworks by Kinetic Trapping: A Case Study of Xenon Loading in MFU-4. J. Am. Chem. Soc. 2018, 140 (32), DOI: /jacs.8b04582 URL zur Pressemitteilung: URL zur Pressemitteilung: Seite 3

4 15 xenon atoms (blue spheres) in a nano-cavity in the material MFU-4, a compound developed by the Augsburg research team for gas storage by means of kinetic trapping. University of Augsburg Seite 4

5 Within the MFU-4, the atoms have to overcome an activation barrier (the red curve in the next figure). The size of the barrier will determine how reliably the gas can be trapped. University of Augsburg Seite 5

Intermolecular Forces in Solids, Liquids, and Gases What Do You See?

Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Section 2 Intermolecular Forces in Solids, Liquids, and Gases What Do You See? Learning Outcomes In this section you will Describe how the size and shape of molecules affect their physical state. Classify

More information

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University

Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems. Hong-Cai Joe Zhou Department of Chemistry Texas A&M University Metal-Organic Frameworks for Adsorbed Natural Gas Fuel Systems Hong-Cai Joe Zhou Department of Chemistry Texas A&M University 2 US primary energy consumption by fuel, 1980-2035 (quadrillion Btu per year)

More information

Casimir Boiler Horace Heffner August, 2009

Casimir Boiler Horace Heffner August, 2009 OBJECTIVE The purpose here is to provide a means of extracting energy upon demand from the zero point field (ZPF), by utilization liquid flow of van der Waals force bound liquids through cavities sufficiently

More information

Chemistry General Chemistry II Spring 2006 Test #1

Chemistry General Chemistry II Spring 2006 Test #1 Name: KEY Chemistry 122-04 -- General Chemistry II Spring 2006 Test #1 Organic molecules, molecular structure and bonding theory, solubility, (breathe now) phase transitions, spectroscopy, and kinetics

More information

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials

IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials IEA-HIA Task 32 Hydrogen-based Energy Storage Hydrogen storage in porous materials Michael Hirscher Max Planck Institute for Intelligent Systems Stuttgart, Germany MH2018 November 1, 2018 Outline IEA Hydrogen

More information

Gases have important properties that distinguish them from solids and liquids:

Gases have important properties that distinguish them from solids and liquids: Kinetic molecular theory Gases have important properties that distinguish them from solids and liquids: Gases diffuse to occupy available space. For example, the molecules responsible for the scent of

More information

Chem Hughbanks Exam 2, March 10, 2016

Chem Hughbanks Exam 2, March 10, 2016 Chem 107 - Hughbanks Exam 2, March 10, 2016 Name (Print) UIN # Section 502 Exam 2, On the last page of this exam, you ve been given a periodic table and some physical constants. You ll probably want to

More information

Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur

Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur Lecture 10 Thermophysical Properties of Natural Gas- I Welcome, today

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

Press release. A 155 carat diamond with 92 mm diameter. Universität Augsburg Klaus P. Prem. 03/21/2017

Press release. A 155 carat diamond with 92 mm diameter. Universität Augsburg Klaus P. Prem. 03/21/2017 Press release Universität Augsburg Klaus P. Prem 03/21/2017 http://idw-online.de/en/news670029 Research results, Scientific Publications Chemistry, Electrical engineering, Materials sciences, Mechanical

More information

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry

OUTLINE. States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry UNIT 6 GASES OUTLINE States of Matter, Forces of Attraction Phase Changes Gases The Ideal Gas Law Gas Stoichiometry STATES OF MATTER Remember that all matter exists in three physical states: Solid Liquid

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES.

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES. !! www.clutchprep.com CONCEPT: ATOMIC VIEW OF AN IDEAL GAS Remember! A gas is a type of fluid whose volume can change to fill a container - What makes a gas ideal? An IDEAL GAS is a gas whose particles

More information

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as:

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: B C D Hydrogen bonding. Dipole-dipole interactions. Dispersion forces.

More information

AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1

AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1 www.pedersenscience.com AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) 5.A.2: The process of kinetic energy transfer at the particulate scale is referred to in this course as heat transfer,

More information

Water SECTION The properties of water in all phases are determined by its structure.

Water SECTION The properties of water in all phases are determined by its structure. SECTION 10.5 Water Water commonly exists in all three physical states on Earth, where it is by far the most abundant liquid. It covers nearly three-quarters of Earth s surface. Water is an essential component

More information

SUPeR Chemistry CH 222 Practice Exam

SUPeR Chemistry CH 222 Practice Exam SUPeR Chemistry CH 222 Practice Exam This exam has been designed to help you practice working multiple choice problems over the material that will be covered on the first CH 222 midterm. The actual exams

More information

Chapter 10 Liquids, Solids, and Intermolecular Forces

Chapter 10 Liquids, Solids, and Intermolecular Forces Chapter 10 Liquids, Solids, and Intermolecular Forces The Three Phases of Matter (A Macroscopic Comparison) State of Matter Shape and volume Compressibility Ability to Flow Solid Retains its own shape

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

Exam Accelerated Chemistry Study Sheet Chap12 Solids/Liquids/Intermolecular Forces

Exam Accelerated Chemistry Study Sheet Chap12 Solids/Liquids/Intermolecular Forces Exam Accelerated Chemistry Study Sheet Chap12 Solids/Liquids/Intermolecular Forces Name /66 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Intermolecular

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. a. The gas

More information

Chemistry of Life: Water and Solutions

Chemistry of Life: Water and Solutions Chemistry of Life: Water and Solutions Unit Objective I can describe the role of organic and inorganic chemicals important to living things. During this unit, we will answer the following very important

More information

What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate?

What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate? What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate? Introduction The collision theory of reactions suggests that the rate of a reaction depends on three important factors.

More information

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Chapter 10: States of Matter Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Pressure standard pressure the pressure exerted at sea level in dry air

More information

STP : standard temperature and pressure 0 o C = 273 K kpa

STP : standard temperature and pressure 0 o C = 273 K kpa GAS LAWS Pressure can be measured in different units. For our calculations, we need Pressure to be expressed in kpa. 1 atm = 760. mmhg = 101.3 kpa R is the Universal Gas Constant. Take note of the units:

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Qualitative observation descriptive observation has no numerical measurement

Qualitative observation descriptive observation has no numerical measurement 1 Chem 047: Physical and chemical properties Chemistry 047 Properties of substances, and Physical and Chemical Changes A. Some definitions B. Properties of substances C. The Classification of Matter D.

More information

Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview

Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview Chapter 4 Thermochemistry 4.1 Energy Storage and Reference Thermochemistry is the study of the energy released when the atomic-level associations are changed. A chemical reaction (rxn) is one where these

More information

High-Pressure Volumetric Analyzer

High-Pressure Volumetric Analyzer High-Pressure Volumetric Analyzer High-Pressure Volumetric Analysis HPVA II Benefits Dual free-space measurement for accurate isotherm data Free space can be measured or entered Correction for non-ideality

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview

Thermochemistry. Chapter Energy Storage and Reference. 4.2 Chemical Rxns. 4.3 Hess s law Overview Chapter 4 Thermochemistry 4.1 Energy Storage and Reference Thermochemistry is the study of the energy released when the atomic-level associations are changed. A chemical reaction (rxn) is one where these

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

Most substances can be in three states: solid, liquid, and gas.

Most substances can be in three states: solid, liquid, and gas. States of Matter Most substances can be in three states: solid, liquid, and gas. Solid Particles Have Fixed Positions The particles in a solid are very close together and have an orderly, fixed arrangement.

More information

Topic 2.1 ENERGETICS. Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies Hess Law

Topic 2.1 ENERGETICS. Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies Hess Law Topic 2.1 ENERGETICS Measuring and Calculating Enthalpy Changes Mean Bond Dissociation Enthalpies ess Law 1. Exothermic and endothermic reactions ENTALPY CANGES When a chemical reaction takes place, the

More information

CHEMISTRY Matter and Change. Chapter 12: States of Matter

CHEMISTRY Matter and Change. Chapter 12: States of Matter CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click

More information

The properties of water in all phases are determined by its structure.

The properties of water in all phases are determined by its structure. Section 5 Water Water is a familiar substance in all three physical states: solid, liquid, and gas. On Earth, water is by far the most abundant liquid. Oceans, rivers, and lakes cover about 75% of Earth

More information

Chapter 16 Simple Kinetic Theory of Matter

Chapter 16 Simple Kinetic Theory of Matter Chapter 16 Simple Kinetic Theory of Matter MCQ 1: Air trapped inside a single-piston-cylinder exerts a pressure of 760 mmhg. If its volume is increased by 30% at a constant temperature, then the pressure

More information

Honors Unit 9: Liquids and Solids

Honors Unit 9: Liquids and Solids Name: Honors Unit 9: Liquids and Solids Objectives: 1. Students will be able to describe particles in the solid, liquid, and gas phases, and to explain what happens during phase transitions in terms of

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

Chem 115 Class Notes 3/13/08 KF. THERMOCHEMISTRY (Ch.5)

Chem 115 Class Notes 3/13/08 KF. THERMOCHEMISTRY (Ch.5) Chem 115 Class Notes 3/13/08 KF THERMOCHEMISTRY (Ch.5) - thermochemistry is the portion of thermodynamics that deals with the relationship between chemical reactions and the exchange of energy in the form

More information

MOFs: Metal organic frameworks

MOFs: Metal organic frameworks MOFs: Metal organic frameworks BY KATRINA KRÄMER 27 APRIL 2017 A holey material that promises to solve fuel storage problems and store chemical information. Ben Valsler This week, looks at a versatile

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

Chem. 1A Midterm 2 Version A

Chem. 1A Midterm 2 Version A Chem. 1A Midterm 2 Version A Name Student Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units and for the incorrect number of significant figures.

More information

Alkanes are aliphatic saturated hydrocarbons (no C=C double bonds, C and H atoms only). They are identified by having a ane name ending.

Alkanes are aliphatic saturated hydrocarbons (no C=C double bonds, C and H atoms only). They are identified by having a ane name ending. Alkanes Alkanes are aliphatic saturated hydrocarbons (no = double bonds, and atoms only). They are identified by having a ane name ending. The alkanes have similar chemistry to one another because they

More information

CHEMICAL KINETICS (RATES OF REACTION)

CHEMICAL KINETICS (RATES OF REACTION) Kinetics F322 1 CHEMICAL KINETICS (RATES OF REACTION) Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the

More information

1. Which of the following would have the highest molar heat of vaporization? c. Cl 2

1. Which of the following would have the highest molar heat of vaporization? c. Cl 2 JASPERSE CHEM 160 PRACTICE TEST 1 VERSION 1 Corrected Ch. 11 Liquids, Solids, and Materials Ch. 15 The Chemistry of Solutes and Solutions Ch. 13 Chemical Kinetics Formulas for First Order Reactions: kt

More information

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011

NAME Student ID No. UNIVERSITY OF VICTORIA. CHEMISTRY 102 Term Test I February 4, 2011 NAME Student ID No. Section (circle one): A01 (Dr. Lipson) A02 (Dr. Briggs) A03 (Dr. Brolo) UNIVERSITY OF VICTORIA Version A CHEMISTRY 102 Term Test I February 4, 2011 Version A This test has two parts:

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 4: Chemical Thermodynamics General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 4: Chemical Thermodynamics Zeroth Law of Thermodynamics. First Law of Thermodynamics (state quantities:

More information

Thermochemistry (chapter 5)

Thermochemistry (chapter 5) Thermochemistry (chapter 5) Is the study of the energy changes that accompany physical and chemical changes. Energy is defined as the ability to do work or the capacity to produce change. The forms of

More information

Name: Date: Period: Phase Diagrams

Name: Date: Period: Phase Diagrams Phase Diagrams Directions: Use the information in the box below to help you answer the information in this packet. You do NOT need to use complete sentences for this packet. A phase diagram is a graph

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Chem 102--Exam #2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When water is measured in a plastic graduated cylinder, a reverse meniscus

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A PART 1: KEY TERMS AND SYMBOLS IN THERMOCHEMISTRY System and surroundings When we talk about any kind of change, such as a chemical

More information

5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e

5.4 Bond Enthalpies. CH 4(g) + O 2(g) CO 2(g) + 2H 2 O (g) 1 P a g e 5.4 Bond Enthalpies Bond breaking is endothermic and bond making is exothermic. Bond making produces greater stability because the resulting products have a lower energy state. bond making bond breaking

More information

Chemistry Midterm Review. Topics:

Chemistry Midterm Review. Topics: Chemistry Midterm Review Unit 1: laboratory equipment and safety rules accuracy vs precision scientific method: observation, hypothesis. experimental design: independent vs dependent variables, control

More information

Unit 6 Kinetics and Equilibrium.docx

Unit 6 Kinetics and Equilibrium.docx 6-1 Unit 6 Kinetics and Equilibrium At the end of this unit, you ll be familiar with the following: Kinetics: Reaction Rate Collision Theory Reaction Mechanism Factors Affecting Rate of Reaction: o Nature

More information

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Physical Metallurgy The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals. Crystal Binding In our discussions

More information

BCIT Fall Chem Exam #1

BCIT Fall Chem Exam #1 BCIT Fall 2012 Chem 3615 Exam #1 Name: Attempt all questions in this exam. Read each question carefully and give a complete answer in the space provided. Part marks given for wrong answers with partially

More information

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes J. At. Mol. Sci. doi: 10.4208/jams.121011.011412a Vol. 3, No. 4, pp. 367-374 November 2012 Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes Xiu-Ying Liu a,, Li-Ying Zhang

More information

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or

17.4 Calculating Heats Essential Understanding Heats of reaction can be calculated when it is difficult or 17.4 Calculating Heats of Reaction Essential Understanding Heats of reaction can be calculated when it is difficult or impossible to measure them directly. Lesson Summary Hess s Law Hess s law provides

More information

Reference pg and in Textbook

Reference pg and in Textbook Reference pg. 154-164 and 188-202 in Textbook Combustion Reactions During combustion (burning) of fossil fuels, collisions between the molecules of the fuel and oxygen result in the formation of new molecules.

More information

Matter Properties and Changes

Matter Properties and Changes Matter Properties and Changes What is matter? anything that takes up space (volume) and has mass everything around you is made up of matter matter has 3 main states: solid, liquid, and gas Physical Property

More information

Gases: Properties and Behaviour

Gases: Properties and Behaviour SECTION 11.1 Gases: Properties and Behaviour Key Terms kinetic molecular theory of gases ideal gas On Earth, matter typically exists in three physical states: solid, liquid, and gas. All three states of

More information

Physics 111. Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, Latent Heats

Physics 111. Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, Latent Heats Physics 111 Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, 2009 Lecture 39 1/26 Latent Heats The heat required to convert from one phase to another is called

More information

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1 Multiple-choice questions (3 points each): Write the letter of the best answer on the line beside the question. Give only one answer for each question. B 1) If 0.1

More information

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017 Unit Five: Intermolecular Forces Name MC Question Practice April 14, 2017 1. Which of the following should have the highest surface tension at a given temperature? 2. The triple point of compound X occurs

More information

Kinetic energy is the energy of motion (of particles). Potential energy involves stored energy (energy locked up in chemical bonds)

Kinetic energy is the energy of motion (of particles). Potential energy involves stored energy (energy locked up in chemical bonds) Enthalpy (H) Enthalpy (H) is the total energy amount (Epotential + Ekinetic) of a system during a chemical reaction under constant temperature and pressure conditions. Kinetic energy is the energy of motion

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Collision Theory. and I 2

Collision Theory. and I 2 Collision Theory To explain why chemical reactions occur, chemists have proposed a model, known as collision theory, which states that molecules must collide in order to react. These collisions can involve

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Chapter 8 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 15 CHEMICAL REACTIONS Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University 2 Objectives Give an overview of fuels and combustion. Apply the conservation of mass to reacting

More information

CHM2045 F13: Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM2045 F13: Exam # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CHM2045 F13: Exam #3 2013.11.15 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A metal crystallizes in a face centered cubic structure and has

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

Chemistry 101 Chapter 10 Energy

Chemistry 101 Chapter 10 Energy Chemistry 101 Chapter 10 Energy Energy: the ability to do work or produce heat. Kinetic energy (KE): is the energy of motion. Any object that is moving has kinetic energy. Several forms of kinetic energy

More information

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water

Proper&es of Water. Lesson Overview. Lesson Overview. 2.2 Properties of Water Lesson Overview Proper&es of Water Lesson Overview 2.2 Properties of Water THINK ABOUT IT Looking back at Earth from space, an astronaut called it the blue planet, referring to the oceans of water that

More information

Chem 35 - Exam II November 2, 1999 Prof. W.R. Leenstra. Please take a minute to read these instructions:

Chem 35 - Exam II November 2, 1999 Prof. W.R. Leenstra. Please take a minute to read these instructions: Chem 35 - Exam II November 2, 1999 Prof. W.R. Leenstra NAME: Please take a minute to read these instructions: This may be common sense, but I require that all answers be justified, i.e., show all your

More information

Experiment 15 - Heat of Fusion and Heat of Solution

Experiment 15 - Heat of Fusion and Heat of Solution Experiment 15 - Heat of Fusion and Heat of Solution Phase changes and dissolving are physical processes that involve heat. In this experiment, you will determine the heat of fusion of ice (the energy required

More information

POGIL 7 KEY Intermolecular Forces

POGIL 7 KEY Intermolecular Forces Honors Chem Block Name POGIL 7 KEY Intermolecular Forces In chemistry we talk a lot about properties of substances, since the object of chemistry is substances and their properties. After learning different

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Name Date Class THERMOCHEMISTRY

Name Date Class THERMOCHEMISTRY Name Date Class 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013 Energy in Chemical Reaction Reaction Rates Chemical Equilibrium Chapter Outline Energy change in chemical reactions Bond dissociation energy Reaction rate Chemical equilibrium, Le Châtelier s principle

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

2. State the direction of heat transfer between the surroundings and the water in the bottle from 7 a.m. to 3 p.m.

2. State the direction of heat transfer between the surroundings and the water in the bottle from 7 a.m. to 3 p.m. Base your answers to questions 1 through 3 on the information below. A student investigated heat transfer using a bottle of water. The student placed the bottle in a room at 20.5 C. The student measured

More information

AP Chemistry: Liquids and Solids Practice Problems

AP Chemistry: Liquids and Solids Practice Problems AP Chemistry: Liquids and Solids Practice Problems Directions: Write your answers to the following questions in the space provided. or problem solving, show all of your work. Make sure that your answers

More information

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I,

International Journal of Scientific Research and Modern Education (IJSRME) ISSN (Online): (www.rdmodernresearch.com) Volume I, Issue I, OXYGEN CONCENTRATORS A STUDY Mohammed Salique*, Nabila Rumane**, RohanBholla***, Siddharth Bhawnani**** & Anita Kumari***** Chemical Engineering Department, Thadomal Shahani Engineering College, Off Linking

More information

Mr. Bracken. Intermolecular Forces Notes #1

Mr. Bracken. Intermolecular Forces Notes #1 Mr. Bracken AP Chemistry Name Period Intermolecular Forces Notes #1 States of Matter: A gas expands to fill its container, has neither a fixed volume nor shape, and is easily compressible. A liquid has

More information

Chapter Practice Test Grosser

Chapter Practice Test Grosser Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

The Chemistry and Energy of Life

The Chemistry and Energy of Life 2 The Chemistry and Energy of Life Chapter 2 The Chemistry and Energy of Life Key Concepts 2.1 Atomic Structure Is the Basis for Life s Chemistry 2.2 Atoms Interact and Form Molecules 2.3 Carbohydrates

More information

Lecture 4: The First Law of Thermodynamics

Lecture 4: The First Law of Thermodynamics Lecture 4: The First Law of Thermodynamics Latent Heat Last lecture, we saw that adding heat to an object does not always change the temperature of the object In some cases, the heat causes a phase change

More information

Properties of Liquids and Solids

Properties of Liquids and Solids Properties of Liquids and Solids World of Chemistry Chapter 14 14.1 Intermolecular Forces Most substances made of small molecules are gases at normal temperature and pressure. ex: oxygen gas, O 2 ; nitrogen

More information

Science 20 - Solution concentration

Science 20 - Solution concentration Science 20 - Solution concentration The concentration of a solution is a ratio of the amount of solute dissolved in a specific quantity of solvent. A dilute solution contains a relatively low quantity

More information

Stoichiometry. Cartoon courtesy of NearingZero.net

Stoichiometry. Cartoon courtesy of NearingZero.net Stoichiometry Cartoon courtesy of NearingZero.net Stoichiometry In solving a problem of this sort, the grand thing is to be able to reason backward. This is a very useful accomplishment, and a very easy

More information

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry

AP Chemistry A. Allan Chapter Six Notes - Thermochemistry AP Chemistry A. Allan Chapter Six Notes - Thermochemistry 6.1 The Nature of Energy A. Definition 1. Energy is the capacity to do work (or to produce heat*) a. Work is a force acting over a distance (moving

More information

Name: Regents Review Quiz #1 2016

Name: Regents Review Quiz #1 2016 Name: Regents Review Quiz #1 2016 1. Which two particle diagrams represent mixtures of diatomic elements? A) A and B B) A and C C) B and C D) B and D 2. At STP, which physical property of aluminum always

More information