3.2.2 Kinetics. Effect of Concentration. 135 minutes. 134 marks. Page 1 of 13

Size: px
Start display at page:

Download "3.2.2 Kinetics. Effect of Concentration. 135 minutes. 134 marks. Page 1 of 13"

Transcription

1 3.. Kinetics Effect of Concentration 35 minutes 34 marks Page of 3

2 M. (a) Activation energy;- The minimum energy needed for a reaction to occur / start () Catalyst effect:- Alternative route (or more molecules have Ea) () Lower activation energy () (c) Increase in moles of gas:- Position of E mp unchanged () More molecules with E mp () Area under curve increases () Molecules with E E a increased () Temperature decreased:- Position of E mp moves to the left () More molecules with E mp () Area under curve unchanged () Molecules with E E a decreased () Catalyst introduced:- Position of E mp unchanged () Molecules with E mp unchanged () Area under curve unchanged () Molecules with E E a increased () [5] M. (a) Increase in temperature: Yield is increased (Allow if for H (g) or products) () Reaction endothermic () Equilibrium moves to the right forward, Equilibrium moves to oppose change to absorb heat () If Yield statement incorrect allow max one if reaction stated to be endothermic Increase in pressure: Yield is decreased (Allow if for H (g) or products) () Increase in moles of gas or moles increased to 4 moles or more moles on right () Equilibrium moves to the left backwards, Equilibrium moves to oppose change to reduce pressure () If Yield statement incorrect allow max one if number of moles change is correct. 6 Page of 3

3 Equilibrium yield: Unaffected or equilibrium unchanged () Rate or speed increased () Forward and backwards reactions equally or by the same amount () Amount of hydrogen produced: More hydrogen produced () 4 [0] M3. (a) minimum energy () required before a reaction can occur or go or start () speeds up (changes) reaction rate () without being (chemically) changed (used up) () (c) provides alternative reaction route () with a lower activation energy () in and (c) reward 4 marks for 4 points wherever found (d) (i) Page 3 of 3

4 (iii) fewer collisions () W used up () or reactants or reagents or fewer particles 6 [] M4. (a) (i) 4 (i) collide () with sufficient energy (or E E a ) () (or with correct orientation) molecules (or particles) have more energy (or move faster) () more molecules (or collisions) have E E a (or sufficient energy) () 4 (c) (i) equilibrium reached () (or rate forward reaction = rate backward) Reaction is endothermic () or ΔH +ve or reverse reaction is exothermic endothermic reaction favoured () (or reaction shifts to R or moves forward or more products formed) 3 [] Page 4 of 3

5 M5. (a) Graph starts at origin Graph skewed to left and has decreasing gradient to maximum Graph after maximum decreases in steepness, never touches x axis, levels out less than 5 mm from x axis. Minimum energy To start a reaction (or for a reaction to occur) (c) Molecules gain energy (or always some molecules have E > E a ) Due to collisions (d) Decreases E a lowered () By alternative route () So more molecules have energy > E a () max [0] M6. (a) Gradient (or slope) (or draw a tangent) (i) Curve X is lower and starts at origin And levels out at same volume as original curve Curve Y is steeper than original and starts at origin Then levels out at half the volume of the original Page 5 of 3

6 (c) (i) H O H O + O (iii) Speeds up (alters the rate of) a chemical reaction Remains unchanged (or not used up) Remains unchanged (or not used up or not in the overall reaction equation) Offers alternative reaction route (or acts as an intermediate) [0] M7. (a) the minimum energy; Energy required for a reaction to occur; (or to start a reaction or for successful collisions) axes labelled:- y: number (or fraction or %) of molecules (or particles) x: energy (or KE); curve starts at origin; skewed to right; approaches x axis as an asymptote; (penalise a curve that levels off > 0% of max peak height or a curve that crosses the energy axis) second curve displaced to the left (and does not cross T curve for a second time) and peak higher; many fewer molecules; fewer molecules have E > E a ; (can score this mark from suitably marked curves) Page 6 of 3

7 (c) molecules (or particles or collisions) do not have enough energy; (or orientation may be wrong) increase the pressure; (or increase the concentration or reduce the volume) increases the collision frequency; (or more collisions) (do not allow if stated to be due to increase in energy implied by temperature increase) add a catalyst; lowers activation energy (or E a ) (Q of L mark); [5] M8. (a) minimum energy to start a reaction/ for a reaction to occur/ for a successful collision activation energy is high / few molecules/particles have sufficient energy to react/few molecules/particles have the required activation energy (or breaking bonds needs much energy) (c) molecules are closer together/ more particles in a given volume therefore collide more often (d) many more molecules have energy greater than activation energy (QoL) (e) speeds up a reaction but is chemically unchanged at the end (f) increases the surface area [9] Page 7 of 3

8 M9. (a) Sulfur S S 8 Sulphur M The activation energy is the minimum / least / lowest Mark these independently M Energy for a reaction to occur / to go / to start Energy for a successful / effective collision (c) Explanation: M Twice as many / double number of particles M NOT molecules M More / twice / double (effective) collisions (in a given time) Double / greater / increased collision frequency (d) (i) (Measured) change in concentration (of a substance) in unit time / given time May be written mathematically the gradient of the concentration (against) time The measured change / amount (of precipitate) / cloudiness is fixed or constant or unchanged [7] M0. (a) M The activation energy is the minimum / least / lowest energy Mark independently Ignore heat and ignore enthalpy M (energy) for a reaction to occur / to go / to start (energy) for a successful / effective collision Ignore breaking the bonds M Catalysts provide an alternative route an alternative mechanism alternative / different path(way) M Lowers the activation energy Mark independently Ignore reference to surface Page 8 of 3

9 (c) (i) Stay(s) the same (iii) (iv) Increases Credit increase or increased Increases Credit increase or increased Stay(s) the same (d) (i) M yeast or zymase M ethanol Ignore enzyme In M, ignore alcohol and ignore any formula M (Concentrated) H 3 PO 4 (Concentrated) H SO 4 M butan--ol Credit correct names Ignore hydrogenphosphate or hydrogensulfate Ignore dilute or aq Do not penalise absence of hyphens in name. In M, ignore any formula [] M. (a) Award in either order for curve Steeper requires line to be on the left of the original line, starting from the origin M curve is steeper than original and starts at the origin M curve levels at the top line on the graph Award in either order for curve Shallower requires line to be on the right of the original line, starting from the origin M curve is shallower than original and starts at the origin M curve levels at the first line on the graph Page 9 of 3

10 (c) M curve would be steeper than original Steeper requires line to be on the left of the original line, starting from the origin M curve levels at the same original volume of O (d) M The (concentration / amount of) H O or reactant falls / decreases / used up Mark independently The number of H O or reactant molecules/ particles falls / decreases M The rate of reaction / rate of decomposition / rate of formation of oxygen / frequency of collisions / (effective) collisions in a given time decreases / is slower (e) (i) H O H O + O Ignore state symbols Accept only this equation or its multiples Extra species must be crossed through hydrogen bromide / it does not appear in the overall equation hydrogen bromide / it is not used up in the reaction / unchanged at the end of the reaction hydrogen bromide / it is regenerated / re-formed (in Step ) [0] M. (a) (i) Change in concentration (of a substance / reactant / product) in unit time / given time / per (specified) unit of time This may be written mathematically may refer to the gradient of a graph of concentration / volume against time Amount of substance formed / used up in unit time / given time / per (specified) unit of time Ignore additional information including reference to collisions Page 0 of 3

11 At W M (QoL) The rate / it is zero M The magnesium has all reacted / has been used up Ignore reference to the acid being used up No more collisions possible between acid and Mg Reaction is complete / it has stopped No more hydrogen / product is produced (iii) M Twice / double as many particles / hydrogen ions (in a given volume) Penalise reference to (hydrochloric acid) molecules in M Penalise reference to HCl particles in M Twice / double as much hydrochloric acid M Twice / double as many effective / successful collisions (in a given time) Twice / double as many collisions with either sufficient energy to react with E E a double the successful / effective collision frequency (i) The activation energy is the minimum energy for a reaction to go / start Minimum energy for a successful/ effective collision Page of 3

12 M Products lower than reactants on the profile Mark independently M Activation energy (E a ) shown and labelled correctly from reactants to peak of curve Mark independently (c) (i) Ba + H O Ba + H O Ba(OH) + H Ba + + OH + H Allow multiples Ignore state symbols M Ba + + SO 4 BaSO 4 M Ignore state symbols in M Not multiples in M White precipitate / solid Extra ions must be cancelled Penalise contradictory observations in M (iii) M Barium meal / barium swallow / barium enema Accept a correct reference to M written in the explanation in M, unless contradictory M used in X-rays to block X-rays X-ray contrast medium CT scans BaSO 4 / barium sulfate is insoluble (and therefore not toxic) For M NOT barium ions NOT barium NOT barium meal and NOT It Ignore radio-tracing [3] Page of 3

13 Page 3 of 3

Collision Theory. Mark Scheme 2. Save My Exams! The Home of Revision

Collision Theory. Mark Scheme 2. Save My Exams! The Home of Revision Collision Theory Mark Scheme Level A Level Subject Chemistry Exam Board AQA Module 3. Physical Chemistry Topic 3..5 Kinetics Sub-Topic 3..5. Collision Theory Booklet Mark Scheme Time Allowed: 5 minutes

More information

3. Increased surface area (1) more collisions (1) 2

3. Increased surface area (1) more collisions (1) 2 3. Increased surface area (1) more collisions (1) 2 Mill Hill High School 1 [9] (c) (i) 2H 2 O 2 2H 2 O + O 2 1 (ii) Speeds up (alters the rate of) a chemical reaction 1 Remains unchanged (or not used

More information

10 Reaction rates and equilibrium Answers to practice questions. OCR Chemistry A. number 1 (a) 1: The enthalpy change, H;

10 Reaction rates and equilibrium Answers to practice questions. OCR Chemistry A. number 1 (a) 1: The enthalpy change, H; 1 (a) 1: The enthalpy change, H; 2: The activation energy, E a 1 (b) H is unaffected as it is the difference between the reactants and products E a decreases as a catalyst allows an alternative route of

More information

1. (i) 2H 2 O 2 2H 2 O + O 2 ALLOW any correct multiple including fractions IGNORE state symbols 1

1. (i) 2H 2 O 2 2H 2 O + O 2 ALLOW any correct multiple including fractions IGNORE state symbols 1 1. (i) 2H 2 O 2 2H 2 O + O 2 ALLOW any correct multiple including fractions IGNORE state symbols 1 More crowded particles OR more particles per (unit) volume ALLOW particles are closer together DO NOT

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Marking Guidance Mark Comments

Marking Guidance Mark Comments Energetics Answers Chemistry - AQA GCE Mark Scheme 200 June series Q Part Sub Part Marking Guidance Mark Comments a i M drawn curve starts at reactants and ends at products M2 curve peak is below the one

More information

Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166) NCEA Level 2 Chemistry (91166) 2016 page 1 of 6 Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166) Evidence Statement Q Evidence Achievement Merit Excellence ONE

More information

SOLUCIONARIO CINÉTICA QUÍMICA

SOLUCIONARIO CINÉTICA QUÍMICA SOLUCIONARIO CINÉTICA QUÍMICA 2009/10/11 1. B 2. A 3. B 4. C 5. C 6. (a) k increases with increase in T / k decreases with decrease in T; 1 Do not allow answers giving just the Arrhenius equation or involving

More information

4-6 Chemistry /5-6 Trilogy Rate and extent of chemical change

4-6 Chemistry /5-6 Trilogy Rate and extent of chemical change 4-6 Chemistry /5-6 Trilogy Rate and extent of chemical change.0 A student heated hydrated cobalt chloride. The word equation shows the reaction. hydrated cobalt chloride (pink) anhydrous cobalt chloride

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24

Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24 Rate of reaction Higher revision questions Name: Class: Date: Time: 57 minutes Marks: 56 marks Comments: Page of 24 A student investigated the rate of the reaction between magnesium and dilute hydrochloric

More information

CHEMISTRY. How Far, How Fast? THURSDAY 11 JANUARY 2007 ADVANCED SUBSIDIARY GCE 2813/01. Morning. Time: 45 minutes

CHEMISTRY. How Far, How Fast? THURSDAY 11 JANUARY 2007 ADVANCED SUBSIDIARY GCE 2813/01. Morning. Time: 45 minutes ADVANCED SUBSIDIARY GCE 83/0 CHEMISTRY How Far, How Fast? THURSDAY JANUARY 007 Morning Additional materials: Scientific calculator Data Sheet for Chemistry (Inserted) Time: 45 minutes INSTRUCTIONS TO CANDIDATES

More information

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Q1. (a) State what is meant by the term activation energy of a reaction. (1) Q1. (a) State what is meant by the term activation energy of a reaction. (c) State in general terms how a catalyst increases the rate of a chemical reaction. The curve below shows the Maxwell Boltzmann

More information

Unit 2. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) heat energy change at constant pressure

Unit 2. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) heat energy change at constant pressure (a) heat energy change at constant pressure This is in the spec but not so well known. Learn it. (b) N 2 (g) + ½O 2 (g) N 2 O(g) (c) (i) D = (bonds broken) (bonds made) = ½(945) + (3/2)(59) 3(278) = 23

More information

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2)

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2) Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. H 2 (g) + Cl 2 (g) 2HCl(g) (a) Define the term activation energy....... Give one reason why the reaction between

More information

C6 Quick Revision Questions

C6 Quick Revision Questions C6 Quick Revision Questions H = Higher tier only All questions apply for combined and separate science Question 1... of 50 List 3 ways the time of a reaction can be measured. Answer 1... of 50 Loss of

More information

Question Answers Acceptable Answers Mark. (2) enzymes. (substance which) speeds up / increases the rate of (a reaction) (1)

Question Answers Acceptable Answers Mark. (2) enzymes. (substance which) speeds up / increases the rate of (a reaction) (1) Answers Acceptable Answers Mark 1 (a)(i) An explanation linking Ignore any reference to enzymes (substance which) speeds up / increases the rate of (a reaction) Ignore changes/alters the rate (but is chemically)

More information

Unit 6 Kinetics and Equilibrium.docx

Unit 6 Kinetics and Equilibrium.docx 6-1 Unit 6 Kinetics and Equilibrium At the end of this unit, you ll be familiar with the following: Kinetics: Reaction Rate Collision Theory Reaction Mechanism Factors Affecting Rate of Reaction: o Nature

More information

Enthalpy changes

Enthalpy changes 2.3.1. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The have less energy than the If an enthalpy change occurs then energy is transferred

More information

FACTFILE: GCE CHEMISTRY

FACTFILE: GCE CHEMISTRY FACTFILE: GCE CHEMISTRY 2.9 KINETICS Learning Outcomes Students should be able to: 2.9.1 recall how factors, including concentration, pressure, temperature and catalyst, affect the rate of a chemical reaction;

More information

3. A forward reaction has an activation energy of 50 kj and a H of 100 kj. The PE. diagram, which describes this reaction, is

3. A forward reaction has an activation energy of 50 kj and a H of 100 kj. The PE. diagram, which describes this reaction, is Kinetics Quiz 4 Potential Energy Diagrams 1. A catalyst increases the rate of a reaction by A. Increasing the concentration of the reactant(s) B. Decreasing the concentration of the reactant(s) C. Increasing

More information

Unit 2: Chemical Kinetics Chemistry 30

Unit 2: Chemical Kinetics Chemistry 30 Practice Questions Section 3.2 Factors Influencing Reaction Rate - Activation Energy 1. Answer the following questions based on the potential energy diagram shown here: a. Does the graph represent an endothermic

More information

2017 Version. Chemistry AS C2.6 Chemical Reactivity

2017 Version. Chemistry AS C2.6 Chemical Reactivity 2017 Version Chemistry AS 91166 C2.6 Chemical Reactivity Achievement Criteria This achievement standard involves demonstrating understanding of chemical reactivity. Rates of Reaction typically involves:

More information

How fast or slow will a reaction be? How can the reaction rate may be changed?

How fast or slow will a reaction be? How can the reaction rate may be changed? Part I. 1.1 Introduction to Chemical Kinetics How fast or slow will a reaction be? How can the reaction rate may be changed? *In order to understand how these factors affect reaction rates, you will also

More information

1.5 Kinetics. Reacting molecules have to collide with enough energy to break the initial bonds, the activation energy.

1.5 Kinetics. Reacting molecules have to collide with enough energy to break the initial bonds, the activation energy. 1.5 Kinetics Collision theory: Reacting molecules have to collide with enough energy to break the initial bonds, the activation energy. Activation energy Activation energy The minimum amount of energy

More information

Answer all the questions.

Answer all the questions. Answer all the questions.. A student investigates the reaction between sodium thiosulfate and hydrochloric acid. Look at the diagram below. It shows the apparatus he uses. After a time he cannot see the

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of chemical reactivity (91166) NCEA Level 2 Chemistry (91166) 2015 page 1 of 6 Assessment Schedule 2015 Chemistry: Demonstrate understanding of chemical reactivity (91166) Evidence Statement Q Evidence Achievement Achievement with Merit

More information

Reactions Rates

Reactions Rates 3.2.2. Reactions Rates Collision theory Reactions can only occur when collisions take place between particles having sufficient energy. The energy is usually needed to break the relevant bonds in one or

More information

21-Jan-2018 Chemsheets A Page 1

21-Jan-2018 Chemsheets A Page 1 www.chemsheets.co.uk 21-Jan-2018 Chemsheets A2 1001 Page 1 SECTION 1 Recap of AS Kinetics What is reaction rate? The rate of a chemical reaction is a measure of how fast a reaction takes place. It is defined

More information

Bond C=O C H C O O H. Use the enthalpy change for the reaction and data from the table to calculate a value for the H H bond enthalpy.

Bond C=O C H C O O H. Use the enthalpy change for the reaction and data from the table to calculate a value for the H H bond enthalpy. Many chemical processes release waste products into the atmosphere. Scientists are developing new solid catalysts to convert more efficiently these emissions into useful products, such as fuels. One example

More information

Q1. A student investigated the rate of reaction between marble and hydrochloric acid.

Q1. A student investigated the rate of reaction between marble and hydrochloric acid. Q. A student investigated the rate of reaction between marble and hydrochloric acid. The student used an excess of marble. The reaction can be represented by this equation. CaCO 3 (s) + 2HC (aq) CaC 2

More information

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve.

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. Q1.(a) In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. The reaction of magnesium with dilute hydrochloric acid is exothermic.

More information

Topic 6 Test Kinetics Wed 4/5/17 [28 marks]

Topic 6 Test Kinetics Wed 4/5/17 [28 marks] Topic 6 Test Kinetics Wed 4/5/17 [28 marks] 1. Consider the reaction between magnesium and hydrochloric acid. Which factors will affect the reaction rate? I. The collision frequency of the reactant particles

More information

KINETICS STUDY GUIDE- Written INTRODUCTION

KINETICS STUDY GUIDE- Written INTRODUCTION Written Kinetics KINETICS STUDY GUIDE- Written Section: What follows is a comprehensive guide to the written component of the Chemistry 12 Provincial exam for the Unit. The questions below are from previous

More information

3.2.2 Kinetics. Effect of temperature. 145 minutes. 145 marks. Page 1 of 22

3.2.2 Kinetics. Effect of temperature. 145 minutes. 145 marks. Page 1 of 22 3.. Kinetics Effect of temperature 145 minutes 145 marks Page 1 of Q1. (a) State what is meant by the term activation energy of a reaction. (b) (c) State in general terms how a catalyst increases the rate

More information

Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered aluminium.

Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered aluminium. Q1.Group 2 metals and their compounds are used commercially in a variety of processes. (a) Strontium is extracted from strontium oxide (SrO) by heating a mixture of powdered strontium oxide and powdered

More information

CHEMISTRY 2813/01 How Far, How Fast?

CHEMISTRY 2813/01 How Far, How Fast? THIS IS A LEGACY SPECIFICATION ADVANCED SUBSIDIARY GCE CHEMISTRY 2813/01 How Far, How Fast? *CUP/T57245* Candidates answer on the question paper A calculator may be used for this paper OCR Supplied Materials:

More information

Question Answer Mark Guidance 1 (a) Method 1: 100% OR (only) one product OR no waste 2 product OR addition (reaction)

Question Answer Mark Guidance 1 (a) Method 1: 100% OR (only) one product OR no waste 2 product OR addition (reaction) 1 (a) Method 1: 100% OR (only) one product OR no waste 2 product OR addition (reaction) ALLOW co-product or by-product for waste product Method 2: < 100% AND two products OR (also) produces NaBr OR (There

More information

İTÜ GELİŞTİRME VAKFI ÖZEL EKREM ELGİNKAN LİSESİ. Term Lesson Unit Subject Date. 2nd Chemistry Unit Review

İTÜ GELİŞTİRME VAKFI ÖZEL EKREM ELGİNKAN LİSESİ. Term Lesson Unit Subject Date. 2nd Chemistry Unit Review İTÜ GELİŞTİRME VAKFI ÖZEL EKREM ELGİNKAN LİSESİ Term Lesson Unit Subject Date 2nd Chemistry Unit 5-6-7 Review 25.04-03.05 2015 Name- Surname Class: 10-IB Number: 1. What is the function of iron in the

More information

Kinetics & Equilibrium

Kinetics & Equilibrium Kinetics & Equilibrium Name: Essential Questions How can one explain the structure, properties, and interactions of matter? Learning Objectives Explain Collision Theory Molecules must collide in order

More information

In order for two molecules to react, they must with each other. When they collide they transfer among themselves.

In order for two molecules to react, they must with each other. When they collide they transfer among themselves. Chemistry 12 Reaction Kinetics II Name: Date: Block: 1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams Collision Theory (Kinetic Molecular Theory) In order for two molecules to react,

More information

NCEA COLLATED QUESTIONS ON RATES OF REACTION

NCEA COLLATED QUESTIONS ON RATES OF REACTION NCEA COLLATED QUESTIONS ON RATES OF REACTION Previously part of expired AS 90301, now part of 91166, Demonstrate understanding of chemical reactivity 2012 (91166 exam) When dilute hydrochloric acid, HCl(aq),

More information

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS CHEMICAL REACTIONS Occurs when matter combines or breaks apart to produce new kinds of matter with different properties with a change in energy. EVIDENCE FOR

More information

Unit 1 ~ Learning Guide Name:

Unit 1 ~ Learning Guide Name: Unit 1 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

CHEMICAL KINETICS (RATES OF REACTION)

CHEMICAL KINETICS (RATES OF REACTION) Kinetics F322 1 CHEMICAL KINETICS (RATES OF REACTION) Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Controlling the Rate E a Page 1 of 18 Learning Outcomes Controlling the Rate Circle a face to show how much understanding you have

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Exampro GCSE Chemistry

Exampro GCSE Chemistry Exampro GCSE Chemistry C Chapter 4 Higher Name: Class: Author: Date: Time: 59 Marks: 59 Comments: Page of 0 Q. The picture shows a lump of phosphate rock. Rob Lavinsky, irocks.com CC-BY-SA-3.0 [CC-BY-SA-3.0],

More information

A mass spectrometer can be used to distinguish between samples of butane and propanal. The table shows some precise relative atomic mass values.

A mass spectrometer can be used to distinguish between samples of butane and propanal. The table shows some precise relative atomic mass values. Butane and propanal are compounds with M r = 58.0, calculated using data from your Periodic Table. (a) A mass spectrometer can be used to distinguish between samples of butane and propanal. The table shows

More information

Q1. (a) Define the term activation energy for a chemical reaction. (2)

Q1. (a) Define the term activation energy for a chemical reaction. (2) Q1. (a) Define the term activation energy for a chemical reaction. (b) Draw, with labelled axes, a curve to represent the Maxwell Boltzmann distribution of molecular energies in a gas. Label this curve

More information

(04) WMP/Jan11/CHEM2

(04) WMP/Jan11/CHEM2 Kinetics 4 2 The diagram below shows a Maxwell Boltzmann distribution for a sample of gas at a fixed temperature. E a is the activation energy for the decomposition of this gas. Number of molecules with

More information

Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three of the methods shown below will increase the rate of this reaction.

Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three of the methods shown below will increase the rate of this reaction. Q. The picture shows a lump of phosphate rock. Rob Lavinsky, irocks.com CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three

More information

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1?

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1? 72. Consider the following experimental results: Experiment 1 Experiment 2 2+ - - 4 2 2 4 aq Reactants Fe ( aq) + MnO4 ( aq) MnO ( aq) + H C O ( ) Temperature 20 C 40 C Concentration 0. 5 M solutions 1.

More information

Chemical Reaction (IGCSE Chemistry Syllabus )

Chemical Reaction (IGCSE Chemistry Syllabus ) Chemical Reaction (IGCSE Chemistry Syllabus 2016-2018) Collision Theory o Collision of particles are needed for a chemical reaction to take place o Successful collision: particles have enough activation

More information

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction

CHAPTER 17 REVIEW. Reaction Kinetics. Answer the following questions in the space provided. Energy B A. Course of reaction CHAPTER 17 REVIEW Reaction Kinetics SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Refer to the energy diagram below to answer the following questions. D Energy C d c d

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 33

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 33 .. Energetics Enthalpy Change 6 minutes 59 marks Page of M. (a) (Enthalpy change) when mol () of a compound is formed from its constituent elements () in their standard states () Allow energy or heat,

More information

Welcome to Navigate Powered by NIDES Chemistry 12! Please note that the First Assignment is a requirement to be registered in the course.

Welcome to Navigate Powered by NIDES Chemistry 12! Please note that the First Assignment is a requirement to be registered in the course. Welcome to Navigate Powered by NIDES Chemistry 12! Please note that the First Assignment is a requirement to be registered in the course. Legal last name: First name: Student Email: Cell Phone #: Other

More information

Changes & Chemical Reactions. Unit 5

Changes & Chemical Reactions. Unit 5 Changes & Chemical Reactions Unit 5 5 Types of Chemical Reactions Double Decomposition Replacement 1 2 3 4 5 Synthesis Single Replacement Combustion Continue Synthesis 2H 2 + O 2 2H 2 O Menu Decomposition

More information

Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process.

Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process. Q.(a) Nitrogen and hydrogen are passed over iron to produce ammonia in the Haber Process. Balance the equation for the reaction. N 2 + H 2 NH 3 What is iron used for in the Haber process? M.(a) N 2 + 3

More information

C8 Rates and Equilibrium Exam Pack and Mark Scheme

C8 Rates and Equilibrium Exam Pack and Mark Scheme C8 Rates and Equilibrium Exam Pack and Mark Scheme Name: Class: Date: Time: 7 minutes Marks: 7 marks Comments: Page of 46 Pieces of zinc react with dilute acid to form hydrogen gas. The graph shows how

More information

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments:

Name: C4 TITRATIONS. Class: Question Practice. Date: 97 minutes. Time: 96 marks. Marks: GCSE CHEMISTRY ONLY. Comments: C4 TITRATIONS Question Practice Name: Class: Date: Time: 97 minutes Marks: 96 marks Comments: GCSE CHEMISTRY ONLY Page of 3 Sodium hydroxide neutralises sulfuric acid. The equation for the reaction is:

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Practice Test: Energy and Rates of Reactions

Practice Test: Energy and Rates of Reactions Practice Test: Energy and Rates of Reactions NAME: /65 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (20 marks) 1. What is the symbol for

More information

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst?

Kinetics & Equilibrium Review Packet. Standard Level. 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Kinetics & Equilibrium Review Packet Standard Level 1. Which quantities in the enthalpy level diagram are altered by the use of a catalyst? Enthalpy I II III Time A. I and II only B. I and III only C.

More information

Rates. Specification points. Year 10 - Rates of Reaction

Rates. Specification points. Year 10 - Rates of Reaction Rates Specification points Year 10 - Rates of Reaction Calculating rates of reactions The rate of a chemical reaction can be found by measuring the quantity of a reactant used or the quantity of product

More information

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time Name answer key period IB topic 6 Kinetics 1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time b. the reaction between C

More information

c. Methane and oxygen react to form carbon dioxide and water

c. Methane and oxygen react to form carbon dioxide and water Name: Date: Period: REVIEW CHAPTERS 10 AND 18 1. Identify the type of each of the following reactions: a. 2Mg + O 2 2 MgO Synthesis b. Fe + CuSO 4 FeSO 4 + Cu Single-Replacement (SR) c. CaCO 3 CaO + CO

More information

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water.

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water. 10. Group 2 Atomic radius Atomic radius increases down the Group. As one goes down the group, the atoms have more shells of electrons making the atom bigger. Melting points Down the group the melting points

More information

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask. 1 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed, a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through. Na 2 S 2 O 3 (aq) + 2HCl (aq) S(s)

More information

line goes up before it goes down 1 energy given out correctly labelled 1 activation energy labelled correctly 1

line goes up before it goes down 1 energy given out correctly labelled 1 activation energy labelled correctly 1 M.(a) line goes up before it goes down energy given out correctly labelled activation energy labelled correctly (b) electrostatic force of attraction between shared pair of negatively charged electrons

More information

Hydrogen is produced in industry from methane and steam in a two-stage process.

Hydrogen is produced in industry from methane and steam in a two-stage process. Hydrogen is produced in industry from methane and steam in a two-stage process. (a) In the first stage, carbon monoxide and hydrogen are formed. The equation for this reaction is CH 4 (g) + H 2 O(g) CO(g)

More information

Mark Scheme (Results)

Mark Scheme (Results) Mark Scheme (Results) Summer 08 Pearson Edexcel International GCSE In Chemistry (4CH0) Paper C Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK s largest awarding

More information

Calculating Reaction Rates 1:

Calculating Reaction Rates 1: Calculating Reaction Rates 1: 1. A 5.0g sample of magnesium reacts complete with a hydrochloric acid solution after 150 s. Express the average rate of consumption of magnesium, in units of g/min. 2. How

More information

D. Bond making is endothermic and releases energy. (Total 1 mark) Cu(s) + 2. D (Total 1 mark)

D. Bond making is endothermic and releases energy. (Total 1 mark) Cu(s) + 2. D (Total 1 mark) 1. Which statement about bonding is correct? A. Bond breaking is endothermic and requires energy. B. Bond breaking is endothermic and releases energy. C. Bond making is exothermic and requires energy.

More information

Rates, Temperature and Potential Energy Diagrams Worksheet

Rates, Temperature and Potential Energy Diagrams Worksheet SCH4U1 ER10 Name: Date: Rates, Temperature and Potential Energy Diagrams Worksheet Part 1: 1. Use the potential energy diagram shown to the right to answer the following: a. Label the axis. y axis is potential

More information

first later later still successful collision ( reaction ) low conc. both high conc. blue high conc. both low conc. red

first later later still successful collision ( reaction ) low conc. both high conc. blue high conc. both low conc. red Collision theory Basic idea (basic premise) http://www.chem.iastate.edu/group/greenbowe/sections/projectfolder/animations/no+o3singlerxn.html - before molecules can react, they must collide. H 2 + I 2

More information

M1 (could be scored by a correct mathematical expression) M1 ΔH = ΣΔH f (products) ΣΔH f (reactants) OR a correct cycle of balanced equations

M1 (could be scored by a correct mathematical expression) M1 ΔH = ΣΔH f (products) ΣΔH f (reactants) OR a correct cycle of balanced equations M.(a) M (could be scored by a correct mathematical expression) M ΔH = ΣΔH f (products) ΣΔH f (reactants) a correct cycle of balanced equations M2 = 5( 635) ( 560) = 375 + 560 (This also scores M) M3 =

More information

3.2.1 Energetics. Hess's Law. 183 minutes. 181 marks. Page 1 of 21

3.2.1 Energetics. Hess's Law. 183 minutes. 181 marks. Page 1 of 21 .. Energetics Hess's Law 8 minutes 8 marks Page of M. (a) (Enthalpy change) when mol () of a compound is formed from its constituent elements () in their standard states () Allow energy or heat, Ignore

More information

Reaction Kinetics Multiple Choice

Reaction Kinetics Multiple Choice Reaction Kinetics Multiple Choice January 1999 1. Consider the reaction: Ca (s) + 2H 2 O (l) Ca(OH) 2 (aq) + H 2 (g) At a certain temperature, 2.50 g Ca reacts completely in 30.0 seconds. The rate of consumption

More information

Unit I: Reaction Kinetics Introduction:

Unit I: Reaction Kinetics Introduction: Chemistry 12 Unit I: Reaction Kinetics Introduction: Kinetics Definition: All reactions occur at different rates Examples: Slow Reactions Fast Reactions Chemists need to understand kinetics because sometimes

More information

MgO. progress of reaction

MgO. progress of reaction Enthalpy Changes Enthalpy is chemical energy, given the symbol H. We are interested in enthalpy changes resulting from the transfer of energy between chemical substances (the system) and the surroundings

More information

Enthalpy Changes. Note: 1 calorie = 4.2 Joules

Enthalpy Changes. Note: 1 calorie = 4.2 Joules Enthalpy Changes All substances contain chemical energy, called enthalpy. Like any energy it is measured in Joules (previously energy was measured in Calories). When reactions happen, energy is given out

More information

What does rate of reaction mean?

What does rate of reaction mean? Junior Science What does rate of reaction mean? It is not how much of a product is made, but instead how quickly a reaction takes place. The speed of a reaction is called the rate of the reaction. What

More information

Chemical reactions. C2- Topic 5

Chemical reactions. C2- Topic 5 Chemical reactions C2- Topic 5 What is a chemical reaction? A chemical reaction is a change that takes place when one or more substances (called reactants) form one or more new substances (called products)

More information

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 16

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 16 3.2.2 Kinetics Maxwell Boltzmann distribution 128 minutes 128 marks Page 1 of 16 Q1. The diagram shows the Maxwell Boltzmann distribution for a sample of gas at a fixed temperature. E a is the activation

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information

Name: Rate of reaction. Class: Foundation revision questions. Date: 47 minutes. Time: 46 marks. Marks: Comments: Page 1 of 21

Name: Rate of reaction. Class: Foundation revision questions. Date: 47 minutes. Time: 46 marks. Marks: Comments: Page 1 of 21 Rate of reaction Foundation revision questions Name: Class: Date: Time: 47 minutes Marks: 46 marks Comments: Page of 2 (a) The figure below represents the reaction of sulfur dioxide with oxygen. Oxygen

More information

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases

1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 1. As the number of effective collisions between reacting particles increases, the rate of reaction (1) decreases (3) remains the same (2) increases 2. The energy needed to start a chemical reaction is

More information

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction Name Chem 163 Section: Team Number: ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction (Reference: 16.5 16.6 & 16.8 Silberberg 5 th edition) Why do reaction rates increase as

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

ANSWERS AND MARK SCHEMES QUESTIONSHEET 1

ANSWERS AND MARK SCHEMES QUESTIONSHEET 1 QUESTIONSHEET 1 (i) scales 1 plotting all the points accurately 1 drawing a smooth curve ignoring the 6 min point 1 (ii) I curve drawn to the left of curve A 1 curve to start at 71.00 g and to finish at

More information

CHAPTER 9: Rate of Reaction

CHAPTER 9: Rate of Reaction CHAPTER 9: Rate of Reaction 9.1 Rate of Reaction 9.2 Factors Affecting Rate of Reaction 9.3 Catalysis Learning outcomes: (a) explain and use the terms: rate of reaction, activation energy and catalysis.

More information

7.4 Potential Energy Diagrams

7.4 Potential Energy Diagrams Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations Remember: 7.4 Potential Energy Diagrams Chemical reactions can react in both the and directions All chemical reactions need Reactions can either

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

4. Which of the following equations represents an endothermic reaction?

4. Which of the following equations represents an endothermic reaction? Chem 12 Practice Kinetics Test 1. Consider the following reaction mechanism: step 1: M + X MX step 2: MX + A D + X The chemical species MX is a(n) A. catalyst B. inhibitor C. final product D. reaction

More information

I.1 REACTION KINETICS

I.1 REACTION KINETICS I.1 REACTION KINETICS KEY QUESTION: Why do reactions occur and how do you control them? REACTION KINETICS is the study of the REACTION RATES Express REACTION RATE as Example 1: The rate of a reaction is

More information

I. Multiple Choice 20

I. Multiple Choice 20 Name: Date: Chemistry 30 Rates of Reaction: Chemical Kinetics 50 I. Multiple Choice 20 1. The rate determining step for a complex reaction is the one which is A. fastest C. slowest B. last in the sequence

More information

Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions

Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions Chapter Introduction Lesson 1 Understanding Chemical Reactions Lesson 2 Types of Chemical Reactions Lesson 3 Energy Changes and Chemical Reactions Chapter Wrap-Up Changes in Matter A physical change does

More information

Name Unit 10 Practice Test

Name Unit 10 Practice Test 1. Increasing the temperature increases the rate of a reaction by A) lowering the activation energy B) increasing the activation energy C) lowering the frequency of effective collisions between reacting

More information

Advanced Subsidiary Unit 1: The Core Principles of Chemistry

Advanced Subsidiary Unit 1: The Core Principles of Chemistry Write your name here Surname Other names Edexcel GCE Centre Number Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry Candidate Number Monday 23 May 2011 Afternoon Time: 1 hour 30 minutes

More information