Waste and Materials characterization systems

Size: px
Start display at page:

Download "Waste and Materials characterization systems"

Transcription

1 Waste and Materials characterization systems Machines to help you Pete Burgess September 2013

2 Waste and Materials' characterization systems We ve covered surface contamination hand held measurements earlier. Now for machines! Machines have limitations People make mistakes Clearance monitoring is often very boring Use people where initiative and imagination is needed But generally not for clearance See for lots of help 2

3 Fundamentals Assess its potential radioactive content Is it clean? Clean can only come from history We must be able to make a good case that there is no chance of contamination or activation because of where it has been or how it was protected. Very difficult for anything of any age Could it be contaminated? Could it be activated? 3

4 A hierarchy of radionuclides Bq/g (head of chain) upwards Characteristics Natural chains in equilibrium with the head of chain Alpha emitters with long half life decay products Very energetic gamma emitters Energetic beta emitters Medium energy beta + gamma emitters Less energetic beta emitters of biological significance Short half life lower energy gamma emitters Low energy, short half life beta emitters Very low energy, longer half life beta emitters Very low energy X-ray emitters Very short life nuclides Examples Ra-226+ Pu-239 and Am-241 Co-60 Sr-90 + Y-90 Cs Ba-137m C-14 Co-57 Pm-147 Ni-63, tritium Fe-55 Cs-134m 4

5 Apparent anomalies in the RP122 derived values Limiting activity values were calculated using a set of models covering volumes to be disposed of and treatment methods If the value was below 3 x 10 n it was rounded down. If above, it was rounded up Cs-137 went to 1 Bq/g Cs-134 to 0.1 Bq/g Twice the gamma energy but a much shorter half life IAEA RS-G-1.7 value is 0.1 for both The rules may have to change in the future Major implications for fission waste 5

6 The problems Contamination Soft waste Radiochemistry residues Glove boxes Ventilation ducts Pond furniture, water, sludge and concrete Filter media Tools Railway ballast from flask loading areas Activation Reactor support structures Top gas ducts Accelerator components 6

7 Rethink the fingerprint Don t think activity concentration, think fraction of exclusion level Take the fingerprint Calculate what 1 Bq/g would represent. Rework in terms of fraction of the exclusion level for each nuclide = activity/exclusion level Sum to find out what 1 Bq/g would represent 7

8 Alpha monitoring For materials with curved surfaces and for pipes and complicated shapes 8

9 Alpha monitoring IonSens TM Cut Pipe For materials with curved surfaces and for pipes and complicated shapes First Pipe Chamber (Open)

10 How does it work? It blows air through and over the object in question Alpha activity generates ion tracks These disperse quite effectively in the air stream and travel down the machine Collected and displayed as a current Maximum Missable Activity (MMA) can be as low as 10 Bq for a 2 minute measurement on a 6 m long 50 mm id pipe Surfaces have to be clean Very poor sales, mainly lack of manufacturer enthusiasm But we think it s brilliant for plants with more than a few % alpha 10

11 Side View of IonSens TM Pipe Monitor Front End Control Computer Ion Check Filter Source Actuator Monitoring Chamber Monitoring Chamber Fan Gag Detector Valve Plates HEPA Filter Electronics

12 Parallel plate detector PTFE Insulators Aluminium Plates Metallic Spacers Threaded Brass Rods

13 Potential beta contamination Thin materials are difficult to clearance monitor Coveralls are 50 mg/cm 2 approximately A 1 Bq/g limit translates to 0.05 Bq/cm 2 Using position sensitive proportional counters, multiple proportional counters or multiple scintillation detectors Some with gamma sensitivity q 13

14 Beta monitoring table Basically half an exit monitor Lay the objects on the table Start the cycle If acceptable, turn over and repeat 14

15 Gamma detection The favourite option! Scaled from non-res to hi-res Masses from a few kg to tonnes Examples: Hand held sodium iodide detectors Bucket monitors Box monitors with plastic scintillators Box monitors with sodium iodide detectors Drum and bag monitors with sodium iodide or other inorganic scintillator detectors Drum and bag monitors with hpge detectors Fundamentals Defined geometry Measurement of mass An energetic gamma as a relatively stable fingerprint fraction 15

16 Bucket monitors For the monitoring of soil, crushed concrete etc Ra-226 waste outside the nuclear industry Cs-137 (generally) within Averaging mass is a fraction of a tonne Green light is clear, red light is not clear Data logged Clever bit is making it excavator resistant

17 Calibration? MCNP model taking account of: The sample shape The matrix The contaminant The bucket wall material and thickness Confirmed using point source experiments and proper gamma spectrometric measurements on well mixed samples Two 76 mm x 76 mm sodium iodide detectors in gross counting mode Some side shielding Relatively high levels of Compton scatter encourage this Needs a reference background sample for each matrix Set to give 95 % rejection probability for a load at exactly the desired limit But the most important requirement is ROBUSTNESS 17

18 Plastic scintillator based box monitors Four or six sides made from 50 mm thick plastic scintillator Thick lead shielding to minimise background Gross counting with only rejection of very high energy (cosmic) and very low energy (electronic noise) events in the photomultipliers Good for intrinsically low background materials Calibration by MCNP or mockup 18

19 Weaknesses and strengths? Not good with high background materials Very heavy Needs careful moving as damage to the hinges or the slabs of shielding will result in an increase in background Need to try to control weights of samples to a degree BUT! Very easy to use Very sensitive for Co-60 and Cs-137 Can have 2 doors to act as posting route Not too expensive

20 Big brother Multiple detectors give positional information for any active areas Built-in rails or conveyor Often built in weigh scales Maximum Missable Activity for a 600 kg load and 60 seconds counting is a few 100 Bq for Cs-137 and Co-60 Tiny fraction of the exclusion level Automated 20

21 Move up in energy resolution Use the same detectors and mechanics as the bucket monitor This time use energy counting windows or (increasingly) full spectrometry Allows better resistance to legitimate natural activity Particularly K-40 in clay pipes, bricks and tiles 1.41 MeV 11 % gamma emitter found at Bq/g levels in many materials Gives approximately the same gross gamma count rate as materials at the Out of Scope level Identify K-40 concentration from its photopeak Predict the Compton scattered component under the Cs-137 peak Subtract to give net Cs

22 Bag monitors using hpge detectors 22

23 hpge detectors Large germanium diode large area gives high fraction of emissions intercepted, large depth gives good photodetection probability A very large intrinsic volume, i.e. a volume that behaves as a solid state ion chamber Radiation interactions generate holes and free electrons About 3 ev per pair means a large number of ion pairs generated Gives a good intrinsic statistical variability compared to scintillation crystals Three advantages A very good estimate of the photopeak energies A very good capacity to differentiate between similar energies BUT, for clearance, the huge advantage that the area in the continuum under the peak is about 1/60 th of that from a scintillator giving a limit of detection which is perhaps 8 times better from this cause alone. 23

24 hpge detector components 24

25 Size etc Dimensions of cm Kept at low temperature to ensure crystal quality and minimise electronic noise Liquid nitrogen or refrigerated 25

26 Bag monitor use Known volume (ish) Weighed to determine mass and rotated to give an average measurement Known matrix soil, concrete, sludge etc Detector fitted with collimator to reduce background Proprietary software used to calculate response, such as Canberra s ISOCS 26

27 Limitations Dealing with gross non-uniformity such as point sources Often used in open areas such as waste stores Hence influenced by local background and other waste bags Typically a 5 minute counting time will give an acceptable false negative/false positive balance at exclusion levels for a gamma dominated fingerprint 27

28 Shielded drum monitors Same technology can have the advantage of heavy local shielding Reduced mass but much lower background Much better maximum missable activity for any counting time Can have an installed pop-up source for transmission measurements through the waste Allows very good selfattenuation correction 28

29 Example Four nuclides Co-60 at 10 % and 0.1 Bq/g Ni-63 at 25 %, Fe-55 at 30 % and tritium at 35 %, all at 100 Bq/g 1 Bq/g = 0.1/ /100 = units of exclusion Limit then equals 0.99 Bq/g Co-60 limit is then just less than 0.1 Bq/g Easy measurement for many materials 29

30 Higher levels of complication Tomographic machines which produce a waste density profile and use this to produce point correction Multiple detector machines each with a collimator which defines the volume monitored Machines which count neutrons for the assessment of potentially fissile waste Direct neutron counters which potentially will detect any neutron Limitations are the (alpha,n) reaction where any alpha emission may generate a neutron and the presence of any neutron absorbers Better are coincidence counters, where coincidence detection is used to identify fission neutrons (generally in pairs) But sensitivity is always low Machines which use neutron irradiation to stimulate fission 30

31 Gate monitors - the final line of defence Everything leaving the site has been characterised either by direct monitoring or by history - out of a non-active area therefore not active Check! Why? - fly tipping, breakdown of procedures, sheer bad luck.

32 Fundamental points 5 The vehicle monitor is not for measurement, it s there to detect

33 Gate monitors Originally designed mainly to look for objects in scrap steel - plenty of things end up in scrap steel Mexican chair legs and Taiwanese steel beams (Co-60) Irish Steel/RTZ zinc+lead concentrate and Spanish discharges to air (Cs-137) Avesta contaminated slag (Pu-238) Now adapted for security monitoring

34 Gate monitors Background runs at about 2000cps. Smallest likely Cs-137 source to be detected will be 10s of kbq. Detection depends critically on where it is in the load The more the excess count rate is on one detector, the better the detection. They will also detect bulk activity such as low level steel activation giving Co-60 and generalised low level surface gamma contamination. They will also detect tiles, granite road metal, fertiliser, toilets, the more active bricks and drivers after I-131 therapy.

35 Land in-situ Large sodium iodide detectors on a slow moving vehicle Alarm is on gross count rate or window ratio Not enough time to collect a proper spectrum 1 metre measurement pitch Alarm, back up slightly, accumulate spectrum, recover object 35

36 Summary Identify target nuclides Determine activity concentration limits Identify legitimate background nuclides Review possible measurement methods, including time and cost for each Predict performance Test Review fingerprint regularly PUBLISH SO WE CAN ALL LEARN 36

Pete Burgess, Nuvia Limited. Clearance and exemption

Pete Burgess, Nuvia Limited. Clearance and exemption Pete Burgess, Nuvia Limited Clearance and exemption The clearance, exclusion and exemption process Most of the UK nuclear industry (and many other organisations) refer to the Clearance and Exemption Working

More information

Clearance Monitoring. Chris Goddard.

Clearance Monitoring. Chris Goddard. Clearance Monitoring Chris Goddard Outline What is Clearance? Clearance Limits around Europe Measurement techniques Plastic scintillators Long Range Alpha Detection Example systems Thermo SAM12 VF FRM-2

More information

Materials and waste characterisation Dealing with difficult waste

Materials and waste characterisation Dealing with difficult waste Materials and waste characterisation Dealing with difficult waste Pete Burgess 24 March 2010 CEWG NICOP A UK success story A simple guide to sentencing waste Much easier to use than MARSSIM NOT tied to

More information

Characterization Survey Techniques and Some Practical Feedback

Characterization Survey Techniques and Some Practical Feedback International Atomic Energy Agency Characterization Survey Techniques and Some Practical Feedback Lawrence E. Boing R 2 D 2 Project Workshop December 3-7, 2007 Manila, The Philippines 3/17/2008 NSRW/WSS

More information

Measurement of induced radioactivity in air and water for medical accelerators

Measurement of induced radioactivity in air and water for medical accelerators Measurement of induced radioactivity in air and water for medical accelerators K. Masumoto 1, K. Takahashi 1, H. Nakamura 1, A. Toyoda 1, K. Iijima 1, K. Kosako 2, K. Oishi 2, F. Nobuhara 1 High Energy

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

5) Measurement of Nuclear Radiation (1)

5) Measurement of Nuclear Radiation (1) 5) Measurement of Nuclear Radiation (1) Registration of interactions between nuclear radiation and matter Universal principle: Measurement of the ionisation Measurement of the ionisation measurement of

More information

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures RADIOLOGICAL CHARACTERIZATION Laboratory Procedures LORNA JEAN H. PALAD Health Physics Research Unit Philippine Nuclear Research Institute Commonwealth Avenue, Quezon city Philippines 3-7 December 2007

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

NUCL 3000/5030 Laboratory 2 Fall 2013

NUCL 3000/5030 Laboratory 2 Fall 2013 Lab #2: Passive Gamma Spec Measurements in Decoding Natural Radioactivity in SLC Area Objectives a. Learn basics of gamma spectroscopy b. Learn the equipment in Counting stations #4, #5 and #8 c. Apply

More information

arxiv:nucl-ex/ v2 21 Jul 2005

arxiv:nucl-ex/ v2 21 Jul 2005 Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration arxiv:nucl-ex/0506029v2 21 Jul 2005 Cong Tam Nguyen and József Zsigrai Institute of Isotopes of the Hungarian Academy of Sciences

More information

Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation

Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation Characterising NORM hazards within subsea oil and gas facilities. Daniel Emes SA Radiation What is in Oil and Gas NORM? Naturally Occurring Radioactive Material (NORM) can be characterized into many forms.

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48 Introduction to Environmental Measurement Techniques 2016 Radioactivity Dana Pittauer (dpittauer@marum.de) 1of 48 Introduction Radioisotopes are of interest in environmental physics for several reasons:

More information

ISOCS / LabSOCS. Calibration software for Gamma Spectroscopy

ISOCS / LabSOCS. Calibration software for Gamma Spectroscopy ISOCS / LabSOCS Calibration software for Gamma Spectroscopy Counts Setup Hardware Peak Shaping Parameters Rise Time Flat Top Pole-zero Number of Channels Signal Gain Setting up a detector for measurement

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Determination of Components of Fuel Matrix in Water and in Bottom Slimes in the MR Reactor Ponds in NRC Kurchatov Institute 14038 Alexey Stepanov *, Iurii Simirskii *, Ilya Semin *, Anatoly Volkovich *

More information

Radiation Detection. 15 th Annual OSC Readiness Training Program.

Radiation Detection. 15 th Annual OSC Readiness Training Program. Radiation Detection 15 th Annual OSC Readiness Training Program www.oscreadiness.org GM Detectors 15 th Annual OSC Readiness Training Program www.oscreadiness.org 1 A closer look 15 th Annual OSC Readiness

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

The Best Gamma-Ray Detector

The Best Gamma-Ray Detector /sec The Best Gamma-Ray Detector What is the best detector for gamma-ray spectroscopy? Amptek, Inc. provides signal processing electronics which can be used with a variety of detectors (some available

More information

SECTION 8 Part I Typical Questions

SECTION 8 Part I Typical Questions SECTION 8 Part I Typical Questions 1. For a narrow beam of photons, the relaxation length is that thickness of absorber that will result in a reduction of in the initial beam intensity. 1. 1/10. 2. 1/2.

More information

12 Moderator And Moderator System

12 Moderator And Moderator System 12 Moderator And Moderator System 12.1 Introduction Nuclear fuel produces heat by fission. In the fission process, fissile atoms split after absorbing slow neutrons. This releases fast neutrons and generates

More information

European Project Metrology for Radioactive Waste Management

European Project Metrology for Radioactive Waste Management European Project Metrology for Radioactive Waste Management Petr Kovar Czech Metrology Institute Okruzni 31 638 00, Brno, Czech republic pkovar@cmi.cz Jiri Suran Czech Metrology Institute Okruzni 31 638

More information

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440

Jazan University College of Science Physics Department. Lab Manual. Nuclear Physics (2) 462 Phys. 8 th Level. Academic Year: 1439/1440 Jazan University College of Science Physics Department جاهعة جازان كلية العل وم قسن الفيزياء Lab Manual Nuclear Physics (2) 462 Phys 8 th Level Academic Year: 1439/1440 1 Contents No. Name of the Experiment

More information

AEPHY: Nuclear Physics Practise Test

AEPHY: Nuclear Physics Practise Test AEPHY: Nuclear Physics Practise Test Name: OVERALL: Additional 1 mark for units and significant figures. 1. Complete the table below: (2 marks) (63 marks + overall = 64 marks) Element Nuclide Atomic Number

More information

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation.

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation. 1 The physics department in a college has a number of radioactive sources which are used to demonstrate the properties of ionising radiations. The sources include Am-241 which emits alpha radiation, Sr-90

More information

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e -

Interaction of the radiation with a molecule knocks an electron from the molecule. a. Molecule ¾ ¾ ¾ ion + e - Interaction of the radiation with a molecule knocks an electron from the molecule. radiation a. Molecule ¾ ¾ ¾ ion + e - This can destroy the delicate balance of chemical reactions in living cells. The

More information

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy Acoustics and Ionising Radiation Formulation and Strategy 13 November 2008 Alan DuSautoy Contents What is the future of Programme Formulation? What is Rolling Formulation? Programme Overview Roadmaps Future

More information

QUALIFYING THE ZEUS SYSTEM FOR VERIFICATION OF GIC ROOM TRASH FROM RADIATION CONTROLLED AREAS AT LANL. S. C. Myers Los Alamos National Laboratory

QUALIFYING THE ZEUS SYSTEM FOR VERIFICATION OF GIC ROOM TRASH FROM RADIATION CONTROLLED AREAS AT LANL. S. C. Myers Los Alamos National Laboratory QUALIFYING THE ZEUS SYSTEM FOR VERIFICATION OF GIC ROOM TRASH FROM RADIATION CONTROLLED AREAS AT LANL S. C. Myers Los Alamos National Laboratory ABSTRACT Los Alamos National Laboratory (LANL) radiological

More information

Characterization of Large Structures & Components

Characterization of Large Structures & Components Structures & Components KEY BENEFITS Key Drivers: Lack of good knowledge about the position, the identification and the radiological specification of contamination on or inside large components. Significant

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer

1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer 1220 QUANTULUS The Ultra Low Level Liquid Scintillation Spectrometer PerkinElmer LAS (UK) Ltd, Chalfont Rd, Seer Green, Beaconsfield, Bucks HP9 2FX tel: 0800 896046 www.perkinelmer.com John Davies January

More information

SLAC Metal Clearance Program and Progress

SLAC Metal Clearance Program and Progress 1 SLAC Metal Clearance Program and Progress James Liu, Jim Allan, Ryan Ford, Ludovic Nicolas, Sayed Rokni and Henry Tran Radiation Protection Department SLAC National Accelerator Laboratory, USA RadSynch,

More information

A MONTE CARLO SIMULATION OF COMPTON SUPPRESSION FOR NEUTRON ACTIVATION ANALYSIS. Joshua Frye Adviser Chris Grant 8/24/2012 ABSTRACT

A MONTE CARLO SIMULATION OF COMPTON SUPPRESSION FOR NEUTRON ACTIVATION ANALYSIS. Joshua Frye Adviser Chris Grant 8/24/2012 ABSTRACT A MONTE CARLO SIMULATION OF COMPTON SUPPRESSION FOR NEUTRON ACTIVATION ANALYSIS Joshua Frye Adviser Chris Grant 8/24/2012 ABSTRACT A Monte Carlo simulation has been developed using the Geant4 software

More information

PRODUCTS FOR EDUCATION AND TRAINING

PRODUCTS FOR EDUCATION AND TRAINING PRODUCTS FOR EDUCATION AND TRAINING This section gives detailed information about products to support training in radiation protection, applications of radioactivity and handling radioactive materials.

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2 Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2 S.B. Hong, H.R. Kim, K.H. Chung, K.H. Chung, J.H. Park Korea Atomic Energy Research Institute

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

What do we know from GCSE?

What do we know from GCSE? Radioactivity jessica.wade08@imperial.ac.uk www.makingphysicsfun.com Department of Physics & Centre for Plastic Electronics, Imperial College London Faculty of Natural & Mathematical Sciences, King s College

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

Effect of Co-60 Single Escape Peak on Detection of Cs-137 in Analysis of Radionuclide from Research Reactor. Abstract

Effect of Co-60 Single Escape Peak on Detection of Cs-137 in Analysis of Radionuclide from Research Reactor. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 Effect of Co-60 Single Escape Peak on Detection of Cs-137 in Analysis of Radionuclide from Research Reactor

More information

IdentiFINDER Digital Hand Held Spectrometer & Dose Rate Meter for Portable Applications

IdentiFINDER Digital Hand Held Spectrometer & Dose Rate Meter for Portable Applications fire IdentiFINDER Digital Hand Held Spectrometer & The world s smallest spectrometer and dose rate meter designed for portable applications. safety security identifinder - CH (yellow) CZT and neutron detector

More information

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB

Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB Activation Calculation for a Fusion-driven Sub-critical Experimental Breeder, FDEB K. M. Feng (Southwestern Institute of Physics, China) Presented at 8th IAEA Technical Meeting on Fusion Power Plant Safety

More information

WM2016 Conference, March 6 10, 2016, Phoenix, Arizona, USA. Recovering New Type of Sources by Off-Site Source Recovery Project for WIPP Disposal-16604

WM2016 Conference, March 6 10, 2016, Phoenix, Arizona, USA. Recovering New Type of Sources by Off-Site Source Recovery Project for WIPP Disposal-16604 Recovering New Type of Sources by Off-Site Source Recovery Project for WIPP Disposal-16604 Ioana Witkowski, Anthony Nettleton, Alex Feldman Los Alamos National Laboratory INTRODUCTION TO OSRP ACTIVITIES

More information

Radioactivity. L 38 Modern Physics [4] Hazards of radiation. Nuclear Reactions and E = mc 2 Einstein: a little mass goes a long way

Radioactivity. L 38 Modern Physics [4] Hazards of radiation. Nuclear Reactions and E = mc 2 Einstein: a little mass goes a long way L 38 Modern Physics [4] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity, halflife carbon dating Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Georgia Institute of Technology. Radiation Detection & Protection (Day 3) Georgia Institute of Technology The George W. Woodruff School of Mechanical Engineering Nuclear & Radiological Engineering/Medical Physics Program Ph.D. Qualifier Exam Spring Semester 2009 Your ID Code

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

Chapter 21 Nuclear Chemistry

Chapter 21 Nuclear Chemistry Chapter 21 Nuclear Chemistry The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons and neutrons

More information

A coincidence method of thorium measurement

A coincidence method of thorium measurement A coincidence method of thorium measurement Nevenka Antovic a*, Perko Vukotic a and Nikola Svrkota b a Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica,

More information

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results The Atomic Nucleus & Radioactive Decay ( Chapter 10) Student Learning Outcomes Analyze radioactive decay and its results Differentiate between nuclear fission and fusion Major Constituents of an Atom U=unified

More information

Industrial Hygiene: Assessment and Control of the Occupational Environment

Industrial Hygiene: Assessment and Control of the Occupational Environment Industrial Hygiene: Assessment and Control of the Occupational Environment Main Topics Air Pollution Control Analytical Methods Ergonomics Gas and Vapour Sampling General Practice Heat and Cold Stress

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

Renewed whole-body counting chamber in STUK

Renewed whole-body counting chamber in STUK Renewed whole-body counting chamber in STUK Seminar DTU Nutech, Roskilde, Denmark Tiina Torvela, Tero Karhunen, Maarit Muikku Environmental Radiation Surveillance and Emergency Preparedness Whole-body

More information

Radioactive Waste Characterization and Management Post-Assessment Answer Key Page 1 of 7

Radioactive Waste Characterization and Management Post-Assessment Answer Key Page 1 of 7 Key Page 1 of 7 1. Uranium tailings from mining operations are typically left in piles to. a. decay b. dry c. be re-absorbed d. be shipped to a disposal site 2. is the most important radioactive component

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm 1 Lightning

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lightning Review Lecture 19 Modern Physics Nuclear Physics Nuclear Reactions Medical Applications Radiation Detectors Chapter 29 http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO

IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO McOrist G D., Bowles C.J., Fernando K. and Wong R. Australian Nuclear Science and Technology Organisation Australia Abstract

More information

EXPERIENCE OF TEST OPERATION FOR REMOVAL OF FISSION PRODUCT NUCLIDES IN TRU-LIQUID WASTE AND CONCENTRATED NITRIC ACID USING INORGANIC ION EXCHANGERS

EXPERIENCE OF TEST OPERATION FOR REMOVAL OF FISSION PRODUCT NUCLIDES IN TRU-LIQUID WASTE AND CONCENTRATED NITRIC ACID USING INORGANIC ION EXCHANGERS EXPERIENCE OF TEST OPERATION FOR REMOVAL OF FISSION PRODUCT NUCLIDES IN TRU-LIQUID WASTE AND CONCENTRATED NITRIC ACID USING INORGANIC ION EXCHANGERS ABSTRACT H. Tajiri, T. Mimori, K. Miyajima, T. Uchikoshi

More information

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC

Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC Investigation of Uncertainty Sources in the Determination of Gamma Emitting Radionuclides in the WBC A. Specification Whole body counting method is used to detect the gamma rays emitted by radio nuclides,

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

3 Radioactivity - Spontaneous Nuclear Processes

3 Radioactivity - Spontaneous Nuclear Processes 3 Radioactivity - Spontaneous Nuclear Processes Becquerel was the first to detect radioactivity. In 1896 he was carrying out experiments with fluorescent salts (which contained uranium) and found that

More information

Planning and preparation approaches for non-nuclear waste disposal

Planning and preparation approaches for non-nuclear waste disposal Planning and preparation approaches for non-nuclear waste disposal Lucia Sarchiapone Laboratori Nazionali di Legnaro (Pd) Istituto Nazionale di Fisica Nucleare INFN Lucia.Sarchiapone@lnl.infn.it +39 049

More information

Methods for radiological characterisation

Methods for radiological characterisation 6th International Summer School on Operational issues in radioactive waste management and nuclear decommissioning, JRC Ispra, 8 12/9/2014 Methods for radiological characterisation Dr. Petr Londyn, Petr

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

Nuclear Reactions and E = mc 2. L 38 Modern Physics [4] Hazards of radiation. Radiation sickness. Biological effects of nuclear radiation

Nuclear Reactions and E = mc 2. L 38 Modern Physics [4] Hazards of radiation. Radiation sickness. Biological effects of nuclear radiation L 38 Modern Physics [4] Nuclear physics what s s inside the nucleus and what holds it together what is radioactivity, halflife carbon dating Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

Gamma-Spectrum Generator

Gamma-Spectrum Generator 1st Advanced Training Course ITCM with NUCLEONICA, Karlsruhe, Germany, 22-24 April, 2009 1 Gamma-Spectrum Generator A.N. Berlizov ITU - Institute for Transuranium Elements Karlsruhe - Germany http://itu.jrc.ec.europa.eu/

More information

Chem 1A Chapter 5 and 21 Practice Test Grosser ( )

Chem 1A Chapter 5 and 21 Practice Test Grosser ( ) Class: Date: Chem A Chapter 5 and 2 Practice Test Grosser (203-204) Multiple Choice Identify the choice that best completes the statement or answers the question.. The periodic law states that the properties

More information

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation.

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation. RADIOACTIVITY - SPONTANEOUS NUCLEAR PROCESSES OBJECTIVES At the conclusion of this lesson the trainee will be able to: 1. For~, p and 7 decays a) Write a typical equation for the production of each type

More information

Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles.

Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles. Radioactivity: the process by which atoms emit energy in the form of electromagnetic waves, charged particles, or uncharged particles. In 1896, Henri Bequerel discovered that uranium and other elements

More information

Overview: In this experiment we study the decay of a radioactive nucleus, Cesium 137. Figure 1: The Decay Modes of Cesium 137

Overview: In this experiment we study the decay of a radioactive nucleus, Cesium 137. Figure 1: The Decay Modes of Cesium 137 Radioactivity (Part I and Part II) 7-MAC Objectives: To measure the absorption of beta and gamma rays To understand the concept of half life and to measure the half life of Ba 137* Apparatus: Radioactive

More information

Compton suppression spectrometry

Compton suppression spectrometry Compton suppression spectrometry In gamma ray spectrometry performed with High-purity Germanium detectors (HpGe), the detection of low intensity gamma ray lines is complicated by the presence of Compton

More information

Radioactivity. Radioactivity

Radioactivity. Radioactivity The Law of Radioactive Decay. 72 The law of radioactive decay. It turns out that the probability per unit time for any radioactive nucleus to decay is a constant, called the decay constant, lambda, ".

More information

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658

Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658 Chapter 33: The Atomic Nucleus and Radioactivity Review questions pg. 658 5. How do the electric charges of alpha, beta and gamma rays differ? Ans. The alpha 'ray' consists of alpha particles. Each alpha

More information

Nuclear Chemistry AP Chemistry Lecture Outline

Nuclear Chemistry AP Chemistry Lecture Outline Nuclear Chemistry AP Chemistry Lecture Outline Name: involve changes with electrons. involve changes in atomic nuclei. Spontaneously-changing nuclei emit and are said to be. Radioactivity nucleons: mass

More information

Maintaining analytical quality The challenges of decommissioning analysis

Maintaining analytical quality The challenges of decommissioning analysis The Analyst s dilemma Maintaining analytical quality The challenges of decommissioning analysis Phil Warwick GAU-Radioanalytical The changing analytical landscape Historically, radioanalyticalcharacterisation

More information

Physics GCSE (9-1) Energy

Physics GCSE (9-1) Energy Topic Student Checklist R A G Define a system as an object or group of objects and State examples of changes in the way energy is stored in a system Describe how all the energy changes involved in an energy

More information

ANSWERS TO LEARNING REVIEW

ANSWERS TO LEARNING REVIEW 9. A wooden post from an ancient village has 25% of the carbon-14 found in living trees. How old is the wooden post? The half-life of carbon-14 is 5730 years. 10. Why do you think that most nuclides used

More information

Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277

Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277 Non-Destructive Assay Applications Using Temperature-Stabilized Large Volume CeBr Detectors 14277 D. Nakazawa and F. Bronson Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450, USA. ABSTRACT

More information

In-Situ Characterization of Underwater Radioactive Sludge

In-Situ Characterization of Underwater Radioactive Sludge In-Situ Characterization of Underwater Radioactive Sludge - 8031 A. P. Simpson, M. J. Clapham, B. Swinson Pajarito Scientific Corp., 2532 Camino Entrada, Santa Fe, NM 87507, USA ABSTRACT A fundamental

More information

Gamma and X-Ray Detection

Gamma and X-Ray Detection Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

More information

THE COMPTON EFFECT Last Revised: January 5, 2007

THE COMPTON EFFECT Last Revised: January 5, 2007 B2-1 THE COMPTON EFFECT Last Revised: January 5, 2007 QUESTION TO BE INVESTIGATED: How does the energy of a scattered photon change after an interaction with an electron? INTRODUCTION: When a photon is

More information

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164

WM2018 Conference, March 18-22, 2018, Phoenix, Arizona, USA. PVT and LaBr3(Ce)-based Radon Express Analyzers 18164 PVT and LaBr3(Ce)-based Radon Express Analyzers 864 Vladislav Kondrashov *, Stephen Steranka* and Glenn Paulson** * RadComm Systems Corp. 293 Portland Dr, Oakville, Ontario L6H 5S4, CANADA ** Paulson and

More information

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

Identification of Naturally Occurring Radioactive Material in Sand

Identification of Naturally Occurring Radioactive Material in Sand Identification of Naturally Occurring Radioactive Material in Sand Michael Pope 2012 NSF/REU Program Physics Department, University of Notre Dame Advisors: Dr. Ed Stech, Dr. Michael Wiescher Abstract Radionuclides

More information

ABSORPTION OF BETA AND GAMMA RADIATION

ABSORPTION OF BETA AND GAMMA RADIATION ABSORPTION OF BETA AND GAMMA RADIATION The purpose of this experiment is to understand the interaction of radiation and matter, and the application to radiation detection and shielding Apparatus: 137 Cs

More information

Course Coordinating Radiation Protection Expert. Practice Problems Book

Course Coordinating Radiation Protection Expert. Practice Problems Book Course Coordinating Radiation Protection Expert Practice Problems Book university of groningen health, safety & environment service sbe RUG AMD/SBE - Course coordinating radiation protection expert p.

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

Integrated Waste Assay System (IWAS)

Integrated Waste Assay System (IWAS) Features Combines multiple assay techniques Quantitative and isotopic gamma-ray analysis Passive neutron multiplicity coincidence counting Active neutron interrogation using Differential Die-Away Technique

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods N. Stefanakis 1 1 GMA Gamma measurements and analyses e.k. PO Box 1611, 72706 Reutlingen,

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. Radioactivity is the release of high energy particles or waves When atoms lose high energy particles and waves,

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

Notes: Unit 13 Nuclear Chemistry

Notes: Unit 13 Nuclear Chemistry Name: Regents Chemistry: Notes: Unit 13 Nuclear Chemistry Name: KEY IDEAS: Stability of isotopes is based in the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are

More information

Physics in Nuclear Medicine

Physics in Nuclear Medicine SIMON R. CHERRY, PH.D. Professor Department of Biomedical Engineering University of California-Davis Davis, California JAMES A. SORENSON, PH.D. Emeritus Professor of Medical Physics University of Wisconsin-Madison

More information

Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute

Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute Determination of H-3 and C-14 in the frame of decommissioning projects at the Paul Scherrer Institute Jost Eikenberg, Maya Jäggi, Max Rüthi Paul Scherrer Institute, CH-5232 Villigen, Switzerland Content

More information

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom Forces act in opposing directions Electrostatic repulsion: pushes protons apart Strong nuclear force: pulls protons

More information