Supplementary Information. Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces

Size: px
Start display at page:

Download "Supplementary Information. Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces"

Transcription

1 Supplementary Information Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces Deborah Prezzi 1,4, Daejin Eom 2,3,4, Kwang T. Rim 2, Hui Zhou 3, Michael Lefenfeld #2, Shengxiong Xiao 2, Colin Nuckolls 2, Tony F. Heinz &*3,5, George W. Flynn *2 and Mark S. Hybertsen *6 1 Nanoscience Institute CNR, S3 Center, I Modena, Italy 2 Department of Chemistry, Columbia University, New York, New York 10027, United States 3 Department of Physics, Columbia University, New York, New York 10027, United States 4 Center for Electron Transport in Molecular Nanostructures, Columbia University, New York, New York 10027, United States 5 Department of Electrical Engineering, Columbia University, New York, New York 10027, United States 6 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States AUTHOR ADDRESS: tony.heinz@columbia.edu, gwf1@columbia.edu, and mhyberts@bnl.gov. Contents: 1. Details of structures analyzed with DFT (Figs. S1, S2) 2. Details of calculated edge formation energies (Table S1) 3. Bias dependent simulated STM images (Fig. S3) 4. Additional STM images (Figs. S4, S5, S6) 5. Simulated STM images for triangular nanostructures (Fig. S7) 6. References 1

2 1. Details of structures analyzed with DFT All the structures considered in our study are displayed in Figures S1-S2. Figure S1. Ball-and-stick models for relaxed graphene nanoribbons. a, Clean and b, hydrogen-passivated armchair-edged GNRs. c, Clean and d, H-passivated zigzag-edged GNRs. e, The zigzag GNR in c is modified to form a Klein termination on the left edge (i.e. one additional C atom is bonded to the C edge atom). f, 57-reconstruction of the zigzag edge, characterized by the alternation of pentagons and heptagons. For each structure, both top and lateral views are shown. C atoms are in yellow, H in cyan, Co in blue. Figure S2. Ball-and-stick models for relaxed triangular graphene nanotructures. Clean zigzag-edged GNSs with edge atoms in a, hollow and b, on-top registry. c, The GNS in b is modified to form a Klein termination (i.e. one additional C atom is bonded to the C edge atom). We also considered H-passivated versions of a and b. C atoms are in yellow, H in cyan, Co in blue. 2

3 2. Details of calculated edge formation energies Even though graphene edges are expected to be unpassivated under the experimental growth conditions, we took into account both clean and hydrogen-passivated systems, for completeness. To compare the energy for systems involving H in different configurations, we included the zero point energy of H in all relevant cases, that is 0.136, (0.315) and ev/h atom for H-H 1, zigzag (armchair) H-C 2 and H-Co. In the absence of data for Co, the zero-point motion of Co(0001):H was taken to be the same as that for Ni(111):H, having found that E ZPE varies very little for H on a number of different metals for which it occupies the hollow site 3-4. Moreover, in order to compare the formation energy of clean and H passivated edges, a reservoir for H must be chosen. There are two natural possibilities: H 2 in the gas phase and H chemisorbed on the Co(0001) surface. The measured energy gain upon dissociative adsorption is 0.70 ± 0.08 ev per molecule or 0.35 ev per H atom 5. In view of the lower energy for H on Co(0001) and the role of C-H bond cleavage in the graphene island growth process, we chose the Co(0001):H system as the reservoir for H. The energy for Co(0001):H is calculated for a series of supercells to estimate the adsorption energy in the low density limit, finding a value of 0.86 ev per atom. The computed edge formation energies are reported in Table S1. Table S1. Edge formation energies (ev/å). Isolated On Co(0001) with H # w/o H with H # w/o H top ZZ hollow ZZ-Klein 0.29 ZZ AC ** (#) The reservoir for the isolated systems is H 2 in the gas phase, while we chose the Co(0001):H as the reservoir for the systems on substrate. (**) Constrained on-top geometry. Relaxed bridge position: 0.43 ev/å. 3

4 3. Bias dependent simulated STM images Figure S3. Bias dependence of simulated STM images. An expanded view of the simulated STM images for the GNR illustrated on the right and in Fig. 5 of the main text for a series of four bias windows indicated in ev above the four images. 4. Additional STM images: Figure S4. Full STM topographic image of the graphene island on the Co(0001) surface shown in part in Fig. 5 of the main text. Data taken at 4.9 K with Vsample = V and It = 2 na. The image size is 9.8 x 5 nm2. Specific straight edges are denoted following Fig. 5. In addition, there are some disordered edges and defective regions within the body of the island. 4

5 Figure S5. STM topographic images of four graphene islands on the Co(0001) surface. Data taken at 4.9 K with Vsample = V and It = 3 na. The image size is 10 x 6 nm2. Although the bias conditions are slightly different, the three substantial islands all exhibit the distinguishable edge structures identified in Fig. 5 in the main text. In particular, the triangular island in the upper left only shows B-type edges that we identify as being of the Klein type. Figure S6. STM images of two triangular graphene islands on the Co(0001) surface. Data taken at 4.9 K with: (a) Vsample = V and It = 3 na and (b) Vsample = V and It = 5 na. Both image sizes are 4 x 4 nm2. The island in (a) represents a zoom on the upper left island in Fig. S5. 5

6 5. Simulated images for triangular nanostructures Figure S7. Simulated STM images for small, triangular graphene nanostructures on the Co(0001) surface. (a) Zigzag terminated triangular island together with simulated images for bias windows and ev. (b) Klein terminated triangular island together with simulated images for bias windows and ev. Depending on bias window, finite size and interference effects change the apparent image. 6. References 1. American Insitute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972), Chap. 7, p Yamada, M.; Yamakita, Y.; Ohno, K., Phonon Dispersions of Hydrogenated and Dehydrogenated Carbon Nanoribbons. Phys. Rev. B 2008, 77, Christmann, K., Interaction of Hydrogen with Solid Surfaces. Surf. Sci. Rep. 1988, 9, Barteau, M. A.; Broughton, J. Q.; Menzel, D., Determination of Hydrogen Atom Binding Sites on Ru(001) by Hreels. Surf. Sci. 1983, 133, Bridge, M. E.; Comrie, C. M.; Lambert, R. M., Hydrogen Chemisorption and the Carbon Monoxide-Hydrogen Interaction on Cobalt (0001). J. Catal. 1979, 58,

Supplementary Figure 1 Typical angles of the corners of the 2D compact MoSe2 islands.

Supplementary Figure 1 Typical angles of the corners of the 2D compact MoSe2 islands. 1 2 Supplementary Figure 1 Typical angles of the corners of the 2D compact MoSe2 islands. 3 The scale bar at the bottom represents 500 nm. 60, 90, 120 and 150, originated from the inter- 4 junctioning

More information

Supplementary Information

Supplementary Information Supplementary Information Raman Fingerprints of Atomically Precise Graphene Nanoribbons I. A. Verzhbitskiy, 1, Marzio De Corato, 2, 3 Alice Ruini, 2, 3 Elisa Molinari, 2, 3 Akimitsu Narita, 4 Yunbin Hu,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/333/6045/999/dc1 Supporting Online Material for Visualizing Individual Nitrogen Dopants in Monolayer Graphene Liuyan Zhao, Rui He, Kwang Taeg Rim, Theanne Schiros, Keun

More information

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supplementary Figure 1 Ribbon length statistics. Distribution of the ribbon lengths and the fraction of kinked ribbons for

More information

Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects. Deborah Prezzi CNR Nanoscience Institute, Modena, Italy

Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects. Deborah Prezzi CNR Nanoscience Institute, Modena, Italy Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects Deborah Prezzi CNR Nanoscience Institute, Modena, Italy Graphene Nanostructures Quantum Confinement Open a band gap by confining

More information

The Edge Termination Controlled Kinetics in Graphene. Chemical Vapor Deposition Growth

The Edge Termination Controlled Kinetics in Graphene. Chemical Vapor Deposition Growth Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information The Edge Termination Controlled Kinetics in Graphene

More information

Electronic Supplementary Information Oxygen reduction reaction on neighboring Fe-N 4 and quaternary-n sites of pyrolized Fe/N/C catalyst

Electronic Supplementary Information Oxygen reduction reaction on neighboring Fe-N 4 and quaternary-n sites of pyrolized Fe/N/C catalyst Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information Oxygen reduction reaction on neighboring Fe-N

More information

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Matteo Baldoni Fachbereich Chemie, Technische Universität Dresden, Germany Department of Chemistry

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction Danielle A. Hansgen, Dionisios G. Vlachos, Jingguang G. Chen SUPPLEMENTARY INFORMATION.

More information

High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation.

High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation. High CO tolerance of Pt/Ru nano-catalyst: insight from first principles calculation. Sergey Stolbov 1, Marisol Alcántara Ortigoza 1, Radoslav Adzic 2 Talat S. Rahman 1 1 Department of Physics, University

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 218 Rel. intensity Rel. intensity Electronic Supplementary Information Under-cover stabilization

More information

Designing Graphene for Hydrogen Storage

Designing Graphene for Hydrogen Storage Designing Graphene for Hydrogen Storage Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Introduction to Hydrogen Storage Epitaxial Graphene Hydrogen Storage

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers

Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers 1 Supplementary Information for Topological phase transition and quantum spin Hall edge states of antimony few layers Sung Hwan Kim, 1, 2 Kyung-Hwan Jin, 2 Joonbum Park, 2 Jun Sung Kim, 2 Seung-Hoon Jhi,

More information

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Mohamed Hassan, Michael Walter *,,, and Michael Moseler, Freiburg

More information

Supporting Information

Supporting Information Supporting Information Defects and Surface Structural Stability of MoTe 2 Under Vacuum Annealing Hui Zhu, Qingxiao Wang, Lanxia Cheng, Rafik Addou, Jiyoung Kim, Moon J. Kim*, Robert M. Wallace* Department

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Structure and Electronic Properties of Graphene Nanoislands on Co(0001)

Structure and Electronic Properties of Graphene Nanoislands on Co(0001) Structure and Electronic Properties of Graphene Nanoislands on Co(0001) NANO LETTERS 2009 Vol. 9, No. 8 2844-2848 Daejin Eom,,,, Deborah Prezzi,,, Kwang Taeg Rim, Hui Zhou, Michael Lefenfeld, Shengxiong

More information

arxiv: v1 [cond-mat.mtrl-sci] 6 Jun 2007

arxiv: v1 [cond-mat.mtrl-sci] 6 Jun 2007 Optical properties of graphene nanoribbons: the role of many-body effects arxiv:76.916v1 [cond-mat.mtrl-sci] 6 Jun 7 Deborah Prezzi, 1,, Daniele Varsano, 1 Alice Ruini, 1, Andrea Marini, 3 and Elisa Molinari

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Heterostructures of MXene and N-doped graphene as highly active bifunctional

More information

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics Adsorption, desorption, and diffusion on surfaces Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics Adsorption and desorption Adsorption Desorption Chemisorption: formation

More information

Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111)

Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111) Supporting Information Identifying and Visualizing the Edge Terminations of Single-Layer MoSe2 Island Epitaxially Grown on Au(111) Jianchen Lu, De-Liang Bao, Kai Qian, Shuai Zhang, Hui Chen, Xiao Lin*,

More information

Wang Shiyong ( 王世勇 ) Supervisor: Prof. Lin Nian. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Wang Shiyong ( 王世勇 ) Supervisor: Prof. Lin Nian. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Characterization of electronic structures of single molecules, conjugated polymers and molecular nanostructures using low temperature scanning tunneling microscopy Wang Shiyong ( 王世勇 ) Supervisor: Prof.

More information

Institut des NanoSciences de Paris

Institut des NanoSciences de Paris CNRS / Photothèque Cyril Frésillon Institut des NanoSciences de Paris Polarity in low dimensions: MgO nano-ribbons on Au(111) J. Goniakowski, C. Noguera Institut des Nanosciences de Paris, CNRS & Université

More information

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics Journal of Computational Electronics X: YYY-ZZZ,? 6 Springer Science Business Media, Inc. Manufactured in The Netherlands An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics HASSAN

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Theoretical Modeling of Tunneling Barriers in Carbon-based Molecular Electronic Junctions

Theoretical Modeling of Tunneling Barriers in Carbon-based Molecular Electronic Junctions Second Revised version, jp-2014-09838e Supporting Information Theoretical Modeling of Tunneling Barriers in Carbon-based Molecular Electronic Junctions Mykola Kondratenko 1,2, Stanislav R. Stoyanov 1,3,4,

More information

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Adrian Radocea,, Tao Sun,, Timothy H. Vo, Alexander Sinitskii,,# Narayana R. Aluru,, and Joseph

More information

GRAPHENE NANORIBBONS TRANSPORT PROPERTIES CALCULATION. Jan VOVES

GRAPHENE NANORIBBONS TRANSPORT PROPERTIES CALCULATION. Jan VOVES GRAPHENE NANORIBBONS TRANSPORT PROPERTIES CALCULATION Jan VOVES Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, CZ-16627 Prague 6 Czech Republic, voves@fel.cvut.cz

More information

Experiment Section Fig. S1 Fig. S2

Experiment Section Fig. S1 Fig. S2 Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Materials Experiment Section The STM experiments were carried out in an ultrahigh

More information

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions Supplemental Information Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions M. Frei 1, S Aradhya 1, M. S. Hybertsen 2, L. Venkataraman 1 1 Department of Applied Physics and Applied

More information

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC

Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC Jin-Xun Liu, Hai-Yan Su, Da-Peng Sun, Bing-Yan Zhang, and Wei-Xue Li* State Key Laboratory of Catalysis, Dalian Institute

More information

Supporting Information

Supporting Information Supporting Information Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture Hyun You Kim 1, Mark S. Hybertsen 2*, and Ping Liu 2* 1 Department of Materials Science

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2 Supporting Information Molecular-Level Insight into Selective Catalytic Reduction of NO x with to N 2 over Highly Efficient Bifunctional V a Catalyst at Low Temperature Ying Xin, Hao Li, Nana Zhang, Qian

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1488 Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules Ying Jiang 1,2*, Qing Huan 1,3*, Laura Fabris 4, Guillermo C. Bazan

More information

Supporting Information. Edge orientation dependent nanoscale friction

Supporting Information. Edge orientation dependent nanoscale friction Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Edge orientation dependent nanoscale friction Hongwei Zhang, a,b Tienchong

More information

Phonons: Bandstructure, thermal transport, thermo-electrics

Phonons: Bandstructure, thermal transport, thermo-electrics Phonons: Bandstructure, thermal transport, thermo-electrics Tutorial Version 2014.0 Phonons: Bandstructure, thermal transport, thermo-electrics: Tutorial Version 2014.0 Copyright 2008 2014 QuantumWise

More information

Supporting information for Chemical and Electrochemical. Surfaces: Insights into the Mechanism and Selectivity from DFT.

Supporting information for Chemical and Electrochemical. Surfaces: Insights into the Mechanism and Selectivity from DFT. Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting information for Chemical and Electrochemical Hydrogenation of CO 2 to hydrocarbons

More information

Dislocations in graphene

Dislocations in graphene Dislocations in graphene M. Ortiz California Institute of Technology In collaboration with: M.P. Ariza, Universidad de Sevilla Symposium on Multiscale Dislocation Dynamics UCSD, La Jolla, January 16-17,

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Towards Active and Stable Oxygen Reduction Cathode: A Density Functional Theory Survey on Pt 2 M skin alloys Guang-Feng Wei and Zhi-Pan Liu* Shanghai Key Laboratory of lecular

More information

FMM, 15 th Feb Simon Zihlmann

FMM, 15 th Feb Simon Zihlmann FMM, 15 th Feb. 2013 Simon Zihlmann Outline Motivation Basics about graphene lattice and edges Introduction to Raman spectroscopy Scattering at the edge Polarization dependence Thermal rearrangement of

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Initial stage showing monolayer MoS 2 islands formation on Au (111) surface. a, Scanning tunneling microscopy (STM) image of molybdenum (Mo) clusters deposited

More information

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field

Table of Contents. Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Table of Contents Table of Contents Opening a band gap in silicene and bilayer graphene with an electric field Bilayer graphene Building a bilayer graphene structure Calculation and analysis Silicene Optimizing

More information

Chemisorption and dissociation of single oxygen molecules on Ag 110

Chemisorption and dissociation of single oxygen molecules on Ag 110 THE JOURNAL OF CHEMICAL PHYSICS 123, 214702 2005 Chemisorption and dissociation of single oxygen molecules on Ag 110 J. R. Hahn a and W. Ho Department of Physics and Astronomy and Department of Chemistry,

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/e1701373/dc1 Supplementary Materials for Atomically thin gallium layers from solid-melt exfoliation Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Method: Epitaxial graphene was prepared by heating an Ir(111) crystal to 550 K for 100 s under 2 x 10-5 Pa partial pressure of ethylene, followed by a flash anneal to 1420 K 1.

More information

Synthesis of armchair graphene nanoribbons from the 10,10 -dibromo-9,9 -bianthracene molecules on Ag(111): the role of organometallic intermediates

Synthesis of armchair graphene nanoribbons from the 10,10 -dibromo-9,9 -bianthracene molecules on Ag(111): the role of organometallic intermediates www.nature.com/scientificreports Received: 9 November 2017 Accepted: 1 February 2018 Published: xx xx xxxx OPEN Synthesis of armchair graphene nanoribbons from the 10,10 -dibromo-9,9 -bianthracene molecules

More information

Bromine atom diffusion on stepped and kinked copper surfaces

Bromine atom diffusion on stepped and kinked copper surfaces Surface Science 600 (2006) 2171 2177 www.elsevier.com/locate/susc Bromine atom diffusion on stepped and kinked copper surfaces D.M. Rampulla, A.J. Gellman, David S. Sholl * Department of Chemical Engineering,

More information

Supporting Information

Supporting Information Supporting Information Conversion of multilayer graphene into continuous ultrathin sp 3 - bonded carbon films on metal surfaces Dorj Odkhuu 1, Dongbin Shin 2, Rodney S. Ruoff 3, and Noejung Park 1,2 1

More information

Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect

Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect JNS 4 (2014) 1-8 Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect R. Majidi a, *, A. R. Karami b a Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811

More information

Carbon nanotubes: Models, correlations and the local density of states

Carbon nanotubes: Models, correlations and the local density of states Carbon nanotubes: Models, correlations and the local density of states Alexander Struck in collaboration with Sebastián A. Reyes Sebastian Eggert 15. 03. 2010 Outline Carbon structures Modelling of a carbon

More information

Supporting Information Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon Nanotubes

Supporting Information Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon Nanotubes Supporting Information Kinetics of Topological Stone-Wales Defect Formation in Single Walled Carbon Nanotubes Mukul Kabir, and Krystyn J. Van Vliet Department of Physics, and Centre for Energy Science,

More information

Catalytic Water Formation on Platinum: A First-Principles Study

Catalytic Water Formation on Platinum: A First-Principles Study J. Am. Chem. Soc. 2001, 123, 4235-4242 4235 Catalytic Water Formation on Platinum: A First-Principles Study A. Michaelides and P. Hu* Contribution from the School of Chemistry, The Queen s UniVersity of

More information

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots

Atomic Models for Anionic Ligand Passivation of Cation- Rich Surfaces of IV-VI, II-VI, and III-V Colloidal Quantum Dots Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Atomic Models for Anionic Ligand Passivation of Cation- Rich

More information

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on

More information

Supplementary Figure 1: Change of scanning tunneling microscopy (STM) tip state. a, STM tip transited from blurred (the top dark zone) to orbital

Supplementary Figure 1: Change of scanning tunneling microscopy (STM) tip state. a, STM tip transited from blurred (the top dark zone) to orbital Supplementary Figure 1: Change of scanning tunneling microscopy (STM) tip state. a, STM tip transited from blurred (the top dark zone) to orbital resolvable (the bright zone). b, Zoomedin tip-state changing

More information

CO 2 abatement by two-dimensional MXene carbides

CO 2 abatement by two-dimensional MXene carbides for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Material (ESI) CO 2 abatement by two-dimensional MXene carbides Ángel Morales-García,

More information

Mechanism study of NH 3

Mechanism study of NH 3 54 Mechanism study of NH 3 adsorption and dissociation on a nano-sized iron cluster Giorgio Lanzani 1,2 *, and Kari Laasonen 2 1 Thule Institute, University of Oulu, P.O. Box 7300, FI-90014, Oulu, Finland

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

Tunable magnetic states in h-bn sheets

Tunable magnetic states in h-bn sheets Tunable magnetic states in h-bn sheets Eduardo Machado-Charry Nanosciences Foundation & Laboratoire de simulation atomistique (L Sim), SP2M, UMR-E CEA-Grenoble E-MRS 2012 FALL MEETING, September 17-21

More information

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

arxiv:cond-mat/ v1 5 Nov 2003

arxiv:cond-mat/ v1 5 Nov 2003 On-surface and Subsurface Adsorption of Oxygen on Stepped Ag(210) and Ag(410) Surfaces A. Kokalj a,b, N. Bonini a, A. Dal Corso a, S. de Gironcoli a and S. Baroni a arxiv:cond-mat/0311093v1 5 Nov 2003

More information

Quantum Effects and Phase Tuning in Epitaxial 2H- and 1T -MoTe 2 Monolayers

Quantum Effects and Phase Tuning in Epitaxial 2H- and 1T -MoTe 2 Monolayers Supplementary Information Quantum Effects and Phase Tuning in Epitaxial 2H- and 1T -MoTe 2 Monolayers Jinglei Chen, Guanyong Wang,, ǁ Yanan Tang,, Hao Tian,,# Jinpeng Xu, Xianqi Dai,, Hu Xu, # Jinfeng

More information

Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation

Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation The Open Chemical Physics Journal, 2012, 4, 1-7 1 Open Access Electronic Transport of Zigzag Graphene Nanoribbons with Edge Hydrogenation and Oxidation Can Cao 1, Lingna Chen 1,2, Weirong Huang 3 and Hui

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear

Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear Supplementary Figure S1. The detailed procedure for TEM imaging of graphene torn edge. (a) TEM image of a graphene torn edge before the tear propagation. Once a tear is identified at low magnification,

More information

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2 Supplementary Figure 1. (a-b) EDX of Mo 2 C@NPC/NPRGO and Mo 2 C@NPC. Supplementary Figure 2. (a) SEM image of PMo 12 2-PPy, (b) TEM, (c) HRTEM, (d) STEM image and EDX elemental mapping of C, N, P, and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2507 Quasicrystallinity expressed in two-dimensional coordination networks Authors: José I. Urgel 1, David Écija 2,*, Guoqing Lyu 3, Ran Zhang 3, Carlos-Andres Palma 1, Willi Auwärter

More information

PHYSICAL REVIEW B 69,

PHYSICAL REVIEW B 69, Structure determination of disordered organic molecules on surfaces from the Bragg spots of low-energy electron diffraction and total energy calculations H. C. Poon, M. Weinert, and D. K. Saldin Department

More information

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step Supporting Information Photoinduced Water Oxidation at the Aqueous Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step Mehmed Z. Ertem,,,* eerav Kharche,,* Victor S. Batista,

More information

Interaction of Adatoms and Molecules with Single-Layer Arsenene Phases

Interaction of Adatoms and Molecules with Single-Layer Arsenene Phases pubs.acs.org/jpcc Interaction of Adatoms and Molecules with Single-Layer Arsenene Phases Fatih Ersan, Ethem Aktu rk,*,,, and Salim Ciraci*, Department of Physics and Nanotechnology Application and Research

More information

S1. X-ray photoelectron spectroscopy (XPS) survey spectrum of

S1. X-ray photoelectron spectroscopy (XPS) survey spectrum of Site-selective local fluorination of graphene induced by focused ion beam irradiation Hu Li 1, Lakshya Daukiya 2, Soumyajyoti Haldar 3, Andreas Lindblad 4, Biplab Sanyal 3, Olle Eriksson 3, Dominique Aubel

More information

First-principles Studies of Formaldehyde Molecule Adsorption on Graphene Modified with Vacancy, -OH, -CHO and -COOH Group

First-principles Studies of Formaldehyde Molecule Adsorption on Graphene Modified with Vacancy, -OH, -CHO and -COOH Group 2017 Asia-Pacific Engineering and Technology Conference (APETC 2017) ISBN: 978-1-60595-443-1 First-principles Studies of Formaldehyde Molecule Adsorption on Graphene Modified with Vacancy, -OH, -CHO and

More information

MPI Stuttgart. Atomic-scale control of graphene magnetism using hydrogen atoms. HiMagGraphene.

MPI Stuttgart. Atomic-scale control of graphene magnetism using hydrogen atoms. HiMagGraphene. MPI Stuttgart Atomic-scale control of graphene magnetism using hydrogen atoms HiMagGraphene ivan.brihuega@uam.es www.ivanbrihuega.com Budapest, April, 2016 Magnetism in graphene: just remove a p z orbital

More information

Hydrogenated Graphene

Hydrogenated Graphene Hydrogenated Graphene Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Epitaxial Graphene Hydrogen Chemisorbed on Graphene Hydrogen-Intercalated Graphene Outline

More information

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects

Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Density functional theory calculations of atomic hydrogen adsorption on graphenes with vacancy defects Shunfu Xu Institute of Architecture and Engineering, Weifang University of Science and Technology,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Two-dimensional BX (X=P, As, Sb) Semiconductors with Mobilities

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Simultaneous and coordinated rotational switching of all molecular rotors in a network Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera, Y. Li, A. Deshpande, K.-F. Braun, C. Joachim,

More information

Metal-functionalized Graphene for Hydrogen Storage

Metal-functionalized Graphene for Hydrogen Storage Metal-functionalized Graphene for Hydrogen Storage Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy NEST Pisa Research themes @ NEST Pisa National Enterprise for nanoscience

More information

Growth Mechanism of Hexagonal Shape Graphene Flakes with Zigzag Edges. Johnson, *

Growth Mechanism of Hexagonal Shape Graphene Flakes with Zigzag Edges. Johnson, * Growth Mechanism of Hexagonal Shape Graphene Flakes with Zigzag Edges Zhengtang Luo, Seungchul Kim, Nicole Kawamoto, Andrew M. Rappe, and A.T. Charlie Johnson, * Department of Physics and Astronomy, University

More information

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016 Chemisorption František Máca VIII. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 16th December 2016 Chemisorption The knowledge of chemisorption phenomena requires the determination of the geometrical

More information

Supplementary Information. Reversible Spin Control of Individual Magnetic Molecule by. Hydrogen Atom Adsorption

Supplementary Information. Reversible Spin Control of Individual Magnetic Molecule by. Hydrogen Atom Adsorption Supplementary Information Reversible Spin Control of Individual Magnetic Molecule by Hydrogen Atom Adsorption Liwei Liu 1, Kai Yang 1, Yuhang Jiang 1, Boqun Song 1, Wende Xiao 1, Linfei Li 1, Haitao Zhou

More information

Epitaxial graphene on SiC(0001): More than just honeycombs. Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li*

Epitaxial graphene on SiC(0001): More than just honeycombs. Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li* Epitaxial graphene on SiC(0001): More than just honeycombs Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li* Department of Physics and Laboratory for Surface Studies University of Wisconsin, Milwaukee,

More information

The Columbia EFRC: Redefining Photovoltaic Efficiency Through Molecule-Scale Control. James Yardley Electrical Engineering. Tony Heinz.

The Columbia EFRC: Redefining Photovoltaic Efficiency Through Molecule-Scale Control. James Yardley Electrical Engineering. Tony Heinz. The Columbia EFRC: Redefining Photovoltaic Efficiency Through Molecule-Scale Control. James Yardley Electrical Engineering Tony Heinz Louis Brus Jim Yardley file: Lenfest Symp 05-04-10 rev b.ppt Page 1

More information

Electroreduction of N 2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V A DFT guide for experiments

Electroreduction of N 2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V A DFT guide for experiments Electronic Supplementary Information Electroreduction of N to ammonia at ambient conditions on mononitrides of Zr, Nb, r, and V DFT guide for experiments Younes bghoui a, nna L. Garden b, Jakob G. Howalt

More information

Research Article Highly Sensitive CO Gas Sensor from Defective Graphene: Role of van der Waals Interactions

Research Article Highly Sensitive CO Gas Sensor from Defective Graphene: Role of van der Waals Interactions Nanomaterials Volume 2015, Article ID 504103, 7 pages http://dx.doi.org/10.1155/2015/504103 Research Article Highly Sensitive CO Gas Sensor from Defective Graphene: Role of van der Waals Interactions Yingda

More information

Supporting Information. Dual Route Hydrogenation of the Graphene/Ni. Interface

Supporting Information. Dual Route Hydrogenation of the Graphene/Ni. Interface Supporting Information. Dual Route Hydrogenation of the Graphene/Ni Interface Daniel Lizzit, Mario I. Trioni, Luca Bignardi,, Paolo Lacovig, Silvano Lizzit,, Rocco Martinazzo, and Rosanna Larciprete, Elettra-Sincrotrone

More information

Molecular Dynamics on the Angstrom Scale

Molecular Dynamics on the Angstrom Scale Probing Interface Reactions by STM: Molecular Dynamics on the Angstrom Scale Zhisheng Li Prof. Richard Osgood Laboratory for Light-Surface Interactions, Columbia University Outline Motivation: Why do we

More information

Supporting Information

Supporting Information Supporting Information Yao et al. 10.1073/pnas.1416368111 Fig. S1. In situ LEEM imaging of graphene growth via chemical vapor deposition (CVD) on Pt(111). The growth of graphene on Pt(111) via a CVD process

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL The fhi-aims code [1] was employed for the DFT calculations. The repeated slab method was used to model all the systems with the size of the vacuum gap chosen between 16 and 25 Å.

More information

Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials

Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials Junguang Tao and Matthias Batzill Abstract In this chapter we present recent advances in the study of metal oxide surfaces and put

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information Computational investigation of structural

More information

Nanoscience quantum transport

Nanoscience quantum transport Nanoscience quantum transport Janine Splettstößer Applied Quantum Physics, MC2, Chalmers University of Technology Chalmers, November 2 10 Plan/Outline 4 Lectures (1) Introduction to quantum transport (2)

More information

1. Robust hexagonal rings on Cu(111) Figure S1 2. Details of Monte Carlo simulations

1. Robust hexagonal rings on Cu(111) Figure S1 2. Details of Monte Carlo simulations Supporting Information for Influence of Relativistic Effects on Assembled Structures of V-Shaped Bispyridine Molecules on M(111) Surfaces where M = Cu, Ag, Au Xue Zhang, 1,ǁ Na Li, 1, Hao Wang, 1 Chenyang

More information

Hydrogen Storage in Metalfunctionalized

Hydrogen Storage in Metalfunctionalized Hydrogen Storage in Metalfunctionalized Graphene Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Pisa, Italy Outline Introduction to Hydrogen Storage Epitaxial Graphene Hydrogen

More information

Hydrogen termination following Cu deposition on Si(001)

Hydrogen termination following Cu deposition on Si(001) Hydrogen termination following Cu deposition on Si(001) L. A. Baker, A. R. Laracuente,* and L. J. Whitman Naval Research Laboratory, Washington, DC 20375-5342, USA Received 9 September 2004; published

More information