Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information Zeolitic Polyoxometalates Metal Organic Frameworks (Z- POMOF) with Imidazole Ligands and ε-keggin ions as Building Blocks; Computational Evaluation of Hypothetical Polymorphs and a Synthesis Approach L. Marleny Rodriguez Albelo, a A. Rabdel Ruiz-Salvador,*,a Dewi L. Lewis, b Ariel Gómez, c Pierre Mialane, d Jérome Marrot, d Anne Dolbecq,*,d Alvaro Sampieri b,e and Caroline Mellot-Draznieks*,b a Zeolites Engineering Laboratory, Institute of Materials Research and Engineering (IMRE), University of Havana, Havana, Cuba rabdel@imre.oc.uh.cu (A.R.R.-S.) b Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, UK c.mellot-draznieks@ucl.ac.uk (C.M.-D.) c Department of Physics, University of Guelph, ON, N1G 2W1 Canada. d Institut Lavoisier de Versailles, UMR 8180, Université de Versailles Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, Versailles cedex, France. dolbecq@chimie.uvsq.fr (A.D.) e Present address: Benemérita Universidad Autónmoma de Puebla, Facultad de Ingeniería Química, 18 Sur y Av. San Claudio s/n, C.P , Puebla, PUE, Mexico.

2 O38 O18 Mo11 O35 O39 O21 O16 Mo5 O20 Zn4 O19 Zn3 O33 O37 Mo10 O9 O34 Mo12 O36 O40 O22 Mo6 O15 O14 O23 Mo4 O17 O13 O27 P1 O28 O6 Mo9 O8 O31 O32 Mo2 O10 Zn2 O7 O24 O25 Mo7 O12 O11 Mo3 O30 O2 O5 Zn1 O26 O3 Mo8 O4 Mo1 O29 O1 Figure S1. Atom labeling scheme of the POM unit; blue spheres = Mo(VI) ions, yellow spheres = Mo(V) ions, grey spheres = protonated oxygen atoms.

3

4 Table S1. Valence bond calculations. Mo(1)-O(1) (18) Mo(7)-O(25) 1.688(2) Mo(1)-O(2) (17) Mo(7)-O(26) (18) Mo(1)-O(3) (16) Mo(7)-O(27) (18) Mo(1)-O(4) (15) Mo(7)-O(23) (19) Mo(1)-O(5) (17) Mo(7)-O(24) (17) Mo(1)-O(6) (16) Mo(7)-O(28) (18) Mo(1)-Mo(8) (4) Σ (Mo(1)) = 5.3 Σ (Mo(7)) = 6.0 Mo(2)-O(7) 1.700(2) Mo(8)-O(29) (19) Mo(2)-O(8) (18) Mo(8)-O(3) (16) Mo(2)-O(5) (18) Mo(8)-O(2) (17) Mo(2)-O(9) (17) Mo(8)-O(26) (18) Mo(2)-O(10) (17) Mo(8)-O(30) (18) Mo(2)-O(6) (17) Mo(8)-O(28) (17) Mo(2)-Mo(12) (4) Σ (Mo(2)) = 5.9 Σ (Mo(8)) = 5.2 Mo(3)-O(11) (19) Mo(9)-O(31) 1.680(2) Mo(3)-O(12) (16) Mo(9)-O(32) (19) Mo(3)-O(13) (17) Mo(9)-O(33) (19) Mo(3)-O(8) (18) Mo(9)-O(27) (19) Mo(3)-O(4) (15) Mo(9)-O(30) (18) Mo(3)-O(6) (16) Mo(9)-O(28) (16) Mo(3)-Mo(4) (3) Mo(9)-Mo(10) (4) Σ (Mo(3)) = 5.2 Σ (Mo(9)) = 5.2 Mo(4)-O(14) (19) Mo(10)-O(34) (19) Mo(4)-O(12) (16) Mo(10)-O(35) (19) Mo(4)-O(13) (18) Mo(10)-O(33) 1.971(2) Mo(4)-O(15) (18) Mo(10)-O(32) (17) Mo(4)-O(16) (18) Mo(10)-O(36) (19) Mo(4)-O(17) (17) Mo(10)-O(37) (16) Σ (Mo(4)) = 5.3 Σ (Mo(10)) = 5.3 Mo(5)-O(18) 1.691(2) Mo(11)-O(38) (19) Mo(5)-O(19) (19) Mo(11)-O(35) (19) Mo(5)-O(20) (18) Mo(11)-O(19) (17) Mo(5)-O(21) 2.006(2) Mo(11)-O(20) (19) Mo(5)-O(16) (19) Mo(11)-O(39) (19) Mo(5)-O(17) (17) Mo(11)-O(37) (17 Mo(5)-Mo(11) (4) Σ (Mo(5)) = 5.1 Σ (Mo(11)) = 5.3 Mo(6)-O(22) 1.685(2) Mo(12)-O(40) 1.677(2) Mo(6)-O(15) (18) Mo(12)-O(39) (18) Mo(6)-O(21) (18) Mo(12)-O(36) (18) Mo(6)-O(23) (18) Mo(12)-O(9) (17) Mo(6)-O(24) (17) Mo(12)-O(10) (17) Mo(6)-O(17) (17) Mo(12)-O(37) (18) Mo(6)-Mo(7) (5) Σ (Mo(6)) = 5.9 Σ (Mo(12)) = 6.0

5 Σ (O(16)) = 1.3 Σ (O(30)) = 1.3

6 c b a double POM layer TBA + Figure S2. View of the unit-cell; hydrogen atoms have been omitted for clarity except on the protonated imidazole. A ball and stick representation of the POM has been used and the TBA + have been omitted on the left side of the unit-cell in order to show more clearly the H-bond interactions between double POM layers.

7 In the simulations, only rigid body motions were considered for the imidizolate and ε-keggin subunits. It is possible that a non-constant contribution to the total lattice energy throughout the whole set of structural models studied here might arise from the relaxation of the building blocks which is omitted here by the use of rigid imidizolate and ε-keggin ions. However, as shown further in our experimental crystal structure, these units may be considered as rigid in practice, with only small deviations expected. Considering the above approximations used and the general character of the forcefield, we tend to analyse the results in terms of relative trends rather than quantitative ones All contributions of the UFF force field were considered, including bond stretching, bond bending, torsion, van der Waals and electrostatic interactions, therefore accounting for both intramolecular (imidazole, Keggin) and inter-molecular interactions. It is noteworthy that the link between the N atoms of the imidazolate ligands and the Zn metal centres of the ε-keggin were described with Zn-N bonds. The advantage of using rigid bodies for the organic ligand and on the ε-keggin is that the energy contributions emanating from each single subunits are constant for all the studied structures, while the differences in lattice energies result solely from the differences in the orientation of the building-units to each other. This includes bonded and non-bonded interactions. Table S2: Partial charges used in the lattice energy minimizations Atom label Force Field Charge C2 C_R H2 H_ N N_R C1 C_R H1 H_ Atom label Force Field Charge Zn Zn Mo Mo

8 O O_

Supporting information. A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect?

Supporting information. A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect? Supporting information A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect? Elsa Alvarez, a Alfonso Garcia Marquez, a Thomas Devic, a Nathalie

More information

Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs

Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2017 Crystal structure dependent in vitro antioxidant activity of biocompatible

More information

An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology. Supporting information

An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology. Supporting information # This journal is The Royal Society of Chemistry 05 An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology Suzy Surblé, a Christian Serre, a Caroline Mellot-Draznieks b Franck Millange,

More information

Electronic Supporting Information for:

Electronic Supporting Information for: Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information for: Luminescent double helical gold(i)-thiophenolate

More information

Effect of the organic functionalization of flexible MOFs on the. adsorption of CO 2

Effect of the organic functionalization of flexible MOFs on the. adsorption of CO 2 Effect of the organic functionalization of flexible MOFs on the adsorption of CO 2 Thomas Devic,* a Fabrice Salles, b Sandrine Bourrelly, c Béatrice Moulin, d Guillaume Maurin, b Patricia Horcajada, a

More information

Supporting Information

Supporting Information Supporting Information Geometry Flexibility of Copper Iodide Clusters: Variability in Luminescence Thermochromism Quentin Benito, a Xavier F. Le Goff, b Gregory Nocton, b Alexandre Fargues, c Alain Garcia,

More information

SUPPORTING INFORMATION. Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures

SUPPORTING INFORMATION. Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures SUPPORTING INFORMATION Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures Rezan Demir-Cakan, Mathieu Morcrette, Farid Nouar, Carine Davoisne, Thomas Devic, Danielle Gonbeau,

More information

Supporting Information. Co-adsorption and Separation of CO 2 -CH 4 Mixtures in. the Highly Flexible MIL-53(Cr) MOF.

Supporting Information. Co-adsorption and Separation of CO 2 -CH 4 Mixtures in. the Highly Flexible MIL-53(Cr) MOF. Supporting Information Co-adsorption and Separation of CO -CH 4 Mixtures in the Highly Flexible MIL-53(Cr) MOF. Lomig Hamon, a Philip Llewellyn, b,* Thomas Devic, c Aziz Ghoufi, d Guillaume Clet, e Vincent

More information

Elastically driven cooperative response of a molecular material impacted by a laser pulse

Elastically driven cooperative response of a molecular material impacted by a laser pulse SUPPLEMENTARY INFORMATION DOI: 10.1038/NMAT4606 Elastically driven cooperative response of a molecular material impacted by a laser pulse Roman Bertoni 1, Maciej Lorenc 1 *, Hervé Cailleau 1, Antoine Tissot

More information

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Cationic Polycyclization of Ynamides: Building up Molecular Complexity Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Cationic Polycyclization of Ynamides: Building up

More information

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms?

Earth Solid Earth Rocks Minerals Atoms. How to make a mineral from the start of atoms? Earth Solid Earth Rocks Minerals Atoms How to make a mineral from the start of atoms? Formation of ions Ions excess or deficit of electrons relative to protons Anions net negative charge Cations net

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Supplementary Information. Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks

Supplementary Information. Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks Supplementary Information Comparison of the relative stability of zinc and lithium-boron zeolitic imidazolate frameworks Raimondas Galvelis, a Ben Slater, a Anthony K. Cheetham, b Caroline Mellot-Draznieks

More information

Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination

Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination Supporting Information for: Cyclams with ambidentate methylthiazolyl pendants for a stable, inert and selective Cu(II) coordination Aurora Rodríguez-Rodríguez, Zakaria Halime, Luís M. P. Lima, Maryline

More information

Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores

Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores Patricia Horcajada a, Suzy Surblé a, Christian Serre *a, Do-Young Hong b, You-Kyong Seo b, Jong-San Chang b,

More information

The Chemical Basis of Life

The Chemical Basis of Life The Chemical Basis of Life Chapter 2 Objectives Identify the four elements that make up 96% of living matter. Distinguish between the following pairs of terms: neutron and proton, atomic number and mass

More information

Intermolecular Forces and Strengths How do molecules stick together even in the worst of times?

Intermolecular Forces and Strengths How do molecules stick together even in the worst of times? Why? Intermolecular Forces and Strengths How do molecules stick together even in the worst of times? As you have learned, matter is made up of discrete particles called atoms, which chemically combine

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Electronic Supplementary Material

Electronic Supplementary Material Dynamic aggregation of the mid size gadolinium complex {Ph 4 [Gd(DTTA)(H O) ] 3} Hugues Jaccard, Pascal Miéville, Caroline Cannizzo, Cédric R. Mayer, Lothar Helm Electronic Supplementary Material Hugues

More information

CHEMICAL BONDING SUTHERLAND HIGH SCHOOL GRADE 10 PHYSICAL SCIENCE TB. 103 K. FALING EDITED: R. BASSON

CHEMICAL BONDING SUTHERLAND HIGH SCHOOL GRADE 10 PHYSICAL SCIENCE TB. 103 K. FALING EDITED: R. BASSON CHEMICAL BONDING SUTHERLAND HIGH SCHOOL K. FALING EDITED: R. BASSON GRADE 10 PHYSICAL SCIENCE TB. 103 HOW DOES BONDING WORK? The chemical reaction between elements leads to compounds, which have new physical

More information

Supporting Information

Supporting Information This journal is The Royal Society of Chemistry Supporting Information Probing the adsorption performance of the hybrid porous MIL-68(Al): A synergic combination of experimental and modelling tools Qingyuan

More information

Study of Proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature

Study of Proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature Supporting information Study of Proton conductivity of a 2D flexible MOF and a 1D coordination polymer at higher temperature Suresh Sanda, Soumava Biswas and Sanjit Konar* Department of Chemistry, IISER

More information

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives

Crystal growth and characterization of solvated organic charge-transfer complexes built on TTF and 9-dicyanomethylenefluorene derivatives Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Crystal growth and characterization of solvated organic charge-transfer complexes built on

More information

Impact of the flexible character of MIL-88 iron(iii) dicarboxylates on the

Impact of the flexible character of MIL-88 iron(iii) dicarboxylates on the Impact of the flexible character of MIL-88 iron(iii) dicarboxylates on the adsorption of n-alkanes Naseem A. Ramsahye 1, Thuy Khuong Trung 1, Lorna Scott, 2 Farid Nouar 2, Thomas Devic 2, Patricia Horcajada

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

1.14 the orbital view of bonding:

1.14 the orbital view of bonding: 1.14 the orbital view of bonding: The sigma bond Dr. Abdullah Saleh/236-3 1 A limitation of Lewis Theory of Bonding It does not explain the three dimensional geometries of molecules! Dr. Abdullah Saleh/236-3

More information

AP Chemistry Chapter 7: Bonding

AP Chemistry Chapter 7: Bonding AP Chemistry Chapter 7: Bonding Types of Bonding I. holds everything together! I All bonding occurs because of! Electronegativity difference and bond character A. A difference in electronegativity between

More information

Core v Valence Electrons

Core v Valence Electrons Bonding Core v Valence Electrons The core electrons (represented by the noble gas from the previous row) are those electrons held within the atom. These electrons are not involved in the bonding, but contribute

More information

1.1 The Fundamental Chemistry of life

1.1 The Fundamental Chemistry of life 1.1 The Fundamental Chemistry of life Matter makes up everything in the universe, including all living organisms. Matter is composed of elements, a pure substance that cannot be broken down into simpler

More information

Supplementary Information

Supplementary Information Supplementary Information The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis Marta C. Marques a, Cristina Tapia b, Oscar Gutiérrez-Sanz b, Ana Raquel Ramos a, Kimberly L.

More information

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Name: Period: Due Date: 1-18-2019 / 100 Formative pts. Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Topic-1: Review: 1. Valence electrons: The electrons in the outermost of an atom Valence

More information

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry 489--Lectures 3 and 4 Fundamentals of Inorganic Chemistry (with special relevance to biological systems) Some slides courtesy of Prof. Xuan Zhao (U. Memphis) and Prof. Yi Lu (U. Illinois) Fundamentals

More information

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces Intermolecular Forces Have studied INTRAmolecular forces the forces holding atoms together to form compounds. Now turn to forces between molecules INTERmolecular forces. Forces between molecules, between

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Table of Contents 10.1 Intermolecular Forces 10.2 The Liquid State 10.3 An Introduction to Structures and Types of Solids 10.4 Structure and Bonding in Metals 10.5

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch?

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch? CATALYST Lesson Plan GLE Physical Science 22. Predict the kind of bond that will form between two elements based on electronic structure and electronegativity of the elements (e.g., ionic, polar, nonpolar)

More information

Molecular Mechanics. Yohann Moreau. November 26, 2015

Molecular Mechanics. Yohann Moreau. November 26, 2015 Molecular Mechanics Yohann Moreau yohann.moreau@ujf-grenoble.fr November 26, 2015 Yohann Moreau (UJF) Molecular Mechanics, Label RFCT 2015 November 26, 2015 1 / 29 Introduction A so-called Force-Field

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 Allowed phi-psi angles Red areas are preferred, yellow areas are allowed, and white is avoided 2.3a Hamiltonian

More information

Review for Chapter 4: Structures and Properties of Substances

Review for Chapter 4: Structures and Properties of Substances Review for Chapter 4: Structures and Properties of Substances You are responsible for the following material: 1. Terms: You should be able to write definitions for the following terms. A complete definition

More information

Synthesis of 1,2-glycerol carbonate from carbon dioxide: the role of methanol in fluid phase equilibrium

Synthesis of 1,2-glycerol carbonate from carbon dioxide: the role of methanol in fluid phase equilibrium Electronic Supplementary Data Synthesis of 1,2-glycerol carbonate from carbon dioxide: the role of methanol in fluid phase equilibrium S Podila, L Plasseraud, H Cattey & D Ballivet-Tkatchenko* Université

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

Bonding - Ch. 7. Types of Bonding

Bonding - Ch. 7. Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water

Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water Supporting Information for Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water Karim Fahsi, a Jérôme Deschamps,

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

From Double-Shelled Grids to Supramolecular Frameworks

From Double-Shelled Grids to Supramolecular Frameworks Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 From Double-Shelled Grids to Supramolecular Frameworks Jianfeng Wu, Mei Guo, Xiao-Lei Li, Lang

More information

Excited State Intramolecular Proton Transfer in Julolidine Derivatives: an ab initio Study Electronic Supplementary Information (ESI)

Excited State Intramolecular Proton Transfer in Julolidine Derivatives: an ab initio Study Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Excited State Intramolecular Proton Transfer in Julolidine Derivatives: an ab initio

More information

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below.

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below. Covalent Bonding COVALENT BONDS occur when atoms electrons. When atoms combine through the sharing of electrons, are formed. What is a common example of a covalently bonded molecule? When hydrogen atoms

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5743/[page]/dc1 Supporting Online Material for A Chromium Terephthalate Based Solid with Unusually Large Pore Volumes and Surface Area G. Férey, C. Mellot-Draznieks,

More information

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K)

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) Portugaliae Electrochimica Acta 20 (2002) 199-205 PORTUGALIAE ELECTROCHIMICA ACTA Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) C. Mathieu, O. Seitz, A.-M Gonçalves *, M. Herlem, A.

More information

EGN 3365 Review on Bonding & Crystal Structures by Zhe Cheng

EGN 3365 Review on Bonding & Crystal Structures by Zhe Cheng EGN 3365 Review on Bonding & Crystal Structures 2017 by Zhe Cheng Expectations on Chapter 1 Chapter 1 Understand materials can be classified in different ways by composition, property, application, or

More information

Name: Date: Period: Study Guide: 8th grade - Chapter 8 Test, Elements and Chemical Bonds

Name: Date: Period: Study Guide: 8th grade - Chapter 8 Test, Elements and Chemical Bonds Name: Date: Period: Study Guide: 8th grade - Chapter 8 Test, Elements and Chemical Bonds 1. Water is a covalent bond because. 2. Ionic bonds have the ability to. 3. When atoms gain or lose electrons, an

More information

Chemical bonds. In some minerals, other (less important) bond types include:

Chemical bonds. In some minerals, other (less important) bond types include: Chemical bonds Chemical bond: force of attraction between two or more atoms/ions Types of bonds in crystals: Ionic bond: electrostatic attraction between two oppositely charged ions. This type of bond

More information

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to 62. 2. In 1869 Russian

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: Date: SCH4U Chapter 4 Formative Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements about

More information

Chapter 7 Chemical Bonding and Molecular Geometry

Chapter 7 Chemical Bonding and Molecular Geometry Chapter 7 Chemical Bonding and Molecular Geometry 347 Chapter 7 Chemical Bonding and Molecular Geometry Figure 7.1 Nicknamed buckyballs, buckminsterfullerene molecules (C60) contain only carbon atoms.

More information

Spin crossover complexes [Fe(NH 2 trz) 3 ](X) 2.nH 2 O investigated by means of Raman scattering and DFT calculations.

Spin crossover complexes [Fe(NH 2 trz) 3 ](X) 2.nH 2 O investigated by means of Raman scattering and DFT calculations. Supplementary information of Spin crossover complexes [Fe(NH 2 trz) 3 ](X) 2.nH 2 O investigated by means of Raman scattering and DFT calculations. Yeny A. Tobon 1,3, Lara Kabalan 2, Sébastien Bonhommeau

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ generated catalyst: Copper (II) oxide and

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

AP Biology. Chapter 2

AP Biology. Chapter 2 AP Biology Chapter 2 Matter is anything that has weight and takes up space 1. Mass is a measure of how much matter is present in a body 2. Weight is a measure of the gravitational force exerted on an object

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Hydrothermal synthesis and structural characterization of a gallium pyromellitate Ga(OH)(btec) 0.5H 2 O, with infinite Ga-(µ 2 -OH)-Ga chains (MIL-61)

Hydrothermal synthesis and structural characterization of a gallium pyromellitate Ga(OH)(btec) 0.5H 2 O, with infinite Ga-(µ 2 -OH)-Ga chains (MIL-61) Solid State Sciences 7 (2005) 603 609 www.elsevier.com/locate/ssscie Hydrothermal synthesis and structural characterization of a gallium pyromellitate Ga(OH)(btec) 0.5H 2 O, with infinite Ga-(µ 2 -OH)-Ga

More information

Chemical Bonding Review

Chemical Bonding Review Chemical Bonding Review Objective Review unit three s topics in order to gauge which topics you should review most for your assessment next class. Homework Test next class School ID s SAT Prep Question

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Bis{tris[3-(2-pyridyl)-1H-pyrazole]- zinc(ii)} dodecamolybdosilicate hexahydrate Xiutang Zhang, a,b * Peihai

More information

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM)

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) Associate Degree in Engineering Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College

More information

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information

Screening for cocrystals of succinic acid and 4-aminobenzoic acid. Supplementary Information Screening for cocrystals of succinic acid and 4-aminobenzoic acid Nizar Issa, Sarah A. Barnett, Sharmarke Mohamed, Doris E. Braun, Royston C. B. Copley, Derek A. Tocher, Sarah L Price* Supplementary Information

More information

Table of contents. Ling-Yan Chen, a,b Stéphane Guillarme, a and Christine Saluzzo a *

Table of contents. Ling-Yan Chen, a,b Stéphane Guillarme, a and Christine Saluzzo a * Supplementary Material Dianhydrohexitols: new tools for organocatalysis. Application in enantioselective Friedel-Crafts alkylation of indoles with nitroalkenes Ling-Yan Chen, a,b Stéphane Guillarme, a

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 11, Liquids, and Solids John D. Bookstaver St. Charles Community College Cottleville,

More information

Isoreticular homochiral porous metal-organic structures with tunable pore size SUPLEMENTARY INFORMATION

Isoreticular homochiral porous metal-organic structures with tunable pore size SUPLEMENTARY INFORMATION Isoreticular homochiral porous metal-organic structures with tunable pore size Danil N. Dybtsev, a,b Maxim P. Yutkin, a Eugenia V. Peresypkina, a Alexander V. Virovets, a Christian Serre, b Gérar Férey,

More information

Honors Chemistry - Unit 4 Bonding Part I

Honors Chemistry - Unit 4 Bonding Part I Honors Chemistry - Unit 4 Bonding Part I Unit 4 Packet - Page 1 of 8 Vocab Due: Quiz Date(s): Test Date: UT Quest Due: Bonding Vocabulary: see separate handout assignment OBJECTIVES: Chapters 4-8 Be able

More information

Synthesis of two copper clusters and their catalysis towards the oxidation of benzene

Synthesis of two copper clusters and their catalysis towards the oxidation of benzene Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Synthesis of two copper clusters and their catalysis towards

More information

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces)

Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Physics of Materials: Classification of Solids On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement,

More information

Supplemental Data SUPPLEMENTAL FIGURES

Supplemental Data SUPPLEMENTAL FIGURES Supplemental Data CRYSTAL STRUCTURE OF THE MG.ADP-INHIBITED STATE OF THE YEAST F 1 C 10 ATP SYNTHASE Alain Dautant*, Jean Velours and Marie-France Giraud* From Université Bordeaux 2, CNRS; Institut de

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

Bonding - Ch Types of Bonding

Bonding - Ch Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic

Bonding in Solids. What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic Bonding in Solids What is the chemical bonding? Bond types: Ionic (NaCl vs. TiC?) Covalent Van der Waals Metallic 1 Ions and Ionic Radii LiCl 2 Ions (a) Ions are essentially spherical. (b) Ions may be

More information

Chapter 2. The Chemical Context of Life

Chapter 2. The Chemical Context of Life Chapter 2 The Chemical Context of Life 1 Matter Takes up space and has mass Exists as elements (pure form) and in chemical combinations called compounds 2 Elements Can t be broken down into simpler substances

More information

! Chemical!Bond!! Lewis!Diagram!(HI!#13)! o Ionic!and!covalent!bond!(M!+!NM!or!NM!+!NM)!(Complete!transfer!of!e S!or!sharing!of!e S )!

! Chemical!Bond!! Lewis!Diagram!(HI!#13)! o Ionic!and!covalent!bond!(M!+!NM!or!NM!+!NM)!(Complete!transfer!of!e S!or!sharing!of!e S )! !! Unit*2.*Atomic*Theory*! Molar!mass!calculation!using!the!abundance!of!isotopes!of!an!element!!!! Electron!configuration!(both!full!notation!and!core!notation)!(HI!#12)! o Neutral!atom,!anion,!cation!(ensure!you!know!the!rules!associated!with!ions)!

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

POGIL: Intermolecular Forces

POGIL: Intermolecular Forces Name Date Block POGIL: Intermolecular Forces Model 1: What is an intermolecular force? As you have learned, matter is made up of discrete particles called atoms, which chemically combine to form molecules.

More information

Bonds can bend and stretch without breaking (bond lengths are averages)

Bonds can bend and stretch without breaking (bond lengths are averages) The Structure of Matter What are compounds? Two or more different elements bonded together by VALENCE ELECTRONS o The force that holds two atoms together The ability to write a formula, such as H2O, indicates

More information

SCH 4U Unit Test Forces and Molecular Properties. 1. Fill in each table as done on the assignment. Including the oxidation state of the central atom:

SCH 4U Unit Test Forces and Molecular Properties. 1. Fill in each table as done on the assignment. Including the oxidation state of the central atom: CH 4U Unit Test Forces and Molecular Properties Name: 1. Fill in each table as done on the assignment. Including the oxidation state of the central atom: BO 3 3- total # of e - pairs σ bonding pairs lone

More information

BIOCHEMISTRY Unit 2 Part 1 ACTIVITY #1 (Chapter 2) Covalent Bonds Involves sharing of. electrons. Electronegativities O = 3.5 N = 3.0 C = 2.5 H = 2.

BIOCHEMISTRY Unit 2 Part 1 ACTIVITY #1 (Chapter 2) Covalent Bonds Involves sharing of. electrons. Electronegativities O = 3.5 N = 3.0 C = 2.5 H = 2. AP BIOLOGY BIOCHEMISTRY Unit 2 Part 1 ACTIVITY #1 (Chapter 2) NAME DATE PERIOD DEFINITION/DESCRIPTION: Attraction that holds molecules together Involves valence electrons CHEMICAL BONDS TYPES: Ionic Bonds

More information

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur QUESTION (2017:1) (iii) Sodium chloride, NaCl, is another compound that is excreted from the body in sweat. Use your knowledge of structure and bonding to explain the dissolving process of sodium chloride,

More information

Unit 1 Review: Matter and Chemical Bonding

Unit 1 Review: Matter and Chemical Bonding Unit 1 Review: Matter and Chemical Bonding 1. Do you think DHMO should be banned? Justify your answer. Write the formula for dihydrogen monoxide. H 2 O 2. Name these groups on the periodic table: 1, 2,

More information

What is reactivity based on? What do all elements want to be happy? Draw the Lewis Dot Structure for Sodium and Chlorine.

What is reactivity based on? What do all elements want to be happy? Draw the Lewis Dot Structure for Sodium and Chlorine. What is reactivity based on? What do all elements want to be happy? Draw the Lewis Dot Structure for Sodium and Chlorine. FORCES What is a chemical bond? The force that holds two atoms together Between

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

How Does Molecular Orbital Theory Explain Ionic And Covalent Bonding

How Does Molecular Orbital Theory Explain Ionic And Covalent Bonding How Does Molecular Orbital Theory Explain Ionic And Covalent Bonding Valence bond and molecular orbital theories are used to explain chemical bonding. According to VB theory, a covalent bond forms from

More information

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons.

1. a Draw a labelled diagram of an atom that has 9 protons and electrons and 9 neutrons. Topic review Using scientific language Design and construct a crossword using the following words: atom; proton; molecule; ion; lattice; shell; element; compound; bond; conductor; insulator; electrolysis;

More information

Sugarcane molasses as pseudocapacitive materials for supercapacitors

Sugarcane molasses as pseudocapacitive materials for supercapacitors Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Sugarcane molasses as pseudocapacitive materials for supercapacitors A. Sanchez-Sanchez a,*,

More information

A zeolite family with chiral and achiral structures built from the same building layer

A zeolite family with chiral and achiral structures built from the same building layer Supplementary information: A zeolite family with chiral and achiral structures built from the same building layer Liqiu Tang 1, Lei Shi 1,2, Charlotte Bonneau 1,2, Junliang Sun 1,2, Huijuan Yue 1,2, Arto

More information

CHAPTER 4. Crystal Structure

CHAPTER 4. Crystal Structure CHAPTER 4 Crystal Structure We can assume minerals to be made of orderly packing of atoms or rather ions or molecules. Many mineral properties like symmetry, density etc are dependent on how the atoms

More information

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability Induced dipole moment, polarisability in electric field: Van der Waals forces Intermolecular forces other than covalent bonds or other than electrostatic interactions of ions induced d. moment µ * = α

More information

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence.

Unit 5: Bonding. Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Unit 5: Bonding Place a checkmark next to each item that you can do. If a sample problem is given, complete it as evidence. Intramolecular Forces: forces of attraction within the same molecule. Examples:

More information

ON Chemical Bonding-I & II

ON Chemical Bonding-I & II CET ON Chemical Bonding-I & II 1.The number of π - electrons present in 2.6 g of ethyne is 1) 0.1 mol 2) 0.2 mol 3) 0.3 mol 4) 0.4 mol π - electrons in one molecule of ethyne =4 π - electron in 2.6 g (=

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information A Novel Single-Side Azobenzene-Grafted Anderson-Type Polyoxometalate

More information

Covalent Bonds. single bond, or single covalent bond. sharing of one pair of valence electrons. double bond, or double covalent bond

Covalent Bonds. single bond, or single covalent bond. sharing of one pair of valence electrons. double bond, or double covalent bond Covalent Bonds Molecule two or more atoms held together by covalent bonds single bond, or single covalent bond sharing of one pair of valence electrons double bond, or double covalent bond sharing of two

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information